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Different branching and annihilating random walk models are investigated by the cluster mean-field method
and simulations in one and two dimensions. In the case of theA→2A, 2A→0” model the cluster mean-field
approximations show diffusion dependence in the phase diagram as was found recently by the nonperturbative
renormalization group method[L. Canetet al., Phys. Rev. Lett.92, 255703(2004)]. The same type of survey
for the A→2A, 4A→0” model results in a reentrant phase diagram, similar to that of the 2A→3A, 4A→0”
model[G. Ódor, Phys. Rev. E69, 036112(2004)]. Simulations of theA→2A, 4A→0” model in one and two
dimensions confirm the presence of both the directed percolation transitions at finite branching rates and the
mean-field transition at zero branching rate. In two dimensions the directed percolation transition disappears
for strong diffusion rates. These results disagree with the predictions of the perturbative renormalization group
method.
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Phase transitions in nonequilibrium, dynamical systems,
which do not satisfy the detailed balance condition, may ap-
pear in models of population, epidemics, catalysis, coopera-
tive transport[1], enzyme biology[2], and markets, for ex-
ample[3]. Many of the known systems can be mapped onto
some reaction-diffusion models, the behavior of which has
been studied intensively in recent decades[1,4]. In these sys-
tems creation, annihilation, and diffusion processes for par-
ticle A compete, and by tuning the control parameters a
phase transition may occur from an active steady state to an
inactive, absorbing state of zero density. The simplest ex-
ample of such models exhibiting a phase transition are the
branching and annihilating random walk(BARW) models, in
which offspring are created by a single ancestor,A→ sn
+1dA, and particles annihilate, 2A→0” .

The classification of universality classes of nonequilib-
rium systems is one of the most important tasks of statistical
physics[5,6]. Universal scaling behavior may occur at con-
tinuous phase transitions as in equilibrium systems and the
correspondingn-point correlations are homogeneous(but an-
isotropic) functions of space and time. In the past decades
analytical and numerical studies have explored a large vari-
ety of such classes[6]. One may pose the important question:
Which are the relevant factors determining these classes? By
inspecting the widespread literature it appears that in addi-
tion to the well known factors of homogeneous equilibrium
models with short ranged interactions, i.e., spatial dimen-
sions, symmetries, and conservation laws, there are more
things that must be taken into account. For example, due to
the possibility of transitions in low dimensions topological
effects may play an important role[7]. Furthermore, the ini-
tial condition—as a boundary in the time direction—can also
be relevant[8,9].

The mean-field classes of general,

nA→
s

sn + kdA, mA→
l

sm− ldA, 0”A↔
D

A0” s1d

site occupation number restricted models(with n.1, m.1,
k.0, l .0, m− l ù0, and the time scale fixed by settingl

+s=1) resulted in a series of different universality classes
depending onn andm [10]. This means that above the upper
critical dimensionsdcd of the transitionn and m are relevant
parameters. In particular, for then=m symmetrical case the
density of particles in the active phase near the critical point
ssc.0d scales as

r ~ us − scub, s2d

with b=1, while at the critical point it decays as

r ~ t−a, s3d

with a=b /ni=1/n [10,11]. On the other hand, for then
,m asymmetric case continuous phase transitions at zero
branching ratesc=0 occur characterized by

b = 1/sm− nd, a = 1/sm− 1d. s4d

For n.m the mean-field solution provides a first order tran-
sition.

By going beyond the site mean-field approximation it
turned out that phase diagrams of the type Eq.(1) models
may contain other transition points with nontrivial scaling
behavior. In previous papers[12,13] I investigated the 2A
→3A, 4A→0” model by generalized(cluster) mean-field
(GMF) approximations and simulations in one and two di-
mensions and showed that thediffusion plays an important
role: it introduces a different critical point in addition to the
one obtained by the site mean-field solution atsc=0 [Eq.
(4)]. The nontrivial critical point atsc.0 appearing at low
diffusion rates exhibits the universal behavior of the transi-
tion of the 2A→3A, 2A→0” diffusive pair contact process
(PCPD) model owing to the generation of the effective 2A
→0” reaction via the quick processes 2A→3A→4A→0” [15].

Very recent studies by Canetet al. [16,17] found similar
diffusion dependence in theA→2A, 2A→0” BARW model.
Using the nonperturbative renormalization group(NPRG)
method they obtained a different phase diagram than what
was expected by perturbative renormalization group(RG)
arguments[18]; namely, directed percolation(DP) transitions
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were found in these models ford.2 dimensions withdc
=4. Furthermore, those transitions atsc.0 branching rate
persist up to infinite dimensions providedl /D is greater than
a threshold value. This threshold value was found to be zero
for d,3 and finite fordù3.

In this work I apply dynamical, cluster mean-field ap-
proximations for the BARW model and by extrapolations to
N→` cluster sizes I determine the phase diagram in one
dimension(1D). Furthermore I explore the phase transitions
of theA→2A, 4A→0” model with this method and by simu-
lations in one and two dimensions.

The cluster mean-field method applied for nonequilibrium
models first in[19,20] is based on the calculation ofN-block
probabilities of the model. This method has successfully pre-
dicted the phase diagram of many systems(see references in
[6]). I apply it for one-dimensional, site restricted lattice ver-
sions of the models mentioned before. It is well known that
such approximations predict the phase structure qualitatively
well in 1D providedN is high enough to take into account
the relevant interaction terms. For example,N.1 is needed
to take into account particle diffusion terms, whileN.2 was
found to be necessary in case of binary production processes
exhibiting pair production[12]. The GMF method is an effi-
cient phase diagram exploration method and although it was
set up for thed=1 lattice in previous cases it provided quali-
tatively good phase diagrams for higher dimensional, mean-
field versions, too(see for example[13,14]).

One can set up a master equations for thePN block prob-
abilities as

] PNshsijd
] t

= f„PNshsijd…, s5d

where the site variables take the valuessi =0” ,A. During the
solution of these equations one estimates larger thanN sized
block probabilities by the maximum overlap approximation:

PN+1ss1, . . . ,sN+1d .
PNss1, . . . ,sNdPNss2, . . . ,sN+1d

PNss2, . . . ,sN,0”d + PNss2, . . . ,sN,Ad
.

s6d

Taking into account spatial symmetries, for the maximalN
=8 approximations of this work one has to find the solution
of equations of 136 independent variables. Using this method
first I investigated the model defined by the transition prob-
abilities

A→
s

2A, 2A→
l

0” , 0”A↔
D

A0” . s7d

The steady state solutions were determined forN
=1,2,3, . . . ,8approximations and the corresponding steady
state densitiesrsss ,Dd are calculated numerically. The phase
transition points are obtained for several values and are plot-
ted in thesc/D vs lc/D parametrization[Fig. 1(a)] in order
to be comparable with the results of[17]. The phase transi-
tion lines for N.1 corroborate the phase diagram of[17],
with slc/Ddth.0 threshold values and with linear shapes in
thes /D→` limit. By inspecting the numerical values of the
slc/DdthsNd threshold values forN=2,3, . . . ,8(see Table I)
one can set up a hypothesis that in general

slc/DdthsNd = 2/sN − 1d s8d

exactly. Therefore one can extrapolate that in theN→` limit
slc/DdthsNd→0 [Fig. 1(b)] in agreement with the results of
[17] for 1D. So N.1 cluster mean-field approximations,
which can take into account diffusion, exhibit similar phase
diagrams to the one obtained by the NPRG method ford
ùdc=4 and in the asymptotic limit they even reproduce the
zero threshold corresponding to 1D.

The other system of interest in this study is the

A→
s

2A, 4A→
l

0” , 0”A↔
D

A0” s9d

model, for which perturbative RG predictsdc=2/3 [18];
therefore in all physical dimensions only type(4) mean-field
transitions are expected atsc=0. By solving the cluster
mean-field equations up toN=8, with thel=1−s parametri-
zation, one obtains a reentrant phase structure for low diffu-
sion rates as in the case of the 2A→3A, 4A→0” model [12]
(Fig. 2). I have determined theslc/Ddth threshold values for
eachN and plotted them as a function of 1/N [Fig. 1(b)].
One can see a tendency toward leveling off contrary to the
results for theA→2A, 2A→0” case. By extrapolating to the
N→` limit using a form similar to but more general than
Eq. (8),

slc/DdthsNd = a + b/sN − 1dc, s10d

the threshold does not vanish:a=1.2,b=34.5,c=2.14, there-
fore we may expect phase transitions withsc.0 even in one
dimension for any 0,Dø1 diffusion probabilities.

To test the cluster mean-field results for theA→2A, 4A
→0” model I performed simulations in one dimension with
lattice sizesL=105 and with periodic boundary conditions.
The simulations were started from homogeneously filled lat-
tices with probability 1/2. One elementary Monte Carlo step

FIG. 1. (Color online) (a) Phase diagram of theA→2A, 2A
→0” model determined byN=3,4, . . . ,8(right to left curves) clus-
ter approximations.(b) The slc/Ddtr critical end point values of the
sc.0 transitions as a function of 1/N. Boxes correspond to the
A→2A, 2A→0” and circles to theA→2A, 4A→0” model. The line
shows a fitting of the form(10).

TABLE I. Numerical N-cluster results for the threshold values
of the A→2A, 2A→0” model

N 2 3 4 5 6 7 8

slc/Ddth 2 1 0.666 0.5 0.4 0.333 0.286
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consists of the following substeps. A particle and a direction
are selected randomly. A particle hopping is attempted in the
given direction with probabilityD provided the nearest
neighbor (NN) site is empty. The timestd measured by
Monte Carlo steps(MCS) is updated byDt=1/n, wheren is
the total number of particles. Again a particle and a direction
are selected randomly and either four NN particles in the
given direction are removed with probabilityl or an off-
spring is created in an empty NN site in the direction se-
lected before with probability 1−l. The time is updated by
Dt=1/n. The density of particlesrstd is followed for up to
107 MCS (throughout the whole paper the time is measured
in Monte Carlo steps). The phase transition points have been
located for several diffusion rates and are shown on Fig. 3. A
qualitative agreement with the low-D results of the finite
N-cluster mean-field approximations can be observed. How-
ever, thesc.0 transition persists even forD=1 diffusion
probability in agreement with theN→` extrapolations.

The density decay near asc.0 critical point atD=0.2
has been investigated in more detail. The density atsc is
expected to decay as Eq.(3). Figure 4(a) shows the local
slopes ofa defined as

aef fstd =
− lnfrstd/rst/mdg

lnsmd
s11d

(where I usedm=2). As one can see curves withs
.0.8398 veer up(active phase), while those with s
,0.8398 veer down(absorbing phase). A clean scaling with
exponenta=0.159s1d can be observed ats=0.839 80s2d,
corroborating thes1+1d-dimensional DP class exponent
value[a=0.159 464s6d [21]]. In the inactive phaserstd van-
ishes exponentially in agreement with the DP behavior again.
One may expect the same kind of transition all along the
scsDd.0 transition line. Indeed simulations showed that the
density decays in a similar way at transition points withD
=0.01,0.05,0.09.

The simulations for this model were repeated in two di-
mensions inL=43103 linear sized systems with periodic
boundary conditions. These simulations were started from
fully occupied lattices. One elementary Monte Carlo step
consists of the following processes. A particle and a number
x1P s0,1d are selected randomly; ifx1,D a site exchange is
attempted with one of the randomly selected NN’s. The time
is updated by 1/n. A particle and a numberx2P s0,1d are
selected randomly. Ifx2,s and if the number of NN empty
sites is greater than 0, one new particle is created at an empty
site selected randomly. Ifx2ùs and the number of NN par-
ticles is greater than two, four randomly selected neighboring
particles are removed. The timestd is updated by 1/n again.
The density of particles was followed up totmaxø107 MCS.
As one can see the simulation data(Fig. 3) and the seven-
point approximations(Fig. 2) fit qualitatively well (this is

FIG. 2. (Color online) Steady state density results in theN=7
approximations of theA→2A, 4A→0” model. Different curves cor-
respond toD=1,0.7,0.6,0.4,0.371,0.36,0.2(top to bottom). The
sc.0 critical point disappears forD* .0.370 83.

FIG. 3. (Color online) Simulation results for the steady state
density of theA→2A, 4A→0” model. Crosses correspond toD
=1.0 and + signs toD=0.2 diffusion in 1D. Circles denoteD
=0.01 and squaresD=1 data in 2D. Error bars are smaller than the
symbol sizes. The lines serve to guide the eye. The inset shows the
data magnified in the neighborhood of thes=0 transition point. The
solid line shows a power-law fitting with the exponentb=0.33s1d.

FIG. 4. (Color online) (a) Local slopes of the density decay
exponenta as a function oft−0.5 of the one-dimensionalA→2A,
4A→0” model at D=0.2. Different curves correspond tos
=0.8399, 0.839 85, 0.8398, 0.839 75, 0.8397(top to bottom). The
critical point is located atsc=0.839 80s2d. (b) The same as in(a) in
two dimensions, fors=0.1426, 0.142 62, 0.142 63, 0.142 64,
0.142 65, 0.1427(top to bottom).
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true for otherN.1 levels as well). In both cases for weak
diffusion rates reentrant phase transitions occur withsc.0,
while for strong diffusion only a single phase transition at
sc=0 branching rate can be found. The density decay atD
=0.01 is analyzed near the phase transition point. The local
slope figure shows a separatrix for the critical valuesc
=0.142 63s1d as can be seen on Fig. 4(b). One can read off
the corresponding decay exponenta=0.445s5d, which agrees
with the s2+1d-dimensional DP value[a=0.4505s10d [22] ].

I also investigated the steady state behavior at thesc=0
transition. The steady state density in the active phase near
the critical phase transition point is expected to scale as Eq.
(2). As the inset of Fig. 3 shows, by applying power-law
fitting in the 10−6øsø10−3 region one obtainsb.0.33s1d
in both one and two dimensions at different diffusion rates.
This agrees with the mean-field value(4) for this model. The
density atsc=0 decays asr~ t−1/3 trivially, dictated by the
4A→0” process.

In conclusion, numerical evidence is provided that theA
→2A, 4A→0” branching and annihilating random walk pro-
cess exhibits diffusion dependent phase transitions that are
not accessible by perturbative renormalization. In particular,
N-cluster mean-field approximations(with extrapolations to
theN→` limit ) resulted in a reentrantsD-sd phase diagram,
with phase transitions atsc.0 for 0,Dø1 diffusion prob-
abilities. Simulations have shown that along this transition
line DP critical behavior occurs in one and two dimensions.
This type of critical behavior is the consequence of an effec-
tive A→0” reaction generated byA→2A→3A→4A→0” of
slowly moving particles. In one dimension this line of phase

transitions persists for all 0,Dø1 diffusions, while in 2D it
disappears for high diffusion rates. For anyD andd values a
mean-field transition characterized byb=1/3 occurs atsc

=0.
A similar reentrant phase diagram has been observed in

case of the one-dimensionalA→2A, 3A→0” model[23], in a
variant of theNEKIM model [24], and in the 2A→3A, 4A
→0” model [12,13]. In all cases the diffusion competes with
particle reaction processes, and the bare parameters should
somehow form renormalized reaction rates which govern the
evolution over long times and distances. Another study using
exact methods[25] showed that the particle density fluctua-
tions undergo a diffusion dependent phase transition in the
bosonic PCPD model ford.2. A very recent, nonperturba-
tive RG study[17] has found a similar diffusion dependent
phase diagram in theA→2A, 2A→0” model. That work
points out that nonperturbative effects arise and there is a
thresholdsl /Ddthsdd above which DP and below which a
type (4) mean-field transition atsc=0 appears. The present
N-cluster approximations confirm those results and produce a
similar phase diagram as in[17] for any finite N, with a
threshold valueslc/DdthsNd=2/sN−1d. In the N→` limit
this corroborates the vanishing threshold in 1D[17].
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