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We provide numerical evidence for slow dynamics of the susceptible-infected-susceptible model evolving
on finite-size random networks with power-law degree distributions. Extensive simulations were done by
averaging the activity density over many realizations of networks. We investigated the effects of outliers in
both highly fluctuating (natural cutoff) and nonfluctuating (hard cutoff) most connected vertices. Logarithmic
and power-law decays in time were found for natural and hard cutoffs, respectively. This happens in extended
regions of the control parameter space λ1 < λ < λ2, suggesting Griffiths effects, induced by the topological
inhomogeneities. Optimal fluctuation theory considering sample-to-sample fluctuations of the pseudothresholds
is presented to explain the observed slow dynamics. A quasistationary analysis shows that response functions
remain bounded at λ2. We argue these to be signals of a smeared transition. However, in the thermodynamic
limit the Griffiths effects loose their relevancy and have a conventional critical point at λc = 0. Since many
real networks are composed by heterogeneous and weakly connected modules, the slow dynamics found in our
analysis of independent and finite networks can play an important role for the deeper understanding of such
systems.
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I. INTRODUCTION

Quenched randomness in interacting dynamical systems
causes nontrivial critical behavior in nonequilibrium finite-
dimensional systems [1–6]. Spatial randomness can be in-
troduced, among other ways, in the form of dilution [7–9]
or nonuniformity of the control parameters [6,10,11] or by
topological heterogeneity of the connectivity structure of the
interactions [3,4,12–14]. One of the most noticeable effects of
quenched (or quasistatic) disorder is the onset of dynamical
criticality, manifested in diverging correlation times and slow
decays of the order parameter in extended regions of the
parameter space, rid of fine tuning [2]. This allows a potential
for explaining widespread observation of criticality, even
without the assumption of self-organized mechanisms [15].

Extended criticality induced by quenched disorder is
grounded on the existence of rare regions (RRs), which are
large, randomly occurring patches that can linger for long
times in a phase that differs from the global state of the system.
Lets consider interacting dynamical systems with active and
inactive (absorbing) phases and a control parameter λ such that
for λ > λc the system is globally active (supercritical) and for
λ < λ0 it is inactive without long lived active RRs [2]. For λ0 <

λ < λc, the activity in RRs lasts for very long (exponential in
patch size) periods but fluctuations unavoidably end up the
local activity due the finite size of the patches. Convolution of
low-probability RRs and exponentially long lifetimes results
in a slow dynamics with nonuniversal exponents in the interval
λ0 < λ < λc called Griffiths phase (GP) [5,16].
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Complex networks constitute a fundamental theoretical
framework to describe substrates where many dynamical
processes, as epidemics, information, and transportation take
place [17,18]. Heterogeneity (disorder) is an intrinsic hallmark
of complex networks manifested through several forms of
centralities [19]. The degree-centrality ranks among the most
basic properties and is statistically represented by the degree
probability distribution P (k) that a randomly selected vertex of
the network has k connections [18]. Many networks observed
in nature have highly heterogeneous patterns of connectivity
usually described by a power-law (PL) degree distribution.
These can be scale-free (SF) networks [20], characterized by
heavy-tailed distribution P (k) with the ratio 〈k2〉/〈k〉 � 〈k〉.
Other important measure of the dynamics on networks is
the eigenvector centrality [19] associated with the principal
eigenvector of the adjacency matrix defined as Aij = 1 if
vertices i and j are connected and 0 otherwise.

This intrinsic disordered nature of networks calls for
analogues of GP and RR phenomena. This issue has recently
been investigated [3,13] and GPs have been found in the
contact process (CP) [21] on finite-dimensional networks.
It was conjectured that GPs are not present in models on
infinite-dimensional, small-world graphs, where the average
distance between vertices increases logarithmically or slower
with the network size [20] as, for example, the case of
random PL networks. On the other hand, at models defined
on hierarchical modular structures, where the intermodule
connectivity is weak, GPs were reported [4,14].

The susceptible-infected-susceptible (SIS) epidemic model
[22], in which infected vertices spontaneously heal with rate
1 (fixing the time scale) and infect each of the susceptible
nearest neighbors with rate λ, is a paradigmatic example of a
nontrivial dynamical process on complex networks. Differing
from other dynamical processes with transitions from active to
inactive states, the SIS threshold is governed by the activation
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of hubs, also called star subgraphs, and their mutual reinfection
through connected paths [23–26]. As a consequence, the
threshold is proved to be null in the infinite size limit for
random networks with PL degree distribution P (k) ∼ k−γ ,
irrespective of the degree exponent γ [23].1 Some interesting
physical mechanisms behind the rigorous proof of Chatterjee
and Durret [23] were used by Boguñá et al. [25] to unveil
the nature of the epidemic threshold of the SIS model. Stars
are graphs with k � 1 leaves connected to a center that can
themselves sustain long-term epidemic activity if k � 1/λ2.
In PL networks the average highest degree diverges with the
network size [27], implying that more and more hubs become
active stars at finite values of λ. Due to the small-world
property of random PL networks, the lifetime of hubs is large
enough to permit infecting each other, sustaining epidemic
activity in the network [25,26].

In finite random networks, the SIS dynamics is puzzling
due to the highly fluctuating size and the number of stars
realized in a network sample [28–31]. Indeed, the effective
finite-size epidemic threshold is finite [25,28] since k � 1/λ2

for sufficiently small values of λ and stars alone cannot
sustain a long-term activity. Several network realizations have
just a few vertices with degree much larger than the rest of
network, hereafter called outliers. Outliers can sustain local-
ized epidemics, with different activation thresholds for very
long times, producing multiple transitions [31]. Neglecting
interactions among hubs, Lee et al. [30] predicted that the
threshold for an endemic phase, in which a finite fraction
of infected vertices is present, should take place at a finite
value for γ > 3, where 〈k2〉 is finite. According to Lee et al.
[30], the subcritical region is ruled by a GP, with an ultraslow
(logarithmic) decay of activity, in odds with the rigorous
results of null threshold for infinite PL networks [23]. This
proposition was supported by numerical simulations on very
large, but finite, random PL networks [31]. Finally, in finite
PL networks, a vanishing epidemic threshold is predicted by
the quenched mean-field (QMF) theory [32,33], in which
the full connectivity structure of the network is included
through the adjacency matrix [29]. In such models, Griffiths
effects were also shown in the localized phase for γ > 3
[34]. RR effects, localization, and heavy tailed dynamics have
also been shown in spreading models defined on weighted
PL networks by suppressing hub infection via disassortative
weight schemes [35,36], in random networks [37,38], or in
aging Barabasi-Albert graphs [37].

Although localization effects were obtained in simulations
on finite networks [31], the investigated systems were very
large (∼108 vertices), suggesting that these can be observable
and relevant in many unavoidably finite real networks. Aiming
at a deeper understanding of the intricate behavior of epidemic
spreading on finite-size networks, we investigate the dynamics
of the SIS model on a large ensemble of PL networks, using
extensive numerical simulations. We show that the averaging
over many independent graph realizations exhibits a slow
dynamics, analogous to GPs, in an interval of control parameter

1Reference [23] calls the model known in the physics literature as
SIS of “contact process.”

λ1 < λ < λ2. This region is delimited by two transitions: The
former is related to the activation of the most connected hub of
the network, while the latter is related to a smeared phase
transition [2]. Our results indicate that this region shrinks
as the size of the network increases and disappears in the
thermodynamic limit, implying the absence of GPs. This is
in agreement with the conjecture that finite dimensionality is
required for the existence of GPs [3]. Moreover, many real
networks, as, for instance, brain connectomes, have a modular
organization, where modules are finite, heterogeneous, and
weakly connected [39]. Slow dynamics has been reported in
models defined on hierarchical modular networks [4,14,40].
Therefore, performing analysis over independent, finite net-
works can be useful to understand these systems.

We have organized the paper as follows. The epidemic
model and the simulation methods are described in Sec. II.
Results for the density decay and quasistationary simulations
are presented and discussed in Secs. III and V, respectively.
An optimal fluctuation theory to explain the observed slow
dynamics is developed in Sec. IV. Our concluding remarks are
presented in Sec. VI.

II. MODELS AND METHODS

The SIS model is defined as follows. Individuals lie in
the vertices of a quenched network of size N and can be in
two states: infected or susceptible. An infected individual i

becomes spontaneously susceptible with rate 1, while a sus-
ceptible one turns to the infected state with rate λni , where ni

is the number of infected nearest neighbors of i. The dynamics
is simulated on networks obtained by the configuration model
[19] with PL distribution P (k) ∼ k−γ , minimum degree k0,
and upper cutoff kmax. Different cutoffs were investigated:
Free (kmax = N , strictly and is also called natural), hard
(kmax = k0N

0.9/(γ−1)), and structural (kmax = √
N ) cutoffs.

The first one leads to degree distributions in which both the
average and the standard deviation of the highly fluctuating
natural cutoff diverge as N1/(γ−1) [31]. Conversely, the second
one is engineered to render distributions without very large
gaps in their tails of the degree distribution, since the factor
0.9 guarantees that

√〈k2
max〉 − 〈kmax〉2/〈kmax〉 → 0 as N → ∞

[31]. The structural cutoff is not fluctuating and guarantees
the absence of degree correlations for γ < 3 and becomes
equivalent to the absence of a cutoff for γ > 3 and N → ∞
[27]. Graph edges are generated randomly, forbidding multiple
and self-connections. All simulations were performed for
k0 = 3. Three ranges of the degree exponents were considered
separately: γ > 3, for which localization is conjectured by
the QMF theory [29]; γ < 2.5, where nonlocalized epidemic
spreading is predicted [30,41]; and 2.5 < γ < 3 strict SF
regime, where localization is conjectured by the QMF theory
[29,41].

The simulations were run using the modified Gillespie
algorithm described in Refs. [28,31]. The number of infected
vertices n and the number of edges S emanating from
them are computed and constantly updated. With probability
1/(n + λS) an infected vertex is randomly chosen and cured.
With the complementary probability, λS/(n + λS), an infected
vertex j is chosen with a probability proportional to its degree.
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A vertex in the neighborhood of j is chosen with equal
chance and, if it is susceptible, becomes infected, otherwise
the simulation runs to next step. The time is incremented by
�t = 1/(n + λS) and the procedure is repeated iteratively.

We performed both standard and quasistationary (QS)
analysis. In the former, the decay from a fully infected initial
state was investigated. In the latter, only samples that did not
visit the absorbing state are used to compute statistics and the
analysis was done in the (quasi) stationary regime [42]. We
used the improved QS method of Ref. [43], with parameters
similar to those given in Ref. [31]. Differently from previous
analysis of SIS on SF networks [25,28,31,33], we aim at
the average behavior of a large number N of independent
realizations. In the decay analysis, 10 to 100 independent runs
were performed for each network, being the largest number of
runs used for smallest value of the infection rate.

III. TIME-DEPENDENT ANALYSIS

A. Free cutoff

Simulations for networks with a free cutoff are shown in
Fig. 1. We observe an extremely slow logarithmic decay in an
extended region of the control parameter λ. For γ = 3.5, the
decay is very well fitted by

ρ ∼ (ln t)2−γ . (1)

For γ = 2.7, in the SF regime, we also see a logarithmic decay
ρ ∼ (ln t)−α , with a varying exponent α that is not qualitatively
well described by Eq. (1). The origin of the logarithmic decay
given by Eq. (1) is related to the presence of the outliers in the
network and will be analytically explained in Sec. IV using an
optimal fluctuation theory.

B. Hard cutoff

The localization of the QMF theory for γ > 2.5 in concen-
trated around the largest hub [44]. So the role played by the
hubs can be evidenced damping their number and fluctuations.
Evolution of the density of infected vertices for hard cutoff
of P (k) is shown in Fig. 2 for γ = 3.5 and 2.7. The data
indicate PL decay with nonuniversal exponents at long times
for both degree exponents. Regressions fits: ρ ∼ t−α(λ) at
γ = 3.5 resulted in α varying from 0.70 to 0.17 by increasing
λ from 0.088 to 0.095. Similar range of exponents were found
for γ = 2.7, varying λ from 0.030 to 0.0365.

C. Structural cutoff

We also simulated the density decay in networks with the
structural cutoff kc = N1/2 with γ < 3 since otherwise it is
equivalent to the natural one. This cutoff leads to the uncor-
related configuration model (UCM) [45], that has been used
in many analyses of SIS on SF networks [25,28,30,33,41,46].
Power-law decays in time are still observed, but the extended
region is reduced compared with hard cutoffs, see Fig. 3.

D. Sample-to-sample fluctuations

The origin of the slow decay is the sample-to-sample
fluctuations rather than occurrence of rare regions in the
same network. Figure 4 shows the decay of the density for
50 networks with all parameters fixed to values for which

10
0

10
1

ln t

10
-8

10
-6

10
-4

10
-2

10
0

ρ

ρ~(ln t)
2-γ

0.0100
0.0115
0.0130
0.0150
0.0175
0.0200
0.0250
0.0300
0.0350

(b)

10
0

10
1

ln t

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

ρ

ρ~(ln t)
2−γ

0.080
0.070
0.060
0.050
0.040
0.030
0.025
0.020
0.015

(a)

FIG. 1. Decay of density of infected vertices for networks with
free upper cutoff (kmax = N ) using (a) γ = 3.5 and (b) γ = 2.7 for
networks with sizes N = 107 and N = 105, respectively. The number
of samples were up to N = 500 and 4000 for γ = 3.5 and 2.7,
respectively. Lines are predictions of the optimal fluctuation theory
in Sec. IV. The values of λ are indicated in the legends.

slow decays are observed in the averaged curves. One can
see that several curves are subcritical, while others behave
supercritically, evolving to a metastable stationary density
value before falling in the absorbing state. Numerically, we
observe pseudothresholds and, consequently, all quantities of
interest with wide distributions whose relative variance does
not decrease with the network size within the region of Griffiths
effects. This means that the quenched disorder is relevant
within the dynamical critical region analogously to a lack of
self-averaging [47], where having many finite samples is not
equivalent to averaging over a single large network [18]; note
that the dynamical critical region where disorder is relevant
diminishes as network size increases and disappears in the
thermodynamical limit, as discussed later.

There exist two main mechanisms for this large variation,
the leading one depends on γ and the cutoff used. For a
free cutoff, the size of the largest hubs fluctuates greatly.
So the presence of outliers, creating local active domains,
determines if the dynamics levels off to a quasi steady state
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FIG. 2. Decay of density of infected vertices for (a) γ = 3.5
and (b) γ = 2.7 for networks of sizes N = 107 and 105, re-
spectively, using hard cutoff kc = k0N

0.9/(γ−1). The numbers of
independent networks are N = 500 and 4000 for γ = 3.5 and 2.7,
respectively. The values of λ are indicated in the legends.
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FIG. 3. Decay of density of infected vertices for (a) γ = 2.7 and
(b) γ = 2.3 for networks of size N = 105 using structural cutoff
kc = N 1/2. The values of λ are indicated in the legends.
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FIG. 4. Sample-to-sample fluctuation of the evolution of SIS
on PL networks: (a) γ = 3.5, N = 107, free cutoff, and λ = 0.04;
(b) γ = 3.5, hard cutoff kc = k0N

0.9/(γ−1), N = 107, and λ = 0.09;
(c) γ = 2.3, structural cutoff kc = N 1/2, N = 105, and λ = 0.026.
Curves for 50 independent networks are shown. Thick lines represent
the average of N = 500 and 2000 samples for γ = 3.5 and 2.3,
respectively.

in the simulation of that sample. In the cases of hard or
structural cutoffs, the tails of the degree distributions fluctuate
little and the leading mechanism is the variation of the overall
heterogeneity of the network, which can be measured by the
average degree of the nearest neighbors of the vertices knn [48].
For the structural cutoff case this becomes knn = 〈k2〉/〈k〉 [27],
whose inverse provides a very precise estimate of the SIS
epidemic threshold for γ < 2.5 [28,46]. Density decay for
networks with γ = 2.3, using a structural cutoff, are shown
in Fig. 4(c). Three samples highlighted with symbols possess
〈k〉/〈k2〉 = 0.0270, 0.0243, and 0.0235, and the larger values
the lower densities. These values must be compared with the
infection rate λ = 0.026 used in all samples. We see that
samples for which 〈k〉/〈k2〉 � λ are supercritical and those
where 〈k〉/〈k2〉 � λ are subcritical. An optimal fluctuation
theory to explain this slow dynamics is presented in Sec. IV.

E. Finite-size analysis

The slow dynamics observed in the ensemble averages is
not a genuine Griffiths singularity, since it is not triggered
by the slowly decaying RRs; thus we can expect that these
effects disappear in the thermodynamic limit. This conjecture
is confirmed in Fig. 5, where we show the density of infected
vertices against time for different sizes for a fixed infection
rate λ = 0.088. We see that the dynamics is deeply subcritical,
an exponential decay of activity, for N = 106. For size N =
107 a PL regime can be observed but, finally, a saturation to
a constant plateau develops at N = 108. The disappearance
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FIG. 5. Finite-size analysis of the density decay against time for
networks with γ = 3.5 and hard cutoff kc = k0N

0.9/(γ−1) for infection
rate λ = 0.088. The number of network samples is 100 for the two
largest sizes and 500 for the others. The network sizes are indicated
in the legends.

of the PL regimes is mainly associated with the shift of the
epidemic threshold towards zero as the size increases [28,46].
The threshold drops from approximately 0.12 for N = 106 to
0.075 for N = 108. Similar finite-size effects were observed
in the CP on weighted trees [35] and the same mechanism
shown here is probably also present there. The CP also exhibits
strong finite-size dependence of the thresholds, approaching
the asymptotic value only at exceeding large networks [49,50].
Moreover, the range of λ where PLs are observed decreases as
N → ∞ (see also Sec. V), thus Griffiths effects disappear in
the thermodynamic limit.

IV. OPTIMAL FLUCTUATION THEORY

The hypothesis drawn in Sec. III, in which the slow decay is
originated from sample-to-sample fluctuations of the effective
thresholds in finite-size networks can be put in a mathematical
ground by approximating the sample average with an integral

ρ̄ =
∫ λ

0
dλcρ(λ,λc)P(λc)e−t/τ (λ,λc). (2)

Here ρ(λ,λc) is the quasistatic density as a function of λ > λc

(ρ ≡ 0 for λ < λc), τ (λ,λc) is the lifetime of the dynamical
processes and P(λc) is the probability density that a randomly
selected sample has a threshold at λc.

We assume that in a free cutoff network with γ > 2.5 the
activation happens at the most connected hub [41]. Consider a
star subgraph, centered on the vertex of maximal degree kmax,
which forms an independently activated domain in a network
with N nodes. Using QMF theory, the threshold in such a star
graph is λc ∼ 1/

√
kmax [28,46]. The density in a star of size k

is2 ρstar ≈ λ for λ � λc, implying that

ρ = λkmax

N
. (3)

2The actual density in a star must increase a ρ ∼ λβstar , where βstar >

βQMF = 1.

The lifespan of the activity in a star in case of SIS dynamics
is [25]

τ � τ0 exp(aλ2kmax), (4)

where a and τ0 are constants. Finally, the probability of a given
threshold is P(λc)dλc = 	(kmax)dkmax, where

	(kmax) � N exp
( − cNk−γ+1

max

)
k−γ

max (5)

is the probability of the largest degree to be kmax in a PL
network with N vertices [27]. Here c is a constant depending
on P (k). Plugging Eqs. (3)–(5) into Eq. (2), we obtain

ρ̄ ∼ λ

∫ ∞

1/λ2
k−γ+1

max exp
( − cNk−γ+1

max

)
exp(−t/τ )dkmax. (6)

If 1/λ2 � N1/(γ−1), then the first exponential suppresses the
integral and a standard subcritical phase with exponential
decay is expected. For 1/λ2 � N1/(γ−1), the first exponential is
approximately 1. After an integration by parts this integral can
be easily evaluated using the saddle-point method to return ρ̄ ∼
(ln t)2−γ , exactly the result of Eq. (1). This decay is the same
found by Lee et al. [30], in a theory of SIS dynamics for infinite
PL networks, with noninteracting hubs. This predicts ultraslow
decay instead of a stationary endemic state, contradicting the
exact result of the null epidemic threshold for SIS irrespective
of γ [23]. Why do our simulations match this theory? The
assumption that stars form independent domains of activity is
incorrect in principle, since the lifetime of epidemics on stars
can be sufficiently large to permit mutual infection of hubs,
even if they are not directly connected due to the small-world
property [25,26]. However, several stars that contributed to
the average epidemic activity in our simulations are observed
in different realizations of networks and are thus actually
independent.

In the SF regime at γ = 2.7 the QMF still predicts
localization (see Appendix), but there is a high probability
that several activated hubs occur in the same network sample
even if their size is finite. Thus neglecting the multiplicity of
activated hubs as well as the interaction among them [25] is not
a quantitatively accurate approximation but it is able to capture
the essentially logarithmically slow dynamics observed in
simulations.

In case of hard cutoff, we do not know the form of P(λc).
Since the fluctuations of λc depend on global properties of the
networks, we assume their distribution to be Gaussian, with
width σ (N ) and centered at λ0(N ), tending to a delta function
at λ = 0 as N → ∞, in conformity with numerics. Less is
know about the lifespan. Numerically, we have data consistent
with τ ∼ exp[a(λ − λc)2], where a(N ) is some function
increasing with the size that we could not determine precisely.
Plugging these forms into Eq. (2) and using the saddle-point
approximation to solve the integral we found ρ̄ ∼ t−1/2aσ 2

.
This is a nonuniversal power law, in agreement with the density
decay simulations, as far as aσ 2 is a nonuniversal constant.

V. QUASISTATIONARY ANALYSIS

The stationary state of the SIS model on a single finite
network with degree exponent γ > 3 was characterized by
multiple transitions as λ is varied due to the independent
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FIG. 6. Finite-size analysis of the QS state for networks with
γ = 3.5. The [(a) and (b)] QS density ρ, [(c) and (d)] log-derivative
of ρ, and [(e) and (f)] dynamical susceptibility are shown in left and
right panels for free and hard cutoffs, respectively. The number of
samples were at least N = 50. The network sizes are indicated in the
legend.

activation of different regions with different thresholds [31].
One transition was associated with the activation of the most
connected vertex with a vanishing threshold of the QMF theory
λ1 ∼ 1/

√
kmax. A second transition was associated with the

mutual activation of hubs [25] and took place at a threshold
λ2. A third transition, that occurs at another finite threshold,
was also found. This represents the collective activation of the
network [26]. Again, we tackle this problem by averages over
a large ensemble.

Figures 6(a) and 6(b) compares the QS density against λ

for degree exponent γ = 3.5 with either hard or free cutoffs
for networks of different sizes. The average QS density is a
double sigmoid, a nonmonotonically increasing function of
λ, which indicates two phase transitions. At a standard clean
critical point, the logarithmic derivative of the QS density
scales as [51]

d ln ρ

dλ

∣∣∣∣
λc

∼ L1/ν⊥ , (7)

where L is the system size and ν⊥ is a critical exponent
associated with the divergence of the correlation length. This
log-derivative can also be used to identify multiple transitions
in epidemic spreading in networks [31], in association with the
dynamical susceptibility χ = N (〈ρ2〉 − 〈ρ〉2)/〈ρ〉 [28]. The

latter quantifies the relative fluctuations of the order parameter
as shown in Fig. 6.

The log-derivative of the density is shown in Figs. 6(c)
and 6(d), while the susceptibility is shown Figs. 6(e) and 6(f).
Averages over the ensemble of networks wipe out the multiple
transitions of single networks, leading to two observable tran-
sitions at thresholds λ1 and λ2 > λ1. These correspond to the
peaks of the log-derivatives and susceptibility; the latter is less
evident for λ1. Notice that the double transition identified with
the hard cutoff in the log-derivative analysis starts to emerge as
a shoulder in the susceptibility curves of the largest size investi-
gated. The threshold at λ1 can clearly be seen in the susceptibil-
ity curves for natural cutoff only for very large sizes and is man-
ifested as a shoulder for the other cases, including hard cutoffs.

For the free cutoff, a QS density ρfree � 1/N , the minimal
value allowed in a QS simulation, is observed in the interval
λ1 < λ < λ2. This resembles a smeared phase transition [2]
and the interval coincides with the region, where Griffiths
effects are found in the density decay analysis. We attribute
this smearing to the presence or absence of outliers in
different samples. In the case of hard cutoff, the suppression
of outliers leads to a weaker smearing with a density
1/N � ρhard � ρfree. In a standard smeared phase transition,
patches having high-enough dimension can exhibit ordering
transition independently. In principle outliers, represented by
stars, are high-dimensional objects, which could be activated
independently. So the basic ideas of smeared transitions could
be fulfilled. However, outliers plus their neighbors provide
a vanishing fraction of the network and give a vanishing
contribution to the global density in the thermodynamic limit.
Thus they generate a finite-size effect.

The finite-size analysis at thresholds λ1,2 are shown in
Fig. 7. The left threshold, determined via the log-derivative,
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FIG. 7. Critical quantities against networks size for γ = 3.5: (a)
threshold, (b) critical density, and (c) critical susceptibility at λ = λi .
Solid lines are PL regressions while the dashed lines are λ1 ∼ N−0.2
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decays consistently with QMF theory and, for γ > 2.5,
scales as λ1 ∼ 1/

√
kmax ∼ N−0.5/(γ−1) or N−0.45/(γ−1) for

natural and hard cutoffs, respectively. This coincides with the
activation of the star graph centered at the most connected
vertex of the network [33]. The position of the right peak
of the susceptibility, which agrees with the right one of
log-derivative curves, goes slowly to zero as λ2(N ) ∼ N−0.09

in the investigated interval while the density evaluated at λ2

follows a power law ρc(λ2) ∼ N−0.65. These scaling laws
are, within uncertainties, independent of the cutoff. However,
both response functions, log-derivative and susceptibility,
saturate with the size, confirming a smeared transition at
λ2. The susceptibility at λ1, for free cutoff, increases as
χc ∼ N0.23, which is again consistent with the activation of
the most connected vertex: For a star with kmax leaves we have
approximately χ ∼ (kmax)0.55 (using data from Ref. [46]) and
given that kmax ∼ N1/(γ−1), we obtain an exponent, which is
close to 0.23, observed in the simulations.

The peaks at finite values of λ, observed in single networks
[31], are wiped out and are not evident when averages are
done.3

Analyzing the behavior for N = 107 with free cutoff and
γ = 3.5, we found ρ ∼ λβ , where β ≈ 2.8 with λ1 < λ <

λ2. Running the dynamics only on the star centered on the
most connected vertex by permanently immunizing the rest of
the network, we found βstar ≈ 2.0 < β. This means that the
mutual activation of hubs is relevant in the interval λ1 < λ <

λ2, leading to an exponent larger than that of a single star
centered on the most connected vertex. The estimate β ≈ 2.8
for γ = 3.5 is inside the rigorous bounds found by Chatterjee
and Durret [23]: γ − 1 < β < 2γ − 3.

VI. CONCLUSIONS

Random, scale-free networks exhibit strong, quenched
inhomogeneities, and therefore rare region effects can be ex-
pected to play an important role. To see rare regions of arbitrary
sizes we should simulate arbitrarily large system sizes or by the
standard way of approximations we do sample averages over
many independent network realizations. The latter way is not
equivalent to the former one in scale-free networks. In models
defined on networks with infinite topological dimensions, a
recent hypothesis states that Griffiths phases cannot exist [3]
and another important result for infinite dimensional networks
with power-law degree distributions is that SIS does not
exhibit a phase transition at finite λ [23]. Real networks, on the
other hand, can be very large but are always finite. Therefore,
a numerical analysis on different sizes is of great importance.

Here we present extensive simulations on networks gener-
ated with the configuration model using free (fluctuating) and
structural or hard (nonfluctuating) degree cutoffs. We focused
on statistics over a large ensemble of networks. Contrary

3In Ref. [31] networks with up to N = 108 vertices were simulated
while here we analyzed until N = 107 and performed larger ensemble
averaging. So our results do not definitely discard other transitions
for higher sizes but no indications of them were observed in the
investigated size range.

to the results obtained on single network realization, where
multiple transitions were reported [31], we observe that the
network ensemble averaging exhibits Griffiths effects in an
extended region of the control parameter λ1(N ) < λ < λ2(N ),
which diminishes as network size increases and disappears in
the thermodynamical limit. These Griffiths effects are due to
sample-to-sample fluctuations, producing non-self-averaging
within the shrinking critical dynamical region rather than the
existence of RRs of actual Griffiths phases. We also observe the
occurrence of a smeared transition, with saturated fluctuations
of the order parameter at λ2. Our findings can be relevant
if we consider independent realizations as graphs occurring
in a sequence of uncorrelated, time-dependent networks at a
given time and we measure quantities in the long-time average.
Alternatively, such results can describe the behavior of systems
in which power-law degree distribution in modules make up a
very weakly coupled network.

More specifically for free cutoff networks, we found an
asymptotic logarithmic decay of density in time in the interval
λ1(N ) < λ < λ2(N ). Here λ1 ∼ 1/

√
kmax is associated with

the activation of the most connected vertex [33] and λ2

describes the mutual activation of hubs that leads to an
endemic phase of the network [25,26]. Both thresholds go
to zero at the infinite size limit with λ2/λ1 → ∞, implying
that for finite sizes there exists a detectable extended interval
with Griffiths effects. The logarithm decay is explained by
an optimal fluctuation theory for networks where fluctuating
pseudocritical points are considered. For structural and hard
cutoffs the Griffiths effects are weaker, resulting in nonuni-
versal power-law density decay tails within a smaller range of
the control parameter. We attribute this to the lack of outliers,
which causes weaker sample-to-sample heterogeneity and less
fluctuating pseudocritical points.

The finite-size analysis shows that the transition peaks move
to zero by increasing the size and the Griffiths effects are re-
placed by a conventional critical point behavior characterized
by β ≈ 2.8 for degree exponent γ = 3.5.
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APPENDIX: SPECTRAL ANALYSIS FOR γ = 2.7

We have also tested whether the QMF theory provides
localization for 2.5 < γ < 3, since earlier numerical results
suggested a localization transition at γ = 3 [34]. We per-
formed spectral analysis of the SIS on UCM networks with
k0 = 1,2,3 structural and k0 = 2 with free cutoff as described
in Ref. [34] at γ = 2.7 for N = 5000–106. We diagonalized
the Aij matrix which describes the evolution of activity
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probabilities ρi(t) of node i in the QMF approach

dρi

dt
= −ρi + λ(1 − ρi)

N∑
j=1

Aijρj . (A1)

The localization in the active steady state can be quantified
by calculating the inverse participation ratio (IPR) of the
principal eigenvector e(y1), related to the largest eigenvalue
of the adjacency matrix as [29]

I (N ) ≡
N∑

i=1

e4
i (y1). (A2)

This quantity vanishes as 1/N in the case of homogeneous
eigenvector components but remains finite as N → ∞, if the
activity is concentrated on a finite fraction of nodes. The
average values 〈I 〉 were determined for 100–1000 independent
networks for each parameter value. The finite-size analysis
(Fig. 8) for k0 = 1 shows a clear monotonic increasing
tendency of 〈I 〉 as N → ∞. In case of a k0 > 1, the mean
IPR values decrease first and cross over very slowly to an
increase for N > 105. For free cutoff the graph generation
is more difficult and slow, but, again, one can observe a
monotonic increase of 〈I 〉 up to N = 160 000. Therefore, we
see numerical evidence that epidemic activity of the QMF
theory is localized at γ = 2.7 as expected, in general, for
γ > 2.5 [29].
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