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We show that a �2+1�-dimensional discrete surface growth model exhibiting Kardar-Parisi-Zhang �KPZ�
class scaling can be mapped onto a two-dimensional conserved lattice gas model of directed dimers. The KPZ
height anisotropy in the surface model corresponds to a driven diffusive motion of the lattice gas dimers. We
confirm by numerical simulations that the scaling exponents of the dimer model are in agreement with those of
the �2+1�-dimensional KPZ class. This opens up the possibility of analyzing growth models via reaction-
diffusion models, which allow much more efficient computer simulations.
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I. INTRODUCTION

The Kardar-Parisi-Zhang �KPZ� equation �1� motivated
by experimentally observed kinetic roughening has been the
subject of a large number of theoretical studies �2,3�. Later it
was found to model other important physical phenomena
such as randomly stirred fluids �4�, dissipative transport
�5,6�, directed polymers �7�, and the magnetic flux lines in
superconductors �8�. It is a nonlinear stochastic differential
equation, which describes the dynamics of growth processes
in the thermodynamic limit specified by the height function
h�x , t�,

�th�x,t� = v + ��2h�x,t� + ���h�x,t��2 + ��x,t� . �1�

Here v and � are the amplitudes of the mean and local
growth velocity, � is a smoothing surface tension coefficient,
and � roughens the surface by a zero-average Gaussian noise
field exhibiting the variance

���x,t���x�,t��� = 2D�d�x − x���t − t�� . �2�

Here d is used for the dimension of the surface, D for the
noise amplitude, and � � denotes the average over the noise
distribution. In 1+1 dimensions the equation is exactly solv-
able �7�, but in higher dimensions only approximations are
available �see �9��. In d�1 spatial dimensions, due to the
competition of roughening and smoothing terms, models de-
scribed by the KPZ equation exhibit a roughening phase
transition between a weak-coupling regime ����c�, gov-
erned by the �=0 Edwards-Wilkinson fixed point �10�, and a
strong-coupling phase. The strong-coupling fixed point is in-
accessible by the perturbative renormalization method.
Therefore the KPZ phase space has been the subject of con-
troversies, and the value of the upper critical dimension has
been debated for a long time. Very recently, nonperturbative
renormalization and mode coupling theory has revealed a
rich phase diagram, with more than one line of fixed point
solutions in the d-� space �11�. This suggests an upper criti-
cal dimension dc=4 for the KPZ model, but earlier numerical
work �12� does not support this claim.

In one dimension �1D� a discrete, restricted solid-on-solid
realization of KPZ growth is equivalent to the asymmetric

simple exclusion process �ASEP� of particles �13,14� �see
Fig. 1�. In this discrete so-called “roof-top” model the
heights are quantized and the local derivatives can take the
values �h= �1. By considering the up derivatives ��h=1�
as particles and the down ones as holes, the roughening dy-
namics can be mapped onto a driven diffusive system of
particles with single site occupancy. The ASEP model, on the
other hand, is well known and its scaling properties have
been explored �for a recent review see �15��.

The extension of this kind of lattice gas analogy to higher
dimensions has not been considered to our knowledge. In-
stead, hypercube stacking models were constructed
�14,16,17� and surface configurations were mapped onto the
d-state Potts spins defined on the substrate lattice itself. In
particular, �2+1�-dimensional surfaces were shown to be re-
lated to the six-vertex model with equal vertex energies �18�
and to the ground-state configurations of the anisotropic
Ising model defined on the triangular lattice �19�. As a con-
sequence the height-height correlation functions can be re-
lated to four-spin-correlation functions of the spin system.
Very recently the conformal invariance of the isoheight lines
has also been pointed out �20�.

Here we show that a �2+1�-dimensional growth model
exhibiting KPZ scaling can also be mapped onto a driven
lattice gas. This is important from a theoretical point of view,
because the scaling behavior of driven diffusive systems
�DDSs� has been studied intensively for a long time �for a
review, see Ref. �21��; thus results for DDSs may be ex-
ploited to understand the KPZ model better, and vice versa
�22�. Furthermore, this conserved lattice gas and its generali-

FIG. 1. �Color online� Mapping of the �1+1�-dimensional sur-
face growth onto the 1D ASEP model. Surface attachment �with
probability p� and detachment �with probability q� correspond to
anisotropic diffusion of particles �bullets� along the 1D base space.
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zations with anisotropies, disorder, or higher-order terms can
be studied effectively by bit-coded algorithms, for example.

II. MAPPING ONTO LATTICE GAS
IN TWO DIMENSIONS

As a generalization of the �1+1�-dimensional roof-top
model, where the building blocks are squares, let us put oc-
tahedra on the square lattice, such that we get back the �1
+1�-dimensional model in the x or y direction as shown in
Fig. 2. Surface adsorption or desorption events correspond to
attachment or detachment of octahedra, respectively. The
surface built up from the octahedra can be described by the
edges meeting at the up �down� middle vertices. The up
edges in the x or y directions are represented by +1’s, and the
down ones by −1’s in the model. In this way a single site
deposition flips the four edges and means two +1↔−1 �Ka-
wasaki� exchanges: one in the x and one in the y direction.
This can also be understood as a special 2D cellular automa-
ton �23� with the generalized Kawasaki updating rules

�− 1 1

− 1 1
� � �1 − 1

1 − 1
� �3�

with probability p for attachment and probability q for de-
tachment. We can also call the +1’s particles and the −1’s
holes of the base square lattice. In this way an attachment
�detachment� update can be mapped onto a single step mo-
tion of an oriented dimer in the bisectrix direction of the x
and y axes. To make a one-to-one mapping, we update the
neighborhood of sublattice points, which are denoted by the
crossing points of the dashed lines only.

Since the three-dimensional space cannot be filled fully
by octahedra, holes can occur among them, below the sur-
face. Therefore this approximation of a surface growth may
not sound faithful and the validity of KPZ growth rules re-
quires confirmation. Note, however, that in reality atoms are
not cubes either and do not tile the three-dimensional space
completely. Furthermore, very recently in bidisperse ballistic
deposition models �24,25�, in which under-surface vacancies

may occur, KPZ scaling has been reported as well.
The deterministic part of the KPZ equation �1�, which can

be obtained by averaging over the noise, can be derived from
the surface-dimer model similarly as was done in the 1+1
dimension �13�. If we apply the transformation

v�x,t� = �h�x,t� , �4�

we get the Burgers’ equation for the height profile

�tv�x,t� = ��2v�x,t� + �v�x,t� � v�x,t� . �5�

Our system is represented by two matrices �x and �y of
sizes L	L, which contain discrete derivatives +1 or −1 in
the x and y directions, respectively �see Eqs. �10� and �11��.
In two dimensions we introduce the vector variable �̄i,j
= (�x�i−1, j� ,�y�i , j−1�). This has the value �1,1� in the case
of a dimer and �−1,−1� for a pair of holes. By setting up the
master equation

�tP�	�̄
,t� = �
i,j

wi,j� �	�
�P�	�̄
,t� − �
i,j

wi,j�	�̄
�P�	�̄
,t�

�6�

for the probability distribution P�	�̄
 , t�, where the prime de-
notes a state resulting from a generalized Kawasaki flip �3�,
the transition probability is given by

wi,j�	�̄
� =
1

8
�2 − �̄i+1,j+1�̄i,j + ���̄i+1,j+1 − �̄i,j�

−
�1 − ��

2
��̄i+1,j+1 	 �̄i,j�2� , �7�

with �=2p / �p+q�−1 parametrization. This formally looks
like the one-dimensional Kawasaki exchange probability
�shown in �13��, except for the cross-product term, which is
necessary to avoid surface discontinuity creation. The cross
product as a determinant cancels updates between configura-
tions such as �1,1�→ �1,−1�. The nonlinear term vanishes
for p=q ��=0�. The sign of the coefficient � of the nonlinear
term can be interpreted as follows. For p�q positive nonlin-
earity �positive excess velocity� it is a consequence of
growth with voids.

To obtain Eq. �5� first one averages over the slope vectors

��̄i,j� = �
	�̄


�̄i,jP�	�̄
,t� . �8�

Then, by calculating its time derivative using the master
equation, the cross-product term drops out and one obtains

2�t��̄i,j� = ��̄i−1,j−1� − 2��̄i,j� + ��̄i+1,j+1�

+ ���̄i,j��̄i+1,j+1 − �̄i−1,j−1�� . �9�

Here one can see the discrete second and first differentials of
�̄i,j corresponding to the operators of �5�. These differentials
are one dimensional because the dimer dynamics is also one
dimensional. Making a continuum limit in both directions
and taking into account the relation of height and slope vari-
ables �4�, we can arrive at the deterministic part of the KPZ
equation �1�.

This agreement does not prove the equivalence of the
KPZ and the dimer models, since they are just the first equa-

FIG. 2. �Color online� Mapping of the �2+1�-dimensional sur-
face growth onto the 2D particle model �bullets�. Surface attach-
ment �with probability p� and detachment �with probability q� cor-
respond to Kawasaki exchanges of particles, or to anisotropic
diffusion of dimers in the bisectrix direction of the x and y axes.
The crossing points of dashed lines show the base sublattice to be
updated. Thick solid �dashed� lines on the surface show the x �y�
cross sections, corresponding to the 1D model �Fig. 1�.
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tions in the hierarchy of equations for correlation functions.
On the other hand, from the universal scaling point of view
they show the equivalence of the leading order terms. We
will show by numerical simulation that our mapping is faith-
ful and reproduces the KPZ class surface growth behavior.

III. THE SIMULATION ALGORITHM

In the algorithm we extend the sequence of discrete slopes
of the 1D ASEP model �Fig. 1� to local derivatives at �i , j�
sites in x and y directions of the surface �see Fig. 2�. The
initially flat surface is presented as a regular sequence of
+1’s and −1’s within both matrices. Periodic boundary con-
ditions are applied to the x and y directions. The system’s
evolution is simulated as follows.

A site �i , j� on the substrate plane is selected randomly.
Then, we choose an attachment or detachment attempt ac-
cording to their probabilities p and q. Generalized Kawasaki
exchanges �3� of attachment or detachment are realized if

��x�i − 1, j� �x�i, j�
�y�i, j − 1� �y�i, j�

� = �− 1 1

− 1 1
� �10�

or

��x�i − 1, j� �x�i, j�
�y�i, j − 1� �y�i, j�

� = �1 − 1

1 − 1
� , �11�

respectively. Throughout this paper the time is measured by
Monte Carlo steps �MCSs�, i.e., L	L jump attempts corre-
spond to one MCS. After certain time intervals data evalua-
tion requires the reconstruction of the surface heights hx,y�t�
by summing up the sequence of local slopes �x, �y.

IV. RESULTS

Starting from a periodic, vertically striped particle distri-
bution, which corresponds to a flat initial surface, we update
the particle model by the rules defined in the previous sec-
tion. At certain time steps we calculate the hx,y�t� heights
from the height differences �x,y. The morphology of a grow-
ing surface is usually characterized by its width,

W�L,t� = � 1

L2�
x,y

L

hx,y
2 �t� − � 1

L2�
x,y

L

hx,y�t��21/2

. �12�

In the absence of any characteristic length, growth processes
are expected to show power-law behavior of the correlation
functions in space and height, and the surface is described by
the Family-Vicsek scaling �26�

W�L,t� 
 �t� for t0 � t � ts, �13�
L for t � ts. �14� �

Here  is the roughness exponent and characterizes the de-
viation from a flat surface in the stationary regime �t� ts� in
which the correlation length has exceeded the linear system
size L and � is the surface growth exponent, which describes
the time evolution for earlier �nonmicroscopic t� t0� times.
The dynamical exponent z can be expressed by the ratio

z = /� . �15�

In the case of up-down symmetry �p=1, q=1� the nonlin-
ear term is dropped, and the KPZ equation �1� simplifies to
the Edwards-Wilkinson �EW� equation �10�. Since the upper
critical dimension of this equation is dc=2, mean-field be-
havior, characterized by =�=0 and logarithmic scaling, is
expected by field theory. Indeed, the width of the surface
grows as

W2�t� = a ln�t� + b , �16�

as shown in Fig. 3. The prefactor a obtained by fitting the
L=1024 curve in the 20� t�1000 region with the form �16�
is a=0.152�8�. This is in agreement with the theoretical es-
timate for the EW equation D / �4��� �27� if we take into
account the exact value for the stiffness constant �or surface
tension� �̄ /D=� /9. This constant was identified in �19�
through the correspondence between the exact calculation of
the four-spin correlation function of the zero-temperature tri-
angular Ising antiferromagnet �28� and the discrete height-
height correlation function in real space in the interface
model. The factor �̄=2 /3� is coming from the 2 /�3 trian-
gular lattice site per surface element and the 1 /�3 of the
octahedron vs cube surface fraction; thus the theoretical es-
timate is a�0.151 981.

The saturation values are expected to exhibit logarithmic
growth,

W2�inf� = lim
t→�

W2�t� = c ln�L� + d , �17�

with the system size �27�. As can be seen in the inset of Fig.
3 this really happens with the prefactor c=0.30�1�, which
agrees with the theoretical value c=2a�0.304 again.

For pure deposition p=1, q=0, or in the case of other
general up-down asymmetric cases, we saw power-law in-
crease of the surface width, in agreement with the scaling
hypothesis �13� �see Fig. 4�. For the largest system that we
have investigated �L=1024�, we fitted W�t� in the 100� t
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FIG. 3. �Color online� Logarithmic surface growth in the case of
up-down symmetry for different sizes L=64,128,256,512,1024
�bottom to top�. The dashed line shows the fitting with the form
�16�. Inset: width saturation values for different system sizes L in
the long-time limit.
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�10 000 time window with a power law and obtained �
=0.23�1�. This value agrees quite well with the numerical
estimate for the �2+1�-dimensional KPZ class ��=0.24� pro-
vided in Ref. �9�. Note, however, that for smaller system
sizes the exponent estimate is somewhat smaller, due to cor-
rections to scaling, but one can clearly see a convergence
toward higher values and a better collapse as L→�. Large-
scale simulations with an effective, bit-coded version of our
algorithm could result in very precise estimates. The system-
atic tendency toward an asymptotic behavior has been found
in Fig. 4.

The saturation values W�inf� for different system sizes
also scale well with �14� and with the exponent =0.38�1� of
the �2+1�-dimensional KPZ class �9,29�. Assuming correc-
tions to scaling of the form W�A2L�1+B2L−��, the fitting
to our data resulted in a very small effect, =0.377�15�,
which marginally overlaps with the value of �29� but does
not support the proposal =2 /5 of �30�. Using these surface
exponents and the scaling law �15� we estimated the dynami-
cal exponent to be z=1.64�1�, which is somewhat greater
than what was found for the �2+1�-dimensional KPZ class in
�9� �z=1.58�. We think that this is due to the correction to
scaling observed in the time dependence discussed above. If
we scale the time with the dynamical exponent z=1.64, we
obtain a good scaling collapse of the growth data for differ-
ent sizes �Fig. 4� in agreement with the �13�, �14� law again.
Our exponent estimates also satisfy the +z=2 scaling rela-
tion within the error margin. This implies that Galilean in-
variance holds and the lattice model indeed lies in the �2
+1�-dimensional KPZ universality class.

V. CONCLUSIONS AND OUTLOOK

We have pointed out the possibility of mapping a discrete
surface growth process onto a conserved, driven lattice gas

model of oriented dimers, which move perpendicularly in
two dimensions. The straight line motion of dimers in the
two-dimensional space is very similar to the motion of par-
ticles of the ASEP process. The difference is that, since the
dimers are extended objects, their motion is slowed down by
dimer particle exclusion and the sublattice update as com-
pared to the single particles of the ASEP. As a consequence
their motion is described by a somewhat larger dynamical
exponent �z�1.64� than that of the ASEP �z=3 /2�, so the
change of z�d� seems to be a purely topological phenomenon
in KPZ. This provides a better understanding of the relation
of universality classes of surface classes to those of the
reaction-diffusion models �31–33�. Interestingly the x-y sym-
metric surface dynamics maps onto a strongly anisotropic
reaction-diffusion model.

We have found KPZ or EW scaling by numerical simula-
tions; hence we showed that lattice anisotropy and under-
surface vacancies are irrelevant. Our simulation results for
the �2+1�-dimensional EW case reproduced the theoretically
expected logarithmic scaling, with the correct leading order
coefficients. For the KPZ scaling, our roughness exponent
result is in the middle of the range obtained by various nu-
merical exponent estimates: i.e., between =0.36 �34,35�
and the field theoretical value =0.4 �30�. Our 
=0.377�15� coincides with that of the numerical study �36�
and agrees with the renormalization result =0.38 �37�. It
overlaps marginally with the simulation result =0.393�3�
�29� as well. Our growth exponent estimate �=0.23�1�
matches the results of �34� ��=0.221�2�� and �36� ��
=0.229�5��, obtained by independent numerical fitting proce-
dures. The dynamical exponent of this study is also in the
range provided in �36�.

Our model provides an efficient way of simulation and
opens the possibility of studying more complex growth mod-
els relevant for the recent interest in self-organizing surface
nanosystems �38�. An optimized, bit-coded version of our
code, which manipulates the two-dimensional bit field by
logical operations, runs roughly ten times faster than the cur-
rent version and will be presented elsewhere. For example,
the Bradley-Harper �39� and the debated Kuramoto-
Sivashinsky �40� models with their modifications can be in-
vestigated numerically and are the subject of forthcoming
presentations.
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FIG. 4. �Color online� Scaling collapse for p=1, q=0 with �2
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