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ABSTRACT 

We describe a computational method derived from self or-
ganizing mapping and multidimensional scaling algorithms 
for automatic classification and visual clustering of large 
vector databases. Testing the method on a large corpus of 
folksongs we have found that the performance of the classi-
fication and topological clustering was significantly im-
proved compared to current techniques. Applying the 
method to an analysis of the connections of 31 Eurasian and 
North-American folk music cultures, a clearly interpretable 
system of musical connections was revealed. The results 
show the relevance of the musical language groups in the 
oral tradition of the humanity.  

1. INTRODUCTION 

The comparative study of different folk music cultures goes 
back to the early 20th century [1-2]. Although ethnomusi-
cologists seemed to gradually forget the conception of the 
classical structural analysis and classification, the develop-
ment of the computation tools led to a renaissance of the 
idea in recent years [3-4].  At the same time, the number of 
representative national/regional digital folksong databases 
is also increasing rapidly. Therefore, a computer aided 
comparison of different musical cultures in order to reveal 
hidden contacts of different musical cultures became very 
topical. 
Current interdisciplinary research, based on the cooperation 
of musicology, artificial intelligence research and data min-
ing, focuses on automatic similarity measurement, segmen-
tation, contour analysis and classification using different 
statistical characteristics, e.g. pitch-interval or rhythm dis-
tribution. A very widely used kind of artificial neural net-
works, the self organising map (SOM) proved to be a very 
versatile tool of computing musicology [5]. SOM-based 
systems have been elaborated for simultaneous analysis of 
the contour as well as the pitch, interval and duration distri-
butions, based on the symbolic representation of the music 
[6]. A cross-cultural study of different musical cultures was 
also based on SOM technique [7].  
The operation of a SOM can be summarised for our case as 
follows: Our input data to be classified are contour vectors, 

containing subsequent pitch values of melodies of a folk-
song database. The main goal of self organising mapping is 
to characterise the multidimensional point system con-
structed by the set of these melody contour vectors by a sig-
nificantly smaller set of “contour type vectors” describing 
the average contours in the local condensations of the input 
contour vectors. Although the details of the calculations are 
different, this goal essentially corresponds to that of the so-
called K-means algorithm [8].  However, the SOM pro-
duces something more: it assigns the resulting contour type 
vectors to the lattice points of a grid topographically.  The 
topographic structure of the resulting map is provided by a 
cooperative learning, modifying the contour type vectors 
located in neighbouring lattice points in parallel. As a result 
of this local cooperation, similar contour type vectors are 
located in neighbouring lattice points after learning.  
Due to the topographic lattice, the SOM allows us to de-
scribe the inherent relations of a melody collection in two 
levels. Similar melodies are classified as variants of a com-
mon contour type in the first level, while the relations of the 
classes represented by the contour types themselves are 
mapped into the topographic lattice in the second one.   
The overall relations in a data set can be excellently repre-
sented on a SOM, providing that these relations can be well 
approximated by a two-dimensional structure. However, 
stretching a more complicated structure into a plain lattice 
results in a significant loss of the accuracy of the classifica-
tion on one hand, and a non-perspicuous map on the other 
hand. In principle, it is possible to extend the map dimen-
sion, but the resulting exponential increase in the number of 
lattice points dramatically increases the computing time and 
the memory demand.  Therefore, we need some other tech-
nique to increase the degree of freedom of the points in the 
map.  
Therefore, we elaborated a system combining the SOM 
technique with a special version of the multidimensional 
scaling (MDS) algorithm [9]. In MDS technique, the input 
data to be visualised are presented in a quadratic matrix 
containing some distance-like or similarity-like values be-
tween some objects. (For instance, the matrix can contain 
geographical distances between towns, or dissimilarity rat-
ings of melodies, etc.) The aim of the algorithm is to repre-
sent the objects (towns or melodies) in a low dimensional 



  

 

space (often in a plane) with the requirement that the dis-
tances of the low dimensional points must optimally corre-
spond to the input values.  
In the present work, firstly we describe a method con-
structed by two independent stages corresponding to the 
above-mentioned two-level characterisation of melody cor-
pora. The first stage is a simplified, non-cooperative – and 
therefore non-topographic - version of SOM learning. In the 
second stage, the topographic low-dimensional mapping of 
the resulting contour type vectors is accomplished by a 
variant of the MDS algorithm. This allows us to project the 
spatial regularities of the multidimensional input vector sys-
tem to a continuous low-dimensional space without the re-
strictions of the planar grid structure of the SOM. In order 
to express the contact to the original SOM principle and to 
emphasize the increased degree of freedom of the low di-
mensional mapping, we call this technique “self organising 
cloud” (SOC).  
As a generalisation of the original SOM principle, we also 
present the cooperative version of the above learning sys-
tem, where the topographic arrangement is improved by a 
feedback between the multidimensional learning and the 
low dimensional mapping functions.  
We describe the results of a cross-cultural study of 31 rep-
resentative Eurasian and North-American folksong collec-
tions, based on the modelling by “self organising cloud” 
technique. The studied cultures are as follows: Chinese, 
Mongolian, Kyrgyz, Mari-Chuvash-Tatar-Votiac (Volga 
Region), Sicilian, Bulgarian, Azeri, Anatolian, Karachay, 
Hungarian, Slovak, Moravian, Romanian, Cassubian 
(North-Poland), Warmian (East-Poland), Great-Polish 
(Southern-Central Poland), Finnish, Norwegian, German, 
Luxembourgish, French, Dutch, Irish-Scottish-English 
(mainly Appalachian), Spanish, Dakota, Komi, Chanty, 
Serbian-Croatian (Balkan), Kurd, Russian (Pskov). Our da-
tabase contains digital notations of nearly 32000 folk songs 
arising from different written sources. All of these sources 
apply the Western notation, thus, the microtonal phenomena 
of the different cultures were eliminated by the authors 
themselves. The time duration and musical structure of the 
melodies is very variable, therefore we normalized the 
length of the melody contours as follows.    
 

2. THE MELODY CONTOUR VECTORS 
 
The generation of vectors from melodies is summarised in 
Figure 1, showing the first section of a Hungarian folksong 
as an example. The continuous pitch-time function derived 
from the score is represented by the thick line in Figure 1.  
 
There, the pitch is characterised by integer numbers, in-
creasing 1 step by one semitone, with the zero level of the 
pitch corresponding to the C tone. (In order to assure uni-
form conditions, each melody was transposed to the final 
tone G.) 

 
 

Figure 1. The generation of the melody contour vectors x . 
 
One can see in the figure that the duration of the temporal 
intervals of the pitch-time function is determined by the 
rhythmic value of the corresponding note. Thus, the main 
rhythmic information is also encoded. For sampling, the to-
tal length of the pitch-time function was divided into D  
portions. Then, the “melody vector”    

[ ]TkDkkk xxxx ,,2,1 , K= was constructed from the se-

quence of the pitch-time samples of the k th melody (See 
Figure 1.).  
Since D  was uniform for the whole set, melodies could be 
compared to each other using a distance function defined in 
the D -dimensional melody space, independently of their 
individual length. Due to this normalisation, melody con-
tours can be compared independently of their measure, 
tempo and syllabic structure. We studied the melody vec-
tors of the entire songs in the analysis, and we have found 
that a choice of 64=D  resulted in an appropriate accu-
racy for each melody.  

 
3. DETERMINATION OF THE CONTOUR TYPE 

VECTORS 
 
In the first phase of the process, we determined N D=64 

dimensional “contour type” vectors ic , characterising the 
most important melody forms in a database containing M 
melodies. In a training step, the distances between a ran-

domly selected melody contour kx  and the contour type 
vectors are determined, and the contour type of minimal 

distance ic  is considered as the “winner”. The winner con-
tour type is moved closer to the melody contour. 
 

In the initial state, the vectors ic  were filled by randomly 
selected melodies of the database. The size of the contour 
type sets varied between 400 and 576. The algorithm con-
sists of the following steps. 
 
1. A melody of the database was selected randomly and its 

melody vector kx  was compared to the contour type vec-

tors ic  using the Euclidean distance metric. 
 



  

 

2. The contour type vector of the minimal distance ic  was 
determined as the “winner” and it was modified using  
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where λ is a scalar factor controlling the rate of conver-
gence and the accuracy.  
The above technique can be considered as a K-means algo-
rithm [8], or equivalently, as a SOM with a learning radius 
of zero. This fact results in a remarkable simplification of 
the SOM algorithm and a significant improvement of the 
classification as we will illustrate it below. However, these 
advantages imply the disadvantage that the topographic ar-
rangement of the contour types – being a natural conse-
quence of the original SOM process - requires further com-
putation. The algorithm producing a more comprehensive 
and adequate spatial arrangement of the contour type vec-
tors is a version of the multidimensional scaling technique, 
and is described below.     
 

4. LOW DIMENSIONAL MAPPING OF THE 
CONTOUR TYPE VECTORS 

The basic idea of the multidimensional scaling algorithm 
can be formulated for our problem as follows: We have a 
set of N pieces of D=64 dimensional contour type vectors 

ic , and we can calculate the N*N dimensional quadratic, 

symmetric matrix Q  containing the squared Euclidean dis-

tances jiq , of them. (The advantage of squaring will be ex-

plained below.) We want to represent the N contour types 

by N vectors iv  of a low dimensional point system, so that 

the distances jid , between these points converge to the best 

low-dimensional approximations of the  
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where S  is the stress function to be minimised, and 

ijji ww ,, =  are weights expressing the importance of the 

distance of the corresponding points in the stress function. 
(For instance, the exact distance of very dissimilar vectors 

may not be important in certain cases. Thus, the weight val-

ues can be defined as functions of the input distances jiq , . ) 

The minimum of the stress function is searched by a gradi-
ent algorithm. For sake of simplicity, we consider the case 
when the low dimensional space is a plane, but the results 
can be easily generalised to higher dimensions. At the be-
ginning, the N points are randomly located in the plane with 

the coordinates ( )2,1, , mm vv , where m denotes the serial 

number of the points. The gradient components of the stress 
function in the 2N dimensional space of the point co-
ordinates are the partial derivatives  
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Let the “distance” of the ith and jth points in the plane be 
defined as 
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This definition yields a very simple expression for 
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and the gradient components of the stress function in Equa-
tion (4) become finally: 
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According to the gradient search principle, the new esti-
mates of the optimal point co-ordinates are determined as 
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where the small scalar valueµ  determines the rate and the 

accuracy of the convergence. 
In the subsequent steps of the algorithm, the gradient com-
ponents of the stress function are re-calculated in the new 



  

 

point locations using Equations (5) and (6), and the points 
are replaced using Equation (7) again. The algorithm can be 
easily generalised to 3 or more dimensional point systems.   
Comparing the above algorithm to the self organising map 
(SOM), an important difference lies in the fact that the low 

dimensional vectors iv  are not fixed to lattice points, so 
they are allowed to roam in the low dimensional space, in 
search of their own optimal position. In order to express this 
free roaming of the point system during learning, and to dis-
tinguish between the original SOM and the above described 
algorithm, we call it “self organising cloud” (SOC). 
This non-cooperative form of the SOC algorithm accom-
plishes a two-level systematisation of melody collections. In 

the first step, the contour type vectors ic  are determined, 
representing the centres of local clusters of the melody con-
tour vectors in the D=64 dimensional melody space. Thus, 
the first level of the systematisation is assigning the melo-
dies to the most similar contour type vectors. Having ac-
complished this classification process, the connections of 
the melodies can be described, the higher-level connections 
of the resulting melody classes, however, remain unre-
vealed. These latter relations are described by mapping the 
D=64 dimensional contour type vectors to a low dimen-
sional space. Thus, the second level of the systematisation 
is the low dimensional representation and visualisation of 
the relations between the melody classes having been de-
termined in the first level.  
 

5.  COOPERATIVE LEARNING 
 
Up to this point, we have emphasized the advantages of the 
independence of the non-topographic learning- and the to-
pographic visualising parts of the SOC technique. However, 
the system can easily be modified to learn the contour types 
in a cooperative way. In this case, all of the contour type 
vectors located in the surroundings of the winner are modi-
fied by the current training vector, and their new low di-
mensional coordinates are re-calculated simultaneously with 
the contour type learning steps, using Equations (5), (6) and 

(7). Since the vectors iv  can freely move in the low dimen-
sional space during the process, this cooperative learning 
approaches similar vectors to each other, resulting in a more 
articulated system of the low dimensional clusters. How-
ever, an uncontrolled cooperative process can lead to an ac-
celerated approach of neighbouring vectors, resulting in a 
total collapse of the whole system into one point. This prin-
cipal problem can be solved by the prohibition of the coop-
erative training within a critical radius around the winner. 
Although this version produces a suboptimal contour type 
estimation - similarly to the SOM algorithm -, it may sig-
nificantly improve the visual representation of the clusters.  
 
 
 

6. CROSS-CULTURAL ANALYSIS OF 31 MUSICAL 
CULTURES USING THE SOC ALGORITHM 

 
As an application of the SOC algorithm, we summarise the 
procedure and the results of a cross-cultural study of 31 folk 
music cultures in this chapter. The cultures were repre-
sented by 31 databases containing 1000 – 2500 melodies by 
culture. The first step of the analysis was the determination 
of the contour type collections of the 31 cultures, using non-
cooperative SOC mapping of the databases one by one. In 
the second phase, we unified the resulting 31 contour type 
collections into one training set, and trained a two-
dimensional “common” SOC having 1000 contour type vec-
tors. After training by the nearly 12000 contour type vectors 
arising from the 31 collections (400-500 vectors by cul-
ture), the resulting 1000 common vectors represent the most 
characteristic melody contours appearing in the 31 cultures. 
Figure 2 shows the resulting common musical maps gener-
ated by non-cooperative, as well as cooperative training of 
the SOC. The figure verifies that the cooperative learning 
yields a much more arranged “musical map”. The musical 
meaning of the main areas of this map is demonstrated by 
the contour type examples in Figure 3. 
 

 

Figure 2. Self organising clouds of the common contour 
type collection using non-cooperative (a), and cooperative 
(b) learning. 
 
At this point, we have to define the concept of “activation” 
of the common contour type vectors as follows: a contour 
type vector of the common SOC is “activated” by a training 
vector when the distance between them is less than a 
threshold value (see Equation 2). For example, the black 
points in Figure 2 correspond to the contour types activated 
by the Hungarian melody of Figure 4. The distribution of 
the points illustrates that the cooperative learning moves 
similar contour types into a more compact cluster. Extend-
ing this concept to national/areal sets of training vectors, we 
can say that the 31 contour type collections activate differ-
ent subsets of the 1000 common vectors.  
 
Figure 3 shows the common SOC with 6 different national 
activations and some contour type examples being very 
characteristic in the given cultures. Since the arrangement 
of the SOC reflects purely musical conditions, it is not a 
trivial result that the different cultures are located in more 
or less continuous areas. This fact refers to different musical 
styles dominating in different cultures. Some of these very 
characteristic melody forms are also indicated in Figure 3.  



  

 

 

 
 
Figure 3. Activated area of the common contour type cloud 
by contour type collections of 6 different cultures. 
 
For instance, contour example 1 shows that descending 
melodies with a high range are simultaneously dominating 
in the Chinese, Hungarian and Turkish activation area. An 
example for such melodies with Hungarian, Chinese, Anato-
lian and Dakota parallels is shown in Figure 4.  

 

       Figure 4. Melody examples of type 1 in Figure 3. 
 

Contour example 2 and 5, representing melodies with low 
range demonstrate the musical background of the definite 
overlap between Anatolian and Bulgarian cultures.  
The Hungarian area shows a significant overlap with the 
Chinese and Anatolian ones, but contour example 3 also 
demonstrates a significant common musical style of domed 
melody forms with the Irish-Scottish-English culture.  

At the same time, the Irish-Scottish-English corpus has also 
a significant overlap with the German one in the area of as-
cending forms moving beyond the final tone (see contour 
example 4).  

The sizes of the overlaps benchmarked against the total 
sizes of the activated area refer to the intensity of the rela-
tions of musical cultures [7]. We considered these relative 
overlap sizes as similarity ratings of musical cultures, and 
represented the resulting system of musical language groups 
using the MDS algorithm described above. The two-
dimensional MDS plot of the connections is shown in Fig-
ure 5. The edges indicate pairs of cultures with the largest 
overlaps. We also indicated some sub-graphs where the 
nodes mutually are in close musical contacts with each 
other. The graph shows a very clear structure with seven 
musically well interpretable clusters. The right branch of the 
system contains the mutually very closely related {Chinese 
– Volga – Mongolian}, {Hungarian – Slovak} and {Turkish 
– Karachay – Sicilian – Dakota} groups. The left branch is 
constructed by the {Finnish – Norwegian – ISE} and 
{German – Luxembourgian – French – Holland} clusters, 
whereas the {Bulgarian – Balkan - Kurdish – Azeri} and 
{Russian – Komi - Warmian (East-Poland)} groups con-
struct clearly separate clusters.  
The close contacts of the above discussed seven “musical 
language groups” can be traced back to certain musical 
styles being simultaneously present in more cultures. Com-
paring Figure 5 to Figure 3, one can recognise that the six 
activator cultures of the common musical map can be con-
sidered as representatives of the above mentioned “musical 
language groups”. Therefore, contour examples 1-5 in Fig-
ure 3 represent right the most characteristic common musi-
cal forms contacting the musical language groups as well.  

 
 

Figure 5. MDS plot of the connections of 31 folk music 
cultures. Connecting lines indicate the mutually largest rela-
tive overlaps. 
 
 

7. CONCLUSIONS 
 
We have described a technique which learns the group av-
erages of the local condensations of multidimensional point 
systems on the one hand and represents the similarity condi-



  

 

tions of the learned average vectors in a low dimensional 
point system on the other hand. Basically, the algorithm can 
operate in two modes: In the non-cooperative mode only 
one average vector is modified in one training step and the 
state of the other vectors is independent of this modifica-
tion. In the cooperative mode the training is extended to a 
group of average vectors, and a feedback comes into exis-
tence between the learning of the multidimensional aver-
ages and the low dimensional arrangement. 
The non-cooperative learning of the contour type vectors 
permits the convergence to the exact centres of the local 
condensations of the training vectors, therefore the SOC 
corresponds to the K-means algorithm in this case. The co-
operative learning realises a compromise between the accu-
racy of the multidimensional learning and the low dimen-
sional representation, therefore the system converges into a 
sub-optimal state in this case. However, the cooperativeness 
can be tuned by the learning radius parameters, and the 
benefit of a well accomplished cooperative training may be 
a more transparent low dimensional representation of the 
multidimensional clusters, whereas the accuracy of the 
learning also remains acceptable.  
The low dimensional topographic representation of the con-
tour type vectors is accomplished by a weighted MDS algo-
rithm. This increases the degree of freedom of the mapping, 
because the locations of the low dimensional points are not 
bounded to a lattice, and their dimensionality can be opti-
mised without a significant increase in the computing time.  
  We applied the method to an analysis of the connections 
of 31 Eurasian and North-American folk music cultures. We 
have found that the changeover to the continuous low di-
mensional space of the SOC from the plain lattice structure 
of the SOM yields a more articulated low dimensional data 
representation and a musically well interpretable systemati-
sation of the melody contours. 
Using the SOC technique, we have determined a conjugate 
musical map of the most important melody forms in the 
studied cultures, and have found that the different cultures 
occupy well defined continuous areas of this map. The 
technique allowed us to trace back this “musical geogra-
phy” to the dominance of certain well distinguishable musi-
cal styles in different cultures. Exactly the close correlation 
of different cultures with certain areas of the musical map 
calls the attention to the overlaps, referring to significant 
interactions of the studied cultures. The analysis of these 
overlaps revealed a perspicuous system of cross-cultural 
connections, which was represented by an MDS plot of the 
probabilities of deterministic interactions. The common 
musical forms standing in the background of the most im-
portant cultural connections were also identified from the 
overlap areas. We hope that these results demonstrate the 
timeliness of an extensive study of musical language groups 
and call the attention to the importance of the oral musical 
tradition of the humanity.   

This work was supported by the Hungarian National 
Research Found (grant no. K81954). 
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