List of main publications

Géza Ódor

     
  1. A. Margaritis, Géza Ódor and A. Patkós:
  2. Sequence of discrete spin models approximating the classical Heisenberg ferromagnet
    J. Phys. A 20 (1987) 1917.
     
  3. A. Margaritis, Géza Ódor and A. Patkós:
  4. Series expansion solution of the Wegner-Houghton renormalisation group equations.
    Z. Phys C 39 (1988) 109.
     
  5. Géza Ódor and J. Gyulai:
  6. Lattice location calculation of elements implanted in Si by Miedema parameters
    Nucl. Instr. and Meth. B 30 (1988) 217.
     
  7. A.C. Irving, Géza Ódor and A. Patkós:
  8. On the validity of the gap-exponent relation in Ising models with many defect lines
    J. Phys A 22 (1989) 4665 .
     
  9. Géza Ódor:
  10. Investigation of the 3-state 2-D Potts model with one line of defect couplings
    Int. J. of Mod. Phys C 3 (1992) 1195.
     
  11. György Szabó, Attila Szolnoki, and Géza Ódor:
  12. Orientation in a driven lattice gas
    Phys. Rev. B 46 (1992) 11 432.
     
  13. J.Vermeulen, A.Gheorghe, I.Legrand, E.Denes, G.Ódor:, G.Vesztergombi, R.K.Bock , W.Krischer, Z.Natkaniec, N.Tchamov, P.Malecki, A.Sobala, F. Klefenz, R. Manner, K.H. Noffz, R. Zoz, J.Badier, Ph.Busson, C.Charlot, E.W.Davis, P.Ni, W.Lourens, A.Taal, A.Thielmann:
  14. Benchmarking parallel Architectures for 100 KHz Real-Time Applications
    IEEE Trans. on Nucl. Sci.  40 (1993) 45.
     
  15. G. Szabó, A. Szolnoki, Z. Juhász, and G. Ódor:
  16. Enhanced fluctuations in driven lattice gases
    Physica A 191 (1992) 445.
     
  17. Géza Ódor, Nino Boccara, and György Szabó:
  18. Phase transition study of a one-dimensional probabilistic site-exchange cellular automaton.
    Phys. Rev. E 48 (1993) 3168.
     
  19. György Szabó and Géza Ódor:
  20. Extended mean-field study of a stochastic cellular automaton.
    Phys. Rev. E 49 (1994) 2764.
     
  21. Géza Ódor and György Szabó:
  22. Universality change in stochastic cellular automaton with applied site exchange.
    Phys. Rev. E 49 (1994) R3555.
     
  23. Géza Ódor: Estimation of the order parameter exponent of critical cellular automata using the enhanced coherent  anomaly method.
  24. Phys.  Rev. E51 (1995) 6261.
     
  25. Nóra Menyhárd and Géza Ódor:
  26. Non-equilibrium phase transitions in one-dimensional kinetic Ising models.
    J. Phys A 28 (1995) 4505.
     
  27. Géza Ódor and Attila Szolnoki:
  28. Directed percolation conjecture for cellular automata.
    Phys. Rev. E 53 (1996) 2231.
     
  29. Nóra Menyhárd and Géza Ódor:
  30. Phase transitions and critical behaviour in one-dimensional non-equilibrium kinetic Ising models with branching annihilating random walk of kinks.
    J. Phys A 29 (1996) 7739.
     
  31. Nóra Menyhárd and Géza Ódor:
  32. Non-Markovian persistence at the PC point of a 1d non-equilibrium kinetic Ising model.
    J. Phys A 30 (1997) 8515.
     
  33. Géza Ódor and Nóra Menyhárd:
  34. Damage spreading for one-dimensional,  non-equilibrium models with parity conserving phase transitions.
    Phys. Rev. E 57 (1998) 5168.
     
  35. Nóra Menyhárd and Géza Ódor :
  36. Compact parity conserving percolation in one-dimension.
    J. Phys. A 31 (1998) 6771.
     
  37. Haye Hinrichsen and Géza Ódor:
  38. Correlated initial conditions in directed percolation.
    Phys  Rev. E58 (1998) 311.
     
  39. Géza Ódor, J.F. Mendes, M.A. Santos and M.C. Marques:
  40. Relaxation of initial condition in systems with infinitely many absorbing states.
    Phys. Rev. E 58(1998) 7020.
     
  41. Haye Hinrichsen and Géza Ódor:
  42. Roughening transition in a model for dimer adsorption and desorption.
    Phys. Rev. Lett. 82 (1999) 1205.
     
  43. Haye Hinrichsen and Géza Ódor:
  44. Critical behavior of roughening transitions in parity-conserving growth processes.
    Phys. Rev. E 60 (1999) 3842.
     
  45. Haye Hinrichsen and Géza Ódor:
  46. Correlated initial condition simulations in directed percolation.
    Comp. Phys. Comm.  121 (1999) 392.
     
  47. Nóra Menyhárd and Géza Ódor :
  48. Nonequilibrium Kinetic Ising Models: Phase Transition and Universality Classes in One Dimension.
    Braz. J. of Phys. 30 (2000) 113.
     
  49. Géza Ódor and Nóra Menyhárd :
  50. Critical behaviour of annihilating random walk of two species with exclusion in one dimension.
    Phys. Rev. E 61 (2000) 6404.
     
  51. Géza Ódor :
  52. Critical behavior of the one-dimensional annihilation-fission process 2X->0, 2X->3X.
    Phys. Rev. E 62 (2000) R3027.
     
  53. Géza Ódor :
  54. Critical branching-annihilating random walk of two species
    Phys. Rev. E 63 (2001) 021113.
     
  55. Géza Ódor :
  56. Universal behavior of one-dimensional multispecies branching and annihilating random walks with exclusion
    Phys. Rev. E 63 (2001) 056108.
     
  57. Géza Ódor :
  58. Phase transition of the one-dimensional coagulation-production process
    Phys. Rev. E 63 (2001) 067104.
     
  59. Tibor Antal, Michel Droz, Adam Lipowski and Géza Ódor: On the critical behavior of a lattice prey-predator model,
    Phys. Rev. E 64 (2001) 036118.
     
  60. R. Dickman, W. R. M. Rabelo, and G. Ódor :
  61. Pair contact process with a particle source,
    Phys. Rev E 65 (2002) 016118.
     
  62. G. Ódor :
  63. Multicomponent binary spreading process,
    Phys. Rev E 65 (2002) 026121.
     
  64. Géza Ódor, M.C. Marques and M.A. Santos:
  65. Phase transition of a two dimensional binary spreading model
    Phys. Rev E 65 (2002) 056113.
     
  66. G. Ódor and N. Menyhárd:
  67. Hard core particle exclusion effects in low dimensional non-equilibrium phase transitions,
    Physica D 168 (2002) 305.
     
  68. N. Menyhárd and G. Ódor:
  69. One-dimensional Nonequilibrium Kinetic Ising Models with local spin-symmetry breaking: N-BARW2 transition at zero branching rate,
    Phys. Rev E 66 (2002) 016127.
     
  70. G. Ódor:
  71. Critical behavior of the one-dimensional diffusive pair contact process,
    Phys. Rev E 67 (2003) 016111.
     
  72. G. Ódor:
  73. Critical behavior of binary production reaction-diffusion systems, in Proc. of 7-th Granada Lectures (page 58-75), ed. P.L.Garrido and J. Marro, AIP Conference Proceedings 661 (2003) postscript.
     
  74. G. Ódor:
  75. Phase transition classes in triplet and quadruplet reaction-diffusion moels,
    Phys. Rev E 67 (2003) 056114.
     
  76. Géza Ódor :
  77. Critical behavior in reaction-diffusion systems exhibiting absorbing phase transition
    Braz. J. of Phys. 33 (2003) 431.
     
  78. N. Menyhárd and G. Ódor:
  79. Multispecies annihilating random walk transition at zero branching rate: Cluster scaling behavior in a spin model,
    Phys. Rev E 68 (2003) 056106.
     
  80. Géza Ódor :
  81. Phase transitions of the binary production 2A->3A, 4A->0 model
    Phys. Rev. E 69 (2004) 036112.
     
  82. Géza Ódor :
  83. Universality classes in nonequilibrium lattice systems
    Rev. Mod. Phys. 76 (2004) 663.
    e-print: cond-mat/0205644
     
  84. Géza Ódor :
  85. Critical behavior of the two dimensional 2A->3A, 4A->0 binary system
    Phys. Rev. E 70 (2004) 026119.
     
  86. Géza Ódor :
  87. Role of diffusion in branching and annihilation random walk models
    Phys. Rev. E 70 (2004) 066122.
     
  88. Géza Ódor and Attila Szolnoki:
  89. Cluster mean-field study of the parity-conserving phase transition
    Phys. Rev. E 71 (2005) 066128.
     
  90. Géza Ódor and Nóra Menyhárd:
  91. Critical behavior of an even offspringed branching and annihilating random walk cellular automaton with spatial disorder,
    Phys. Rev. E 73 (2006) 036130
     
  92. Géza Ódor
  93. The phase transition of triplet reaction-diffusion models,
    Phys. Rev. E 73, 047103 (2006)
     
  94. Géza Ódor
  95. Local scale invariance in the parity conserving nonequilibrium kinetic Ising model
    J. Stat. Mech. (2006) L11002
     
  96. Nóra Menyhárd and Géza Ódor:
  97. One-dimensional spin-anisotropic kinetic Ising model subject to quenched disorder,
    Phys. Rev. E 76, 021103 (2007)
     
  98. Géza Ódor:
  99. Self-organizing, two-temperature Ising model describing human segregation,
    Electronic version of an article published as [Int. J. of Mod. Phys. C, 19, 3, 2008, 393-398] [copyright World Scientific Publishing Company] [http://www.worldscinet.com/ijmpc/ijmpc.shtml]
     
  100. Géza Ódor and Nóra Menyhárd:
  101. Crossovers from parity conserving to directed percolation universality,
    Phys. Rev. E 78 (2008) 041112
     
  102. Géza Ódor, Bartosz Liedke and Karl-Heinz Heinig
  103. Mapping of 2+1-dimensional Kardar-Parisi-Zhang growth onto a driven lattice gas model of dimers,
    Phys. Rev. E 79 (2009) 021125
     
  104. Géza Ódor and Ronald Dickman
  105. On the absorbing-state phase transition in the one-dimensional triplet creation model,
    J. Stat. Mech. (2009) P08024
     
  106. Róbert Juhász, Géza Ódor
  107. Scaling behavior of the contact process in networks with long-range connections
    Phys. Rev. E 80 (2009) 041123
     
  108. Géza Ódor, Bartosz Liedke and Karl-Heinz Heinig
  109. Directed d-mer diffusion describing the Kardar-Parisi-Zhang-type surface growth,
    Phys. Rev. E 81 (2010) 031112
     
  110. Géza Ódor, Bartosz Liedke and Karl-Heinz Heinig
  111. Surface pattern formation and scaling described by conserved lattice gases,
    Phys. Rev. E 81 (2010) 051114
     
  112. Miugel A. Munoz, Róbert Juhász, Claudio Castellano, Géza Ódor
  113. Griffiths phases on complex networks
    Phys. Rev. Lett. 105 (2010) 128701
     
  114. Henrik Schulz, Géza Ódor, Gergely Ódor, Máte Ferenc Nagy
  115. Simulation of 1+1 dimensional surface growth and lattices gases using GPUs
    Comp. Phys. Comm. 182 (2011) 1467
     
  116. G. Ódor, R. Juhász, C. Castellano, M. A. Munoz
  117. Griffiths phases in the contact process on complex networks
    AIP Conf. Proc. 1332, Melville, New York (2011) p. 172-178.
    Non-equilibrium Statistical Physics Today, Proc. of the 11th Granada Seminar on Computational and Statistical
    Physics, La Herradura, Spain 13-17 Sept. 2010,
    Editors: P. L. Garrido, J. Marro, F. de los Santos, arXiv:1010.4413v1
     
  118. Jeffrey Kelling and Géza Ódor
  119. Extremely large-scale simulation of a Kardar-Parisi-Zhang model using graphics cards,
    Phys. Rev. E 84 (2011) 061150
     
  120. Géza Ódor, Bartosz Liedke, Karl-Heinz Heinig and Jeffrey Kelling:
  121. Ripples and dots generated by lattice gases
    Applied Surface Science 258 (2012) 4186
     
  122. R. Juhász, G. Ódor, C. Castellano, M. A. Munoz
  123. Rare-region effects in the contact process on networks,
    Phys. Rev. E 85 (2012) 066125
     
  124. R. Juhász, G. Ódor
  125. Anomalous coarsening in disordered exclusion processes,
    J. Stat. Mech. (2012) P08004
     
  126. G. Ódor, R. Pastor-Satorras
  127. Slow dynamics and rare-region effects in the contact process on weighted tree networks,
    Phys. Rev. E 86 (2012) 026117
     
  128. J. Kelling, G. Ódor, M. F. Nagy, H. Schulz and K. -H. Heinig, Comparison of different parallel implementations of the 2+1-dimensional KPZ model and the 3-dimensional KMC model,
    EPJST 210 (2012) 175-187
     
  129. Géza Ódor, Bartosz Liedke and Karl-Heinz Heinig
  130. Understanding surface patterning by lattice gas models (p. 259-297) in,
    Nanofabrication by Ion-Beam Sputtering, edited by T. Som and D. Kanjilal Pan Stanford (2012)
     
  131. Géza Ódor
  132. Slow dynamics of the contact process on complex networks
    EPJ Web of Conferences 44, 04005 (2013)
     
  133. Géza Ódor
  134. Rare regions of the susceptible-infected-susceptible model on Barabási-Albert networks
    Phys. Rev. E 87, 042132 (2013)
     
  135. Géza Ódor
  136. Spectral analysis and slow spreading dynamics on complex networks
    Phys. Rev. E 88, 032109 (2013)
     
  137. Géza Ódor, Jeffrey Kelling and Sibylle Gemming
  138. Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model
    Phys. Rev. E 89, 032146 (2014)
     
  139. Géza Ódor
  140. Slow, bursty dynamics as a consequence of quenched network topologies
    Phys. Rev. E 89, 042102 (2014)
     
  141. Géza Ódor
  142. Localization transition, Lifschitz tails, and rare-region effects in network models
    Phys. Rev. E 90, 032110 (2014)
     
  143. Géza Ódor, Ronald Dickman, Gergely Ódor
  144. Griffiths phases and localization in hierarchical modular networks
    Sci. Rep. 5, 14451; doi: 10.1038/srep14451 (2015)
     
  145. Wesley Cota, Silvio C. Ferreira and Géza Ódor
  146. Griffiths effects of the susceptible-infected-susceptible epidemic model on random power-law networks
    Phys. Rev. E 93, 032322 (2016)
     
  147. Michael T. Gastner and Géza Ódor
  148. The topology of large Open Connectome networks for the human brain
    Sci. Rep. 6, 27249; doi: 10.1038/srep27249 (2016)
     
  149. Jeffrey Kelling, Géza Ódor and Sibylle Gemming
  150. Universality of (2+1)-dimensional restricted solid-on-solid models
    Phys. Rev. E 94, 022107 (2016)
     
  151. Géza Ódor
  152. Critical dynamics on a large human Open Connectome network,
    Phys. Rev. E 94, 062411 (2016)
     
  153. Jeffrey Kelling, Géza Ódor and Sibylle Gemming
  154. Local scale-invariance of the 2+1 dimensional Kardar–Parisi–Zhang model
    J. Phys. A: Math. Theor. 50, (2017) 12LT01
     
  155. Ódor Géza
  156. Kritikus dinamika egy nagy emberi konnektomon
    Fizikai Szemle, 2017/7–8, 227-231
     
  157. Jeffrey Kelling, Géza Ódor and Sibylle Gemming
  158. Suppressing correlations in massively parallel simulations of lattice models
    Computer Physics Communications 220 (2017) 205–211
     
  159. Jeffrey Kelling, Géza Ódor and Sibylle Gemming
  160. Dynamical universality classes of simple growth and lattice gas models
    J. Phys. A: Math. Theor. 51 (2018) 035003
     
  161. Wesley Cota, Silvio C. Ferreira and Géza Ódor
  162. Griffiths phases in infinite-dimensional, non-hierarchical modular networks
    Sci. Rep. 8 (2018) 9144
     
  163. Géza Ódor and Bálint Hartmann
  164. Heterogeneity effects in power grid network models
    Phys. Rev. E 98 (2018) 022305
     
  165. Zsuzsa Danku, Géza Ódor and Ferenc Kun
  166. Avalanche dynamics in higher-dimensional fiber bundle models
    Phys. Rev. E 98 (2018) 042126