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at or near a critical state between sustained activity and an inactive 
phase, exhibiting  optimal computational properties (see:  Beggs & 
Plenz J. Neurosci. 2003; Chialvo Nat. Phys. 2010; Haimovici et al.  
PRL 2013 )

Neurons exhibit oscillatory behavior   
 Quasistatic inhomogneity causes dynamical 

criticality in Griffiths phases
→  Edge of Synchronization and Griffiths phase in brain models  ?
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Rescaling invariance
     (scale-free behavior):

r br,   F(r,t,...) axF(br, bzt, ...)

Power-laws: i.e. specific heat:

 susceptibility, autocorrelation ...



First order transitions

Second  order, continuous transition

Universality !
Mean-field for d → 
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Brain experiments suggest near critical behavior 

Electrode LFP experiments
Since Beggs and Plenz 2003
For humans and animals
In vitro, for balanced 

excitatory/inhibitory states
Other experiments: fMRI, BOLD,
Voltage imaging, calcium imaging,
MEG, EEG, Long-Range Temporal 
Correlations (LRTC).

Nonuniversal critical exponents or
Mean-field values :=1.5

t 
=2 ?
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Why would the brain be critical ?

Pros: 
Diverging fluctuations →
High sensitivity to stimuli

 Diverging correlation functions →
Optimal transmission and 
storage of information 

Maximal information processing and computational performance

Cons: Tuning to critical point is needed  
        Danger of super-critical (epileptic) behavior 

           Self-organization to criticality (SOC) ?
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Explanations for tuning to criticality

SOC ↔ GP  do not exclude each other

For SOC we need a responsible feedback mechanism, 

GP can occur spontaneously in heterogeneous systems
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Discrete, stochastic threshold models on networks 

  Order parameter : density of active sites ()

 Mean field for reaction diffusion systems : mA → (m+k)A,  nA → (n-l)A 
 For m > n : first order phase transition see my book :

  On low dimensional regular, Euclidean lattice:  DP critical point : 
c
 > 0 between 

   inactive and active phases ( GÓ: PRE 67 (2003) 056114. )

                                                      Quenched disorder : rounds phase transition, Griffiths phase:

PVM et al : PRE 89 (2014) 012145   



Hastings model
Chialvo et al
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GP can occur by pure topological disorder in finite dimensional systems
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Hybrid Phase Transitions and GP in excitable 
(threshold) models

• Mean-field for threshold models

   with activation :

   G.O. B.S: Phys. Rev. Res. 3 (2021) 0131106

In heterogenous HMN models
HPT + GP +  Multistable states !
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What do we know about structural brain 
networks ? 

The largest precisely explored brain structural networks contains 
N = 302 neurons (C. Elegans), fruit-fly hemibrain: N = 127,978

Connectomes, obtained by approximative methods  like diffusion MRI
contain  N   1.000.000  nodes (voxels)  

Unknown faithfulness, intensive research to automate image processing

Finite size cutoff of PLs ! 
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Open Connectome Large Human graphs

Diffusion and structural MRI images with 
1 mm3  voxel resolution : 
10 5 –10 6   nodes

Hierarchical modular graphs

Top level: 70 brain region (Desikan atlas) 

Lower levels: Deterministic tractography: 
Fiber Assignment by Continuous Tracking 
(FACT) algorithm 

Map : voxel → vertex (~ 10 7 )

           fiber → edge   (~ 10 10 )

+ noise reduction → graph 

  undirected, weighted





Small world, still finite dimensional,
non-scale free, 
universal modular graphs



Threshold model simulations on an OCP graph 



Threshold model simulations on an OCP graph 
KKI-18 graph: 836733 nodes, 4 x 107 weighted, undirected edges   



Threshold model simulations on an OCP graph 
KKI-18 graph: 836733 nodes, 4 x 107 weighted, undirected edges   

Cluster spreading simulations from 
randomly selected active nodes



Threshold model simulations on an OCP graph 
KKI-18 graph: 836733 nodes, 4 x 107 weighted, undirected edges   

Cluster spreading simulations from 
randomly selected active nodes

Survival probability:



Threshold model simulations on an OCP graph 
KKI-18 graph: 836733 nodes, 4 x 107 weighted, undirected edges   

Cluster spreading simulations from 
randomly selected active nodes

Survival probability:

Does not show critical region,

but discontinuous phase transition



Threshold model simulations on an OCP graph 
KKI-18 graph: 836733 nodes, 4 x 107 weighted, undirected edges   

Cluster spreading simulations from 
randomly selected active nodes

Survival probability:

Does not show critical region,

but discontinuous phase transition

→ Inherent disorder of KKI-18 can't 
round the phase transition,
No PLs, critical point, Hub effects!  



Threshold model simulations on an OCP graph 
KKI-18 graph: 836733 nodes, 4 x 107 weighted, undirected edges   

Cluster spreading simulations from 
randomly selected active nodes

Survival probability:

Does not show critical region,

but discontinuous phase transition

→ Inherent disorder of KKI-18 can't 
round the phase transition,
No PLs, critical point, Hub effects!  

Relative Threshold model : 
incoming weights normalized by the sum :  
to model homogeneous sensitivity of nodes  



Threshold model simulations on an OCP graph 
KKI-18 graph: 836733 nodes, 4 x 107 weighted, undirected edges   

Cluster spreading simulations from 
randomly selected active nodes

Survival probability:

Does not show critical region,

but discontinuous phase transition

→ Inherent disorder of KKI-18 can't 
round the phase transition,
No PLs, critical point, Hub effects!  

Relative Threshold model : 
incoming weights normalized by the sum :  
to model homogeneous sensitivity of nodes  

Inhibition: randomly selected  weights are flipped to negative (quenched)
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Slow PL dynamics, Griffiths effects 

(a) 20% of links are turned directional, randomly

(b) Unidirectional

No qualitative difference, but proves robustness (for more long links)
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Avalanche size distribution compared to 
experiments

Scaling near experimental values in 
the Griffiths Phase (~ 1.5) 
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Robustness of Griffiths effects in homeostatic 
connectome threshold models

G. Ó. Phys. Rev. E 98 (2018) 042126

Addition of a third (refractive) 
state does not destroy GP

Time dependent threshold 
model : GP shrinks, but
survives for weak variations
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Kuramoto oscillator model (1975) 

  Order parameter : average phase: 

  Non-zero, above critical coupling strength K > K
c
, tends to zero for K   K

c
 as R  (1/N)1/2 

  or exhibits an initial growth:                                           for incoherent initial state

  Critical synchronization transition for D > 4 spatial dimensions, 
  which is mean-field like: i.e. D →   (full graph)

  The dynamical behavior suffers very strong corrections to scaling and chaoticity

   We use this “toy” synchronization model assuming universality,
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Numerical integration of the model

Global synchronization measures:

Local synchronization measures:

Numerical ODE solution of large set of equations via adaptive

Bulrisch-Stoer stepper, implemented on HPC GPU-s

Hurst (phase) and beta exponent analysis of local order 
parameters
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Kuramoto solution for the KKI-18 graph with
N= 836 733 nodes and 41 523 931 weighted edges 

The synchronization transition point

determined by growth as before

KKI-18 has D = 3.05 < 4  → 

No real phase transition, crossover

Due to the fat-tailed link weight 

distribution, incoming weight 

normalization is applied:

Kc =1.7 and growth exponent:  = 0.6(1)
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Duration distribution for the KKI-18 graph

Measure characteristic times tx of first

dip below:  Rc = (1/N)1/2

average over: 10.000 independent i 

realizations

Histogramming of  tx  at the critical point

Critical exponent:t

obtained by fitting for the PL tails

Below the transition point : K < 1.6  
non-universal power laws in the range 
of experiments of activity durations : 
1.5 <t < 2.4  (LRTC Palva et al 2013) 
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Inhibitory (negative) links compared to 
experiments

Duration scaling exponent within experimental range:   1.5 < 
t
 2.4

J.M. Palva et al PNAS 110 (2013) 3585 

Inhibitions: 5% of links: w
ij
 → -w

ij 
randomly

K
c
 = 1.7(1) and = 0.6(1) remains the same. Sub-critically:
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Invariance of Kuramoto with respect to the 
i
 

distribution

Brain experiments: i > 0  

distributions are narrow: i ~ 0.02

and have mean value: <i> ~ 0.05 

<i>  0 can be gauged out by a rotating coordinate system

Rescaling of i  as : i → ai '    t → (1/a) t '    K → a K' 

The results can be transformed for later times and weaker couplings  
  



The effect of additive stochastic noise

Gaussian distributed annealed noise is added: 

Negligible effect:
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Comparison with the fruit-fly connecome results

Fruit-fly connectome is the largest
exactly known neural network:
N = 21.615, L = 3.410.247

Similar to random Erdős-Rényi (ER) graph,
but power-law tailed connection weights
Weakly modular: Q

FF
 << Q

KKI-18

Synchronziation transition via R(t)
local slopes :  = -d lnR / d lnt

 
K

c
 = 1.60(1)  (inflexion curve)

Characterized by mean-field growth
Exponent  = 0.7(1)

 

A
ij
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Fluctuations of R show

extended transition for KKI-18

For FF ~ ER like distro

With random inhibitors: wider range

The same is true for fluctuations of 

HMN structure of KKI-18 is responsible 

for the extended critical region

and Griffiths Phase of humans

As compared to the fly connectome 
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Synchronization transitions on connectome graphs 

with periodic external force (task state)

Shinomoto-Kuramoto oscillator model synchronization transition:

                                                   
i
: angle, K: global coupling

                                                      F: external force, 
i
: noise

Quenched heterogeneity in self-frequencies and network topology



Force induced synchronization
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Characteristic time exponent 
t
  results

The p(t
x 
) distros exhibit power-law

near the synchronization
transition point F

c
 ~ 0.1 for K=1.3

characterized by the exponent: 2

Similarly as in case of the KKI-18:
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Hurst and beta exponent analysis

Community dependent synch.

Quasi-criticality, like in fMRI 

experiments:  Ochab et al,

Sci. Rep. 12, 17866 (2022).



FMRI experiments

Task ↔ rest state operation
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Conclusions
Heterogeneity effects on the scaling can be investigated on large 

connectomes and random small-world graphs for comparison
This enables to distinguish from finite size and rounding effects
Large human graphs show: ~ degree distribution universality, finite
dimensionality and small-worldness
In homeostatic threshold models dynamical critical behavior in the GP 
Running Kuramoto model on KKI-18 : crossover to synchronization 
Below the transition point GP like synchronization dynamics
Durations, with exponents agreeing in vivo LRTC experiments for

 humans due to HMN and d ~ 3.1 < 4
Fruitfly: mean-field behavior (d > 4) and narrow fluctuation region
Invariance with respect to frequency distributions
Insensitivity for the additive Gaussian noise
Periodic force induces synchronization and higher fluctuations
Force enhances long-range correlations, i.e. in the task phase

operation of brain with respect to resting state 
 



Summary



Summary

Thank you for your attention !
Recent publications:



Summary

Thank you for your attention !
Recent publications:

Géza Ódor, Istvan Papp, Shengfeng Deng and Jeffrey Kelling :
Synchronization transitions on connectome graphs with external force  
Front. Phys. 11 (2023) 1150246.

Géza Ódor, Gustavo Deco and Jeffrey Kelling
Differences in the critical dynamics underlying the human and fruit-fly connectome
Phys. Rev. Res. 4 (2022) 023057.



Summary

Thank you for your attention !
Recent publications:

Géza Ódor, Istvan Papp, Shengfeng Deng and Jeffrey Kelling :
Synchronization transitions on connectome graphs with external force  
Front. Phys. 11 (2023) 1150246.

Géza Ódor, Gustavo Deco and Jeffrey Kelling
Differences in the critical dynamics underlying the human and fruit-fly connectome
Phys. Rev. Res. 4 (2022) 023057.


	Slide: 1 (1)
	Slide: 1 (2)
	Slide: 1 (3)
	Slide: 1 (4)
	Slide: 1 (5)
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 2 (5)
	Slide: 2 (6)
	Slide: 2 (7)
	Slide: 2 (8)
	Slide: 2 (9)
	Slide: 2 (10)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 3 (4)
	Slide: 3 (5)
	Slide: 3 (6)
	Slide: 3 (7)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 4 (4)
	Slide: 4 (5)
	Slide: 4 (6)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 6 (5)
	Slide: 6 (6)
	Slide: 6 (7)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 7 (5)
	Slide: 7 (6)
	Slide: 7 (7)
	Slide: 7 (8)
	Slide: 7 (9)
	Slide: 7 (10)
	Slide: 7 (11)
	Slide: 7 (12)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 8 (4)
	Slide: 8 (5)
	Slide: 8 (6)
	Slide: 8 (7)
	Slide: 8 (8)
	Slide: 8 (9)
	Slide: 8 (10)
	Slide: 8 (11)
	Slide: 8 (12)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 9 (5)
	Slide: 9 (6)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 10 (3)
	Slide: 10 (4)
	Slide: 10 (5)
	Slide: 10 (6)
	Slide: 10 (7)
	Slide: 10 (8)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 12 (4)
	Slide: 12 (5)
	Slide: 12 (6)
	Slide: 12 (7)
	Slide: 12 (8)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 13 (4)
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 14 (3)
	Slide: 14 (4)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 15 (3)
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 16 (3)
	Slide: 16 (4)
	Slide: 16 (5)
	Slide: 16 (6)
	Slide: 16 (7)
	Slide: 16 (8)
	Slide: 16 (9)
	Slide: 16 (10)
	Slide: 16 (11)
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 17 (3)
	Slide: 17 (4)
	Slide: 17 (5)
	Slide: 17 (6)
	Slide: 17 (7)
	Slide: 17 (8)
	Slide: 17 (9)
	Slide: 17 (10)
	Slide: 17 (11)
	Slide: 17 (12)
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 18 (3)
	Slide: 18 (4)
	Slide: 18 (5)
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 19 (3)
	Slide: 19 (4)
	Slide: 19 (5)
	Slide: 19 (6)
	Slide: 19 (7)
	Slide: 20 (1)
	Slide: 20 (2)
	Slide: 20 (3)
	Slide: 21 (1)
	Slide: 21 (2)
	Slide: 21 (3)
	Slide: 21 (4)
	Slide: 21 (5)
	Slide: 21 (6)
	Slide: 21 (7)
	Slide: 22
	Slide: 23 (1)
	Slide: 23 (2)
	Slide: 23 (3)
	Slide: 23 (4)
	Slide: 23 (5)
	Slide: 23 (6)
	Slide: 23 (7)
	Slide: 24 (1)
	Slide: 24 (2)
	Slide: 24 (3)
	Slide: 24 (4)
	Slide: 24 (5)
	Slide: 24 (6)
	Slide: 25 (1)
	Slide: 25 (2)
	Slide: 25 (3)
	Slide: 25 (4)
	Slide: 25 (5)
	Slide: 25 (6)
	Slide: 26
	Slide: 27 (1)
	Slide: 27 (2)
	Slide: 27 (3)
	Slide: 27 (4)
	Slide: 28 (1)
	Slide: 28 (2)
	Slide: 28 (3)
	Slide: 28 (4)
	Slide: 29
	Slide: 30 (1)
	Slide: 30 (2)
	Slide: 30 (3)
	Slide: 30 (4)
	Slide: 30 (5)
	Slide: 30 (6)
	Slide: 30 (7)
	Slide: 30 (8)
	Slide: 30 (9)
	Slide: 30 (10)
	Slide: 30 (11)
	Slide: 30 (12)
	Slide: 30 (13)
	Slide: 30 (14)
	Slide: 31 (1)
	Slide: 31 (2)
	Slide: 31 (3)
	Slide: 31 (4)

