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Role of diffusion in branching and annihilation random walk models
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Different branching and annihilating random walk models are investigated by the cluster mean-field method
and simulations in one and two dimensions. In the case oAthe?2A, 2A— 0 model the cluster mean-field
approximations show diffusion dependence in the phase diagram as was found recently by the nonperturbative
renormalization group methddl. Canetet al,, Phys. Rev. Lett92, 255703(2004)]. The same type of survey
for the A—2A, 4A— 0 model results in a reentrant phase diagram, similar to that of the 2A, 4A—0
model[G. Odor, Phys. Rev. 69, 036112(2004)]. Simulations of theA— 2A, 4A— 0 model in one and two
dimensions confirm the presence of both the directed percolation transitions at finite branching rates and the
mean-field transition at zero branching rate. In two dimensions the directed percolation transition disappears
for strong diffusion rates. These results disagree with the predictions of the perturbative renormalization group
method.
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Phase transitions in nonequilibrium, dynamical systems#o=1) resulted in a series of different universality classes
which do not satisfy the detailed balance condition, may apdepending om andm [10]. This means that above the upper
pear in models of population, epidemics, catalysis, cooperazritical dimension(d,) of the transitiorn and m are relevant
tive transport[1], enzyme biology[2], and markets, for ex- parametersin particular, for then=m symmetrical case the
ample[3]. Many of the known systems can be mapped ontadensity of particles in the active phase near the critical point
some reaction-diffusion models, the behavior of which hago,>0) scales as
been studied intensively in recent decafled]. In these sys-
tems creation, annihilation, and diffusion processes for par- p<lo=ad?, (2
ticle A compete, and by tuning the cpntrol parameters g, i B=1, while at the critical point it decays as
phase transition may occur from an active steady state to an
inactive, absorbing state of zero density. The simplest ex- pxt™® (3)
ample of such models exhibiting a phase transition are the |
branching and annihilating random waBARW) models, in ~ With «=p/»=1/n [10,17. On the other hand, for the
which offspring are created by a single ances#:>(n <m as_ymmetrlc case continuous phase transitions at zero
+1)A, and particles annihilate 22— 0. branching rater.=0 occur characterized by

_ The classifi_cation of universa_lity classes of noneqyilib— B=1(m-n), a=1(m-1). (4)
rium systems is one of the most important tasks of statistical
physics[5,6]. Universal scaling behavior may occur at con- For n>m the mean-field solution provides a first order tran-
tinuous phase transitions as in equilibrium systems and thsition.
correspondingn-point correlations are homogenedbsit an- By going beyond the site mean-field approximation it
isotropig functions of space and time. In the past decadesgurned out that phase diagrams of the type Eg.models
analytical and numerical studies have explored a large varimay contain other transition points with nontrivial scaling
ety of such classd$]. One may pose the important question: behavior. In previous papefd2,13 | investigated the &
Which are the relevant factors determining these classes? By 3A, 4A—® model by generalizedcluste) mean-field
inspecting the widespread literature it appears that in addicGMF) approximations and simulations in one and two di-
tion to the well known factors of homogeneous equilibriummensions and showed that théfusion plays an important
models with short ranged interactions, i.e., spatial dimen¥ole: it introduces a different critical point in addition to the
sions, symmetries, and conservation laws, there are momne obtained by the site mean-field solutionoat0 [Eq.
things that must be taken into account. For example, due t64)]. The nontrivial critical point air.>0 appearing at low
the possibility of transitions in low dimensions topological diffusion rates exhibits the universal behavior of the transi-
effects may play an important ro[&]. Furthermore, the ini- tion of the 22— 3A, 2A— 0 diffusive pair contact process
tial condition—as a boundary in the time direction—can also(PCPD model owing to the generation of the effectivé 2
be relevan{8,9]. — 0 reaction via the quick processea 2 3A— 4A— 0 [15].
The mean-field classes of general, Very recent studies by Canet al. [16,17 found similar
" \ o diffusion dependence in thd— 2A, 2A— 0 BARW model.
_ Using the nonperturbative renormalization grodpPRG
MA={+A - mA=(M-DA, BA-AD @) method they obtained a different phase diagram than what
site occupation number restricted modelsth n>1, m>1, was expected by perturbative renormalization gr¢R®)
k>0, 1>0, m=-1=0, and the time scale fixed by setting argument$18]; namely, directed percolatiqibP) transitions
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were found in these models fa>2 dimensions withd, (@) 10° (b)
=4. Furthermore, those transitions @>0 branching rate '
persist up to infinite dimensions providadD is greater than 0.8 [ ACTIVE/, ] ,
a threshold value. This threshold value was found to be Zerog 06 1 100 3
for d<3 and finite ford= 3. B g [ 1 & -
In this work | apply dynamical, cluster mean-field ap- 0 E " 3
proximations for the BARW model and by extrapolations to 2 INACTIVE wn®
N—o cluster sizes | determine the phase diagram in one 0 2 107 o1 oz oa os

dimension(1D). Furthermore | explore the phase transitions
of the A— 2A, 4A— 0 model with this method and by simu-
lations in one and two dimensions. FIG. 1. (Color online (a) Phase diagram of th&—2A, 2A
The cluster mean-field method applied for nonequilibrium— @ model determined biN=3,4, ..., 8(right to left curves clus-
models first in[19,2Q is based on the calculation bEblock ter approximations(b) The (\./D),, critical end point values of the
probabilities of the model. This method has successfully pre¢e=0 transitions as a function of N Boxes correspond to the
dicted the phase diagram of many systase references in A~ 2A 2A—0 and circles to thé— 2A, 4A—0 model. The line
[6]). | apply it for one-dimensional, site restricted lattice ver- ShOWs a fitting of the forni10).
sions of the models mentioned before. It is well known that
such approximations predict the phase structure qualitatively (AD)n(N)=2/(N- 1) (8)
well in 1D providedN is high enough to take into account
the relevant interaction terms. For examp¥e> 1 is needed
to take into account particle diffusion terms, while>2 was

1N

exactly. Therefore one can extrapolate that inthe o« limit
(A¢/D)in(N)— 0 [Fig. b)] in agreement with the results of

found to be necessary in case of binary production process&h?] for 1D. SO.N>1 cluster .mea'm—field gpprc.)xi.mations,
exhibiting pair productioi12]. The GMF method is an effi- w ich can take into account diffusion, exhibit similar phase
cient phase diagram exploration method and although it Wag?jgr_ams Lo_thi one obtaln_edl_ by tne NPRG metZOddfOL
set up for thed=1 lattice in previous cases it provided quali- = dc=4 and in the asymptotic limit they even reproduce the

tatively good phase diagrams for higher dimensional, mearZ€"™® threshold correspo_nding to 1D. .
field versions, togsee for examplél3,14). The other system of interest in this study is the

One can set up a master equations forRReblock prob- o A D
abilities as A—2A, 4A—0, OA—AD (9
dPy({s}) model, for which perturbative RG predict,=2/3 [18];
T f(Pn({s)), (5  therefore in all physical dimensions only typ® mean-field

transitions are expected at.=0. By solving the cluster
where the site variables take the valges0,A. During the  mean-field equations up =28, with thex=1-o¢ parametri-
solution of these equations one estimates larger khaized  zation, one obtains a reentrant phase structure for low diffu-
block probabilities by the maximum overlap approximation: sion rates as in the case of th&2 3A, 4A— 0 model[12]
(Fig. 2. | have determined thé\./D);, threshold values for
Pu(sy, - SuPN(S - Suer) ) eachN and plotted them as a function of N/[Fig. 1(b)].
Pn(s - S 0) + P(sys - SnA) One can see a tendency toward leveling off contrary to the
(6) results for theA— 2A, 2A— 0 case. By extrapolating to the

o _ _ . N— oo limit using a form similar to but more general than
Taking into account spatial symmetries, for the maximal gq. (g),

=8 approximations of this work one has to find the solution
of equations of 136 independent variables. Using this method (A\/D)in(N) =a+b/(N - 1)°, (10
first | investigated the model defined by the transition prob-the threshold does not vanisi=1.2,b=34.5,c=2.14. there-

abilities fore we may expect phase transitions witfi>0 even in one
o A D dimension for any 8D <1 diffusion probabilities.
A—2A, 2A—0, 0A<AD. (7) To test the cluster mean-field results for the-2A, 4A
— 0 model | performed simulations in one dimension with
)}attice sizesL=1C° and with periodic boundary conditions.
The simulations were started from homogeneously filled lat-
Eces with probability 1/2. One elementary Monte Carlo step

Pnea(St, -0 Sne1) =

The steady state solutions were determined fur
=1,2,3,...,8approximations and the corresponding stead
state densitiep,(o,D) are calculated numerically. The phase
transition points are obtained for several values and are plo
ted in theo/D vs \./D parametrizatiorjFig. 1(a)] in order )
to be comparable with the results [f7]. The phase transi- TABLE I. Numerical N-cluster results for the threshold values
tion lines forN>1 corroborate the phase diagram[af7],  ©f theA—2A 2A—0 model

with (\./D);> 0 threshold values and with linear shapes in
the o/ D — oo limit. By inspecting the numerical values of the N 2 3 4 5 6 ! 8
()\c/ D)th(N) threshold values foN=2,3, ... ,8(596 Tab|8)| (Ae/D)in 2 1 0.666 0.5 0.4 0.333 0.286
one can set up a hypothesis that in general
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FIG. 2. (Color onling Steady state density results in thie=7 FIG. 3. (Color onling Simulation results for the steady state

approximations of thé— 2A, 4A— 0 model. Different curves cor- density of theA—2A, 4A— 0 model. Crosses correspond B

respond toD=1,0.7,0.6,0.4,0.371,0.36, 0(fp to bottom. The =1.0 and + signs td=0.2 diffusion in 1D. Circles denot®

a.>0 critical point disappears fdd" >0.370 83. =0.01 and square®3=1 data in 2D. Error bars are smaller than the
symbol sizes. The lines serve to guide the eye. The inset shows the

consists of the following substeps. A particle and a directiorfi2& magnified in the neighborhood of he0 transition point. The
are selected randomly. A particle hopping is attempted in th&°/d iné shows a power-law fitting with the expong##0.331).
given direction with probabilityD provided the nearest . . ) . .
neighbor (NN) site is empty. The timgt) measured by Thg S|m.ulat|ons for t.h's mogjel were repeatgd In two .d'_
Monte Carlo stepgMCS) is updated by\t=1/n, wheren is mensions inL=4x 10° linear sized systems with periodic

the total number of particles. Again a particle and a directio oundary c_ondmo_ns. These simulations were started from
are selected randomly and either four NN particles in thdU!lY occupied lattices. One elementary Monte Carlo step

given direction are removed with probability or an off- consists of the following processes. A parti.cle and a number

spring is created in an empty NN site in the direction seX1€ 0,7) are selected randomly; ¥ <D a site exc,hange IS

lected before with probability 1x. The time is updated by gttempted with one of thg randomly selected NN's. The time

At=1/n. The density of particleg(t) is followed for up to 1S Updated by 1. A particle and a numbex; e (0,1) are

107 MCS (throughout the whole paper the time is measurec€lected randomly. i, <o and if the number of NN empty

in Monte Carlo steps The phase transition points have beenSItes is greater than 0, one new particle is created at an empty

located for several diffusion rates and are shown on Fig. 3. Ait€ selected randomly. ¥;=o and the number of NN par-

qualitative agreement with the lowd results of the finite UCIES iS greater than two, four randomly selected neighboring

N-cluster mean-field approximations can be observed. HowRaticles are removed. The tin® is updated by 1@ again.

ever, theo,>0 transition persists even fdd=1 diffusion The density of particles was followed up Q.= 10" MCS.

probability in agreement with thid — o extrapolations. As one can see the simulation d4fég. 3) and the seven-
The density decay near @,>0 critical point atD=0.2  Point approximationgFig. 2) fit qualitatively well (this is

has been investigated in more detail. The densityrats

. (b)
expected to d_ecay as EB). Figure 4a) shows the local 035 .
slopes ofa defined as AR ,
' 04 [\ ]
er(t) = M (12) " &
eff In(m) S 047 [ o R 1 ]
(Where | usedm=2). As one can see curves Wwithr 05! f ;
>0.8398 veer up(active phasg while those with o 0.22 U . 055 L .
<0.8398 veer dowitabsorbing phageA clean scaling with 000 001 0.02 0 202 0.04
exponenta=0.1591) can be observed at=0.839 802), t t

corrobor:'itlng the(1+1)-d|menS|0naI D,P class exponent FIG. 4. (Color onling (a) Local slopes of the density decay
value[a=0.159 4646) [21]]. In the inactive phasp(t) van- exponenta as a function oft™° of the one-dimensionah— 2A,
ishes exponentially in agreement with the DP behavior agaima ¢ model at D=0.2. Different curves correspond to
One may expect the same kind of transition all along the-0.8399, 0.839 85, 0.8398, 0.839 75, 0.838% to botton). The
o¢(D) >0 transition line. Indeed simulations showed that thecritical point is located atr,=0.839 802). (b) The same as itg) in
density decays in a similar way at transition points with two dimensions, foro=0.1426, 0.14262, 0.142 63, 0.142 64,
=0.01,0.05,0.009. 0.142 65, 0.142Ttop to botton).
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true for otherN>1 levels as wejl In both cases for weak transitions persists for all@ D <1 diffusions, while in 2D it
diffusion rates reentrant phase transitions occur with-0,  disappears for high diffusion rates. For abyandd values a
while for strong diffusion only a single phase transition atmean-field transition characterized If=1/3 occurs ato,
0.=0 branching rate can be found. The density deca® at —q

=0.01 is analyzed near the phase transition point. The local A gimilar reentrant phase diagram has been observed in

slope figure shows a separatrix for the critical valutg : ; :
> . case of the one-dimensional- 2A, 3A— 0 model[23], in a
=0.142 631) as can be seen on Figbj. One can read off variant of theNEkiIM model [24], and in the 2A— 3A, 4A

wi?hct%réizﬂolr)ﬂ?r?] éine scis?‘: sxggn\gﬁj%j:g?%v;i%? fazgzge](.as —>0_model[12,13]. In all cases the diffusion competes with

I also investigated the steady state behavior atat}ve0 particle reaction processes, and t_he bare par_ameters should
transition. The steady state density in the active phase ne§Pmehow form renormalized reaction rates which govern the
the critical phase transition point is expected to scale as E¢gVolution over long times and distances. Another study using
(2). As the inset of Fig. 3 shows, by applying power-law exact method$25] showed that the particle density fluctua-
fitting in the 10°%<¢<1073 region one obtaing=0.331)  tions undergo a diffusion dependent phase transition in the
in both one and two dimensions at different diffusion ratesbosonic PCPD model fad>2. A very recent, nonperturba-
This agrees with the mean-field val(® for this model. The tive RG study[17] has found a similar diffusion dependent
density ato,=0 decays apot~3 trivially, dictated by the phase diagram in théA—2A, 2A—0 model. That work
4A— 0 process. points out that nonperturbative effects arise and there is a

In conclusion, numerical evidence is provided that e threshold(\/D),,(d) above which DP and below which a
—2A, 4A— 0 branching and annihilating random walk pro- type (4) mean-field transition ar.=0 appears. The present
cess exhibits diffusion dependent phase transitions that ag-cluster approximations confirm those results and produce a
not accessible by perturbatlye rgnormahzanon. In.partlcularsim”ar phase diagram as if17] for any finite N, with a
N-cluster mean-field approximatiori&ith extrapolations to  hreshold value(\o/D)(N)=2/(N-1). In the N—c limit
theN— < limit) resulted in a reentrariD-o) phase diagram,  his corroborates the vanishing threshold in D).
with phase transitions at.> 0 for 0<D <1 diffusion prob-
abilities. Simulations have shown that along this transition The author thanks |. Georgiev, G. Schitz, and U. Tauber
line DP critical behavior occurs in one and two dimensionsfor useful comments. The author acknowledges access to the
This type of critical behavior is the consequence of an effecNIIFI Cluster-GRID, LCG-GRID, and the Supercomputer
tive A— 0 reaction generated bf—2A—3A—4A—0 of  Center of Hungary. Support from the Hungarian research
slowly moving particles. In one dimension this line of phasefund OTKA (Grant No. T-04612pis acknowledged.
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