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CHAPTER

TWO

Population Games

2.0 Introduction

Population games are used to model strategic interactions with these five traits:

(i) The number of agents is large.
(ii) Individual agents are small: Any one agent’s behavior has little or no effect on

other agents’ payoffs.
(iii) The number of roles is finite: Each agent is a member of one of a finite number of

populations. Members of a population choose from the same set of strategies, and
their payoffs are identical functions of own behavior and opponents’ behavior.

(iv) Agents interact anonymously: Each agent’s payoffs only depend on opponents’
behavior through the distribution of opponents’ choices.

(v) Payoffs are continuous: The dependence of each agent’s payoffs on the distribution
of opponents’ choices is continuous.

Applications fitting this description can be found in a variety of disciplines, including
economics (externalities, macroeconomic spillovers, centralized markets), biology (animal
conflict, genetic natural selection), transportation science (highway network congestion,
mode choice), and computer science (selfish routing of Internet traffic). Population games
provide a unified framework for studying these and other topics, helping us to identify
the forces that drive parallel conclusions in seemingly disparate fields.

The most convenient way to define population games is to assume that the set of agents
forms a continuum, as doing so enables us to study these games using tools from analysis.
Of course, real populations are finite. Still, the continuum assumption is appropriate when
the effects of individuals’ choices on opponents’ payoffs are small, or, more generally, when
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individuals ignore these effects when deciding how to act. In subsequent chapters we will
draw explicit links between the finite and continuous models.

2.1 Population Games

2.1.1 Populations, Strategies, and States

Let P = {1, . . . , p}, be a society consisting of p ≥ 1 populations of agents. Agents in
population p form a continuum of mass mp > 0. (Thus, p is the number of populations,
while p is an arbitrary population.)

The set of strategies available to agents in population p is denoted Sp = {1, . . . ,np
}, and

has typical elements i, j, and (in the context of normal form games) sp. We let n =
∑

p∈P np

equal the total number of pure strategies in all populations.
During game play, each agent in population p selects a (pure) strategy from Sp. The set

of population states (or strategy distributions) for population p is Xp = {xp
∈ Rnp

+ :
∑

i∈Sp xp
i =

mp
}. The scalar xp

i ∈ R+ represents the mass of players in population p choosing strategy
i ∈ Sp. Elements of Xp

v, the set of vertices of Xp, are called pure population states, since at
these states all agents choose the same strategy.

Elements of X =
∏

p∈P Xp = {x = (x1, . . . , xp) ∈ Rn
+ : xp

∈ Xp
}, the set of social states,

describe behavior in all p populations at once. The elements of Xv =
∏

p∈P Xp
v are the

vertices of X, and are called the pure social states.
When there is just one population (p = 1), we assume that its mass is 1, and we omit the

superscript p from all of our notation: thus, the strategy set is S = {1, . . . ,n}, the state space
is X = {x ∈ Rn

+ :
∑

i∈S xi = 1}, the simplex in Rn, and the set of pure states Xv = {ei : i ∈ S} is
the set of standard basis vectors in Rn.

2.1.2 Payoffs

We generally take the sets of populations and strategies as fixed and identify a game
with its payoff function. A payoff function F : X → Rn is a continuous map that assigns
each social state a vector of payoffs, one for each strategy in each population. Fp

i : X→ R
denotes the payoff function for strategy i ∈ Sp, while Fp : X → Rnp denotes the payoff

functions for all strategies in Sp.
While our standing assumption is that F is continuous, we often impose the stronger

requirements that F be Lipschitz continuous or continuously differentiable (C1). These
additional assumptions will be made explicit whenever we use them.
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We define

Fp(x) =
1

mp

∑
i∈Sp

xp
i Fp

i (x)

to be the (weighted) average payoff obtained by members of population p at social state x.
Similarly, we let

F(x) =
∑
p∈P

∑
i∈Sp

xp
i Fp

i (x) =
∑
p∈P

mpFp(x)

denote the aggregate payoff achieved by the society as a whole.

2.1.3 Best Responses and Nash Equilibria

To describe optimal behavior, we define population p’s pure best response correspondence,
bp : X⇒ Sp, which specifies the strategies in Sp that are optimal at each social state x:

bp(x) = argmax
i∈Sp

Fp
i (x).

Let ∆p = {yp
∈ Rnp

+ :
∑

i∈Sp yp
i = 1} denote the simplex in Rnp . The mixed best response

correspondence for population p, Bp : X⇒ ∆p is given by

Bp(x) =
{
yp
∈ ∆p : yp

i > 0⇒ i ∈ bp(x)
}
.

In words, Bp(x) is the set of probability distributions in ∆p whose supports only contain
pure strategies that are optimal at x. Geometrically, Bp(x) is the convex hull of the vertices
of ∆p corresponding to elements of bp(x).

Social state x ∈ X is a Nash equilibrium of the game F if each agent in every population
chooses a best response to x:

NE (F) =
{
x ∈ X : xp

∈ mpBp(x) for all p ∈ P }
.

We will see in Section 2.3.6 that the Nash equilibria of a population game can also be
characterized in a purely geometric way.

Nash equilibria always exist:

Theorem 2.1.1. Every population game admits at least one Nash equilibrium.

Theorem 2.1.1 can be proved by applying Kakutani’s Theorem to the profile of best
response correspondences. But we will see that in each of the three classes of games we
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focus on in Chapter 3—potential games (Sections 3.1 and 3.2), stable games (Section 3.3),
and supermodular games (Section 3.4)—existence of Nash equilibrium can be established
without recourse to fixed point theorems.

2.1.4 Prelude to Evolutionary Dynamics

In traditional game-theoretic analyses, it is usual to assume that players follow some
Nash equilibrium of the game at hand. But because population games involve large
numbers of agents, the equilibrium assumption is quite strong, making it more appealing
to rely on less demanding assumptions. Therefore, rather than assume equilibrium play,
we suppose that individual agents gradually adjust their choices to their current strategic
environment. We then ask whether or not the induced behavior trajectories converge to
Nash equilibrium. When they do, the Nash prediction can be justified; when they do not,
the Nash prediction may be unwarranted.

The question of convergence to equilibrium is a central issue in this book. We will
see later on that in the three classes of games studied in Chapter 3, convergence results
can be established in some generality—that is, without being overly specific about the
exact nature of the agents’ revision protocols. But in this chapter and the next, we confine
ourselves to introducing population games and studying their equilibria.

2.2 Examples

To fix ideas, we offer four examples of population games. These examples and many
more will be developed and analyzed through the remainder of the book.

2.2.1 Random Matching in Normal Form Games

Let us begin with the canonical example of evolutionary game theory.

Example 2.2.1. Random matching in a single population to play a symmetric game. A symmetric
two player normal form game is defined by a strategy set S = {1, . . . ,n} and a payoff matrix
A ∈ Rn×n. Ai j is the payoff a player obtains when he chooses strategy i and his opponent
chooses strategy j; this payoff does not depend on whether the player in question is called
player I or player II. Below is the bimatrix corresponding to A when n = 3.
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Player II
1 2 3

1 A11,A11 A12,A21 A13,A31

Player I 2 A21,A12 A22,A22 A23,A32

3 A31,A13 A32,A23 A33,A33

To obtain a population game from this normal form game, we suppose that agents in a
single (unit mass) population are randomly matched to play A. Assuming that agents
evaluate probability distributions over payoffs by taking expectations (i.e., that the entries
of the matrix A are von Neumann–Morgenstern utilities), the payoff to strategy i when the
population state is x is Fi(x) =

∑
j∈S Ai jx j. It follows that the population game associated

with A is described by the linear map F(x) = Ax. §

Example 2.2.2. Random matching in two populations. A (possibly asymmetric) two player
game is defined by two strategy sets, S1 = {1, . . . ,n1

} and S2 = {1, . . . ,n2
}, and two payoff

matrices, U1
∈ Rn1

×n2 and U2
∈ Rn1

×n2 . The corresponding bimatrix when n1 = 2 and n2 = 3
is as follows.

Player II
1 2 3

Player I
1 U1

11,U
2
11 U1

12,U
2
12 U1

13,U
2
13

2 U1
21,U

2
21 U1

22,U
2
22 U1

23,U
2
23

To define the corresponding population game, we suppose that there are two unit mass
populations, one corresponding to each player role. One agent from each population
is drawn at random and matched to play the game (U1,U2). The payoff functions for
populations 1 and 2 are given by F1(x) = U1x2 and F2(x) = (U2)′x1, so the entire population
game is described by the linear map

F(x) =

F1(x)
F2(x)

 =

 0 U1

(U2)′ 0

 x1

x2

 =

 U1x2

(U2)′x1

 . §
Example 2.2.3. Random matching in p populations. To generalize the previous example, we
define a p player normal form game. Let Sp = {1, . . . ,np

} denote player p’s strategy set and
S =

∏
q∈P Sq the set of pure strategy profiles; player p’s payoff function Up is a map from S

to R.
In the population game, agents in p unit mass populations are randomly matched

to play the normal form game U = (U1, . . . ,Up), with one agent from each population p
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being drawn to serve in player role p. This procedure yields a population game with the
multilinear (i.e., linear in each xp) payoff function

Fp
sp(x) =

∑
s−p∈S−p

Up
(
s1, . . . , sp

)∏
r,p

xr
sr , where S−p =

∏
q,p

Sq. §

We conclude with an observation relating the Nash equilibria of population games
generated by random matching to those of the underlying normal form games.

Observation 2.2.4. (i) In the single population case (Example 2.2.1), the Nash equilibria of
F are the symmetric Nash equilibria of the symmetric normal form game U = (A,A′).

(ii) In the multipopulation cases (Examples 2.2.2 and 2.2.3), the Nash equilibria of F are the
Nash equilibria of the normal form game U = (U1, . . . ,Up).

2.2.2 Congestion Games

Because of the linearity of the expectation operator, random matching in normal form
games generates population games with linear or multilinear payoffs. Moreover, when
p ≥ 2, each agent’s payoffs are independent of the behavior of other members of his
population. Outside of the random matching context, neither of these properties need
hold. Our next class of example provides a case in point.

Example 2.2.5. Congestion games. Consider the following model of highway congestion. A
collection of towns is connected by a network of links (Figure 2.2.1). For each ordered pair
of towns there is a population of agents, each of whom needs to commute from the first
town in the pair (where he lives) to the second (where he works). To accomplish this, the
agent must choose a path connecting the two towns. The payoff the agent obtains is the
negation of the delay on the path he takes. The delay on the path is the sum of the delays
on its constituent links, while the delay on a link is a function of the number of agents
who use that link.

Congestion games are used to study not only highway congestion, but also more
general settings involving “symmetric” externalities. To define a congestion game, we
begin with a finite collection of facilities (e.g., links in a highway network), denoted Φ.
Every strategy i ∈ Sp requires the use of some collection of facilities Φ

p
i ⊆ Φ (e.g., the links

in route i). The set ρp(φ) = {i ∈ Sp : φ ∈ Φ
p
i } contains those strategies in Sp that require

facility φ.
Each facilityφ has a cost function cφ : R+ → R whose argument is the facility’s utilization
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Figure 2.2.1: A highway network.

level uφ, the total mass of agents using the facility:

uφ(x) =
∑
p∈P

∑
i∈ρp(φ)

xp
i .

Payoffs in the congestion game are obtained by summing the appropriate facility costs
and multiplying by −1.

Fp
i (x) = −

∑
φ∈Φ

p
i

cφ
(
uφ(x)

)
.

Since driving on a link increases the delays experienced by other drivers on that link,
cost functions in models of highway congestion are increasing; they are typically convex
as well. On the other hand, when congestion games are used to model settings with
positive externalities (e.g., consumer technology choice), cost functions are decreasing.
Evidently, payoffs in congestion games depend on own-population behavior, and need
only be linear if the underlying cost functions are linear themselves.

Congestion games are the leading examples of potential games (Sections 3.1 and 3.2;
congestion games with increasing cost functions are also stable games (Section 3.3). §

2.2.3 Two Simple Externality Models

We conclude this section with two simpler models of externalities.

Example 2.2.6. Asymmetric negative externalities. Agents from a single population choose
from a set of n activities. There are externalities both within and across activities; the
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increasing C1 function ci j : [0, 1] → R represents the cost imposed on agents who choose
activity i by agents who choose activity j. Payoffs in this game are described by

Fi(x) = −
∑
j∈S

ci j(x j) .

If “own activity” externalities are strong, in the sense that the derivatives of the cost
functions satisfy

2c′ii(xi) ≥
∑
j,i

(
c′i j(x j) + c′ji(xi)

)
,

then F is a stable game (Section 3.3 of Chapter 3). §

Example 2.2.7. Search with positive externalities. Consider this simple model of macroeco-
nomic spillovers. Members of a single population choose levels of search effort from the
set S = {1, . . . ,n}. Stronger efforts increase the likelihood of finding trading partners, so
that payoffs are increasing both in own search effort and in aggregate search effort. In
particular, payoffs are given by

Fi(x) = m(i) b(a(x)) − c(i),

where a(x) =
∑n

k=1 kxk represents aggregate search effort, the increasing function b : R+ → R
represents the benefits of search as a function of aggregate effort, the increasing function
m : S → R is the benefit multiplier, and the arbitrary function c : S → R captures search
costs. In Section 3.4, we will show that F is a supermodular game. §

2.3 The Geometry of Population Games and Nash Equilibria

In low-dimensional cases, we can present the payoff vectors generated by a population
game in pictures. Doing so provides a way of visualizing the strategic forces at work;
moreover, the geometric insights we obtain can be extended to games that we cannot
draw.

2.3.1 Drawing Two-Strategy Games

The population games that are easiest to draw are two-strategy games: i.e., games played
by a single population of agents who choose between a pair of strategies. When drawing
a two-strategy game, we represent the simplex as a subset of R2. We synchronize the
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x

x1

2

x*

Figure 2.3.1: Payoffs in 12 Coordination.

drawing with the layout of the payoff matrix by using the vertical coordinate to represent
the mass on the first strategy and the horizontal coordinate to represent the mass on the
second strategy. We then select a group of states spaced evenly through the simplex; from
each state x, we draw an arrow representing the payoff vector F(x) that corresponds to
x. (Actually, we draw scaled-down versions of the payoff vectors in order to make the
diagrams easier to read.)

In Figures 2.3.1 and 2.3.2, we present the payoff vectors generated by the two-strategy
coordination game FC2 and the Hawk-Dove game FHD:

FC2(x) =

1 0
0 2

 x1

x2

 =

 x1

2x2

 ; FHD(x) =

−1 2
0 1

 xH

xD

 =

2xD − xH

xD


Let us focus on the coordination game FC2. At the pure state e1 = (1, 0) at which all
agents play strategy 1, the payoffs to the two strategies are FC2

1 (e1) = 1 and FC2
2 (e1) = 0;

hence, the arrow representing FC2(e1) points directly upward from state e1. At the interior
Nash equilibrium x∗ = (x∗1, x

∗

2) = (2
3 ,

1
3 ), each strategy earns a payoff of 2

3 , so the arrow
representing payoff vector FC2(x∗) = ( 2

3 ,
2
3 ) is drawn at a right angle to the simplex at x∗.

Similar logic explains how the payoff vectors are drawn at other states, and how the
Hawk-Dove figure is constructed as well.

The diagrams of FC2 and FHD help us visualize the incentives faced by agents playing
these games. In the coordination game, the payoff vectors “push outward” toward the
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xH

xD

x*

Figure 2.3.2: Payoffs in the Hawk-Dove game.

two axes, reflecting an incentive structure that drives the population toward the two pure
Nash equilibria. In contrast, payoff vectors in the Hawk-Dove game “push inward”,
away from the axes, reflecting forces leading the population toward the interior Nash
equilibrium x∗ = (1

2 ,
1
2 ).

2.3.2 Displacement Vectors and Tangent Spaces

To draw games with more than two strategies we need to introduce two new objects:
TX, the tangent space of the state space X; andΦ, the orthogonal projection of Rn onto TX.
We summarize the relevant concepts in this subsection and the next; for a fuller treatment,
see the Appendix.

To start, let us focus on a single-population game F. Imagine that the population is
initially at state x, and that a group of agents of mass ε switch from strategy i to strategy j.
These revisions move the state from x to x + ε(e j − ei): the mass of agents playing strategy
i goes down by ε, while the mass of agents playing strategy j goes up by ε. Vectors like
ε(e j − ei), which represent the effects of such strategy revisions on the population state, are
called displacement vectors. (Since these vectors are tangent to the state space X, we also
call them tangent vectors—more on this below.)

In Figure 2.3.3, we illustrate displacement vectors for two-strategy games. In this
setting, displacement vectors can only point in two directions: when agents switch from
strategy 1 to strategy 2, the state moves in direction e2 − e1, represented by an arrow
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Figure 2.3.3: Displacement vectors for two-strategy games.

pointing southeast; when agents switch from strategy 2 to strategy 1, the state moves in
direction e1 − e2, represented by an arrow pointing northwest. Both of these vectors are
tangent to the state space X.

(Two clarifications are in order here. First, remember that a vector is characterized
by its direction and its length, not where we position its base. When we draw an arrow
representing the vector z, we use the context to determine an appropriate position x for
the arrow’s base; the arrow takes the form of a directed line segment from x to x + z.
Second, since we are mainly interested in displacement vectors’ relative sizes, we rescale
them before drawing them, just as we did with payoff vectors in Figures 2.3.1 and 2.3.2.)

Now consider a three-strategy game: a game with one population and three strategies,
whose state space X is thus the simplex in R3. A “three-dimensional” picture of X is
provided in Figure 2.3.4, where X is situated within the plane in R3 that contains it. This
plane is called the affine hull of X, and is denoted by aff(X) (see Appendix 2.A.2). For
future reference, note that displacement vectors drawn from states in X are situated in the
plane aff(X).

Instead of representing the state space X explicitly in R3, it is more common to present
it as a two-dimensional equilateral triangle (Figure 2.3.5). When we follow this approach,
our sheet of paper itself represents the affine hull aff(X), and so arrows drawn on the paper
represent displacement vectors. Figure 2.3.5 presents arrows describing the 3 × 2 = 6
displacement vectors of the form e j − ei, which correspond to switches between distinct
ordered pairs of strategies. Each of these arrows is parallel to some edge of the simplex.

15



e1

e2 e3

Figure 2.3.4: The simplex in R3.

e1

e2 e3

e 2

e 1
–

e 1

e 2
–

e
3

e
1 –

e
1

e
3 –

e2e3 –
e3e2 – x

Figure 2.3.5: Displacement vectors for three-strategy games.
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For purposes of orientation, note that if we resituate the simplex from Figure 2.3.5 in
three-dimensional space (i.e., in Figure 2.3.4), then each of these six arrows is obtained by
subtracting one standard basis vector from another.

Switches between pairs of strategies are not the only ways of generating displacement
vectors—they can also come from switches involving three or more strategies, and, in
multipopulation settings, from switches occurring within more than one population. The
set of all displacement vectors from states in X forms a subspace of Rn; this subspace is
called the tangent space TX.

To formally define TX, let us first consider population p ∈ P in isolation. The state
space for population p is Xp = {xp

∈ Rnp

+ :
∑

i∈Sp xp
i = mp

}. The tangent space of Xp, denoted
TXp, is the smallest subspace of Rnp that contains all vectors describing motions between
points in Xp. In other words, if xp, yp

∈ Xp, then yp
− xp

∈ TXp, and TXp is the span of all
vectors of this form. It is not hard to see that TXp = Rnp

0 ≡ {z
p
∈ Rnp :

∑
i∈Sp zp

i = 0}: that is,
TXp contains exactly those vectors in Rnp whose components sum to zero. The restriction
on the sum embodies the fact that changes in the population state leave the population’s
mass constant.

The definition above is sufficient for studying single population games. What if there
are multiple populations? In this case, any change in the social state x ∈ X =

∏
p∈P Xp

is a combination of changes occurring within the individual populations. Therefore, the
grand tangent space TX is just the product of the tangent spaces for each set Xp: in other
words , TX =

∏
p∈P TXp.

2.3.3 Orthogonal Projections

Suppose we would like to draw a diagram representing a three-strategy game F.
One possibility is to draw a “three-dimensional” representation of F in the fashion of
Figure 2.3.4. We would place more modest demands on our drafting skills if we instead
represented F in just two dimensions. But this simplification comes at a cost: since three-
dimensional payoff vectors F(x) ∈ R3 will be presented as two-dimensional objects, some
of the information contained in these vectors will be lost.

From a geometric point of view, the most natural way to proceed is pictured in Figure
2.3.6: instead of drawing an arrow from state x corresponding to the vector F(x) itself, we
instead draw the arrow closest to F(x) among those that lie in the plane aff(X). This arrow
represents a vector in the tangent space TX: namely, the orthogonal projection of F(x) onto
TX.

Let Z be a linear subspace of Rn. The orthogonal projection of Rn onto Z is a linear map
that sends each π ∈ Rn to the closest point to π in Z. Each orthogonal projection can be
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Figure 2.3.6: Projected payoff vectors for three-strategy games.

represented by a matrix PZ ∈ Rn×n via the map π 7→ PZπ, and it is common to identify the
projection with its matrix representation . We treat orthogonal projections in some detail
in Appendix 2.A.3; here we focus only on the orthogonal projections we need.

First consider population p ∈ P in isolation. The orthogonal projection of Rnp onto the
tangent space TXp, denoted Φ ∈ Rnp

×np , is defined by Φ = I − 1
np 11′, where 1 = (1, . . . , 1)′ is

the vector of ones; thus 1
np 11′ is the matrix whose entries are all 1

np .
If πp is a payoff vector in Rnp , the projection of πp onto TXp is

Φπp = πp
−

1
np 11′πp = πp

− 1
(

1
np

∑
k∈Sp

πp
k

)
.

The ith component of Φπp is the difference between the actual payoff to strategy i and the
unweighted average payoff of all strategies in Sp. Thus, Φπp discards information about
average payoffs while retaining information about relative payoffs of different strategies in
Sp. This interpretation is important from a game-theoretic point of view, since incentives,
and hence Nash equilibria, only depend on payoff differences. Therefore, when incentives
(as opposed to, e.g., efficiency) are our main concern, we do not need to know the actual
payoff vectors πp; looking at the projected payoff vectors Φπp is enough.

In multipopulation settings, the tangent space TX =
∏

p∈P TXp has a product struc-
ture; hence, the orthogonal projection onto TX, denoted Φ ∈ Rn×n, has a block diagonal
structure: Φ = diag(Φ, . . . ,Φ). (Note that the blocks on the diagonal of Φ are generally
not identical: the pth block is an element of Rnp

×np .) If we applyΦ to the society’s payoff
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Figure 2.3.7: Payoffs and projected payoffs in 12 Coordination.

vector π = (π1, . . . , πp), the resulting vectorΦπ = (Φπ1, . . . ,Φπp) lists the relative payoffs
in each population.

2.3.4 Drawing Three-Strategy Games

Before using orthogonal projections to draw three-strategy games, let us see how this
device affects our pictures of two-strategy games. Applying the projection Φ = I − 1

211′ to
the payoff vectors from the coordination game FC2 and the Hawk-Dove game FHD yields

ΦFC2(x) =

 1
2 −

1
2

−
1
2

1
2

  x1

2x2

 =

 1
2x1 − x2

−
1
2x1 + x2

 and

ΦFHD(x) =

 1
2 −

1
2

−
1
2

1
2

 2xD − xH

xD

 =

 1
2 (xD − xH)
1
2 (xH − xD)

 .
We draw the projected payoffs along with the original payoffs in Figures 2.3.7 and 2.3.8.

The projected payoff vectors ΦF(x) lie in the tangent space TX, and so are represented
by arrows running parallel to the simplex X. Projecting away the orthogonal component
of payoffs makes the “outward force” in the coordination game and the “inward force” in
the Hawk-Dove game more transparent. Indeed, Figures 2.3.7 and 2.3.8 are suggestive of
evolutionary dynamics for these two games—a topic we take up starting in Chapter 4.

Now, let us consider the three-strategy coordination game FC3 and the Rock-Paper-
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x1

x2

Figure 2.3.8: Payoffs and projected payoffs in the Hawk-Dove game.

Scissors game FRPS.

FC3(x) =


1 0 0
0 2 0
0 0 3



x1

x2

x3

 =


x1

2x2

3x3

 ; FRPS(x) =


0 −1 1
1 0 −1
−1 1 0



xR

xP

xS

 =


xS − xP

xR − xS

xP − xR

 .
These games are pictured in Figures 2.3.9 and 2.3.10. The arrows in Figure 2.3.9 represent
the projected payoff vectors ΦFC3(x), defined by

ΦFC3(x) =
(
I − 1

311′
) 

x1

2x2

3x3

 =


1
3 (2x1 − 2x2 − 3x3)
1
3 (−x1 + 4x2 − 3x3)
1
3 (−x1 − 2x2 + 6x3)

 .
But in the Rock-Paper-Scissors game, the column sums of the payoff matrix all equal 0,
implying that the maps FRPS and ΦFRPS are identical; by drawing one, we draw the other.

As with that of FC2, the diagram of the coordination game FC3 shows forces pushing
outward toward the extreme points of the simplex. In contrast, Figure 2.3.10 displays
a property that cannot occur with just two strategies: instead of driving toward some
Nash equilibrium, the arrows in Figure 2.3.10 cycle around the simplex. Thus, the figure
suggests that in the Rock-Paper-Scissors game, evolutionary dynamics need not converge
to Nash equilibrium, but instead may avoid equilibrium in perpetuity. We return to
questions of convergence and nonconvergence of evolutionary dynamics beginning in
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Figure 2.3.9: Projected payoffs in 123 Coordination.
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P S

Figure 2.3.10: Payoffs (= projected payoffs) in Rock-Paper-Scissors.
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later chapters.

2.3.5 Tangent Cones and Normal Cones

To complete our introduction to the geometric approach to population games, we
explain how one can find a game’s Nash equilibria by examining a picture of the game.

To begin this discussion, note that the constraint that defines vectors z as lying in the
tangent space TX—the constraint that keeps population masses constant—is not always
enough to ensure that motion in direction z is feasible. Motions in every direction in TX
are feasible if we begin at a state x in the interior of the state space X. But if xp

i = 0 for
some strategy i ∈ Sp, then motion in any direction z with zp

i < 0 would cause the mass of
agents playing strategy i to become negative, taking the state out of X.

To describe the feasible displacement directions from an arbitrary state x ∈ X, we
introduce the notion of a tangent cone. To begin, recall that the set K ⊆ Rn is a cone if
whenever it contains the vector z, it also contains the vector αz for every α > 0. Most often
one is interested in convex cones (i.e., cones that are convex sets). The polar of the convex
cone K is a new convex cone

K◦ =
{
y ∈ Rn : y′z ≤ 0 for all z ∈ K

}
.

In words, the polar cone of K contains all vectors that form a weakly obtuse angle with
each vector in K (Figure 2.3.11).

Exercise 2.3.1. Let K be a convex cone. Show that

(i) K◦ is a closed convex cone, and K◦ = (cl(K))◦. (Hence, K◦ contains the origin.)
(ii) K is a subspace of Rn if and only if K is symmetric, in the sense that K = −K.

Moreover, in this case, K◦ = K⊥.
(iii) (K◦)◦ = cl(K). (Hint: To show that (K◦)◦ ⊆ cl(K), use the separating hyperplane

theorem.)

The last result above tells us that (K◦)◦ = K for any closed convex cone K; thus, polarity
defines an involution on the set of closed convex cones.

Another fundamental result about closed convex cones and their polar cones, the
Moreau Decomposition Theorem, is not needed until later chapters. But as the preceding
discussion provides the proper context to present this result, we do so in Appendix 2.B.

If C ⊂ Rn is a closed convex set, then the tangent cone of C at state x ∈ C, denoted TC(x),
is the closed convex cone

TC(x) = cl
({

z ∈ Rn : z = α
(
y − x

)
for some y ∈ C and some α ≥ 0

})
.
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K°

Figure 2.3.11: A convex cone and its polar cone.

If C ⊂ Rn is a polytope (i.e., the convex hull of a finite number of points), then the closure
operation is redundant. In this case, TC(x) is the set of directions of motion from x that
initially remain in C; more generally, TC(x) also contains the limits of such directions. (To
see the difference, construct TC(x) for x ∈ bd(C) when C is a square and when C is a circle.)
If x is in the relative interior of C (i.e., the interior of C relative to aff(C)), then TC(x) is just
TC, the tangent space of C; otherwise, TC(x) is a strict subset of TC.

Finally, define the normal cone of C at x to be the polar of the tangent cone of C at x: that
is, NC(x) = (TC(x))◦. By definition, NC(x) is a closed convex cone, and it contains every
vector that forms a weakly obtuse angle with every feasible displacement vector at x.

In Figures 2.3.12 and 2.3.13, we sketch examples of tangent cones and normal cones
when X is the state space for a two strategy game (i.e., the simplex in R2) and for a three
strategy game (the simplex in R3). Since the latter figure is two-dimensional, with the
sheet of paper representing the affine hull of X, the figure actually displays the projected
normal cones Φ(NX(x)).

2.3.6 Normal Cones and Nash Equilibria

At first glance, normal cones might appear to be less relevant to game theory than
tangent cones. Theorem 2.3.2 shows that this impression is false: normal cones and Nash
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Figure 2.3.12: Tangent cones and normal cones for two-strategy games.
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Figure 2.3.13: Tangent cones and normal cones for three-strategy games.

equilibria are intimately linked.

Theorem 2.3.2. Let F be a population game. Then x ∈ NE(F) if and only if F(x) ∈ NX(x).

Proof. x ∈ NE(F)⇔ [xp
i > 0⇒ Fp

i (x) ≥ Fp
j (x)] for all i, j ∈ Sp, p ∈ P

⇔ (xp)′Fp(x) ≥ (yp)′Fp(x) for all yp
∈ Xp, p ∈ P

⇔ (yp
− xp)′Fp(x) ≤ 0 for all yp

∈ Xp, p ∈ P
⇔ (zp)′Fp(x) ≤ 0 for all zp

∈ TXp(xp), p ∈ P
⇔ Fp(x) ∈ NXp(xp) for all p ∈ P
⇔ F(x) ∈ NX(x). �

Exercise 2.3.3. Justify the last equivalence above.

Theorem 2.3.2 tells us that state x is a Nash equilibrium if and only if the payoff vector
F(x) lies in the normal cone of the state space X at x. This result provides us with a simple,
purely geometric description of Nash equilibria of population games. Its proof is very
simple: some algebra shows that x is a Nash equilibrium if and only if it solves a variational
inequality problem—that is, if it satisfies

(2.1) (y − x)′F(x) ≤ 0 for all y ∈ X.
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Applying the definitions of tangent and normal cones then yields the result.
In many cases, it is more convenient to speak in terms of projected payoff vectors and

projected normal cones. Corollary 2.3.4 restates Theorem 2.3.2 in these terms.

Corollary 2.3.4. x ∈ NE(F) if and only ifΦF(x) ∈Φ(NX(x)).

Proof. Clearly, F(x) ∈ NX(x) implies that ΦF(x) ∈ Φ(NX(x)). The reverse implica-
tion follows from the facts that NX(x) = Φ(NX(x)) + (TX)⊥ (see Exercise 2.3.5) and that
Φ((TX)⊥) = {0} (which is the equation that defines Φ as the orthogonal projection of Rn

onto TX). �

Exercise 2.3.5. (i) Using the notions of relative and average payoffs discussed in Section
2.3.3, explain the intuition behind Corollary 2.3.4 in the single population case.

(ii) Prove that NX(x) =Φ(NX(x)) + (TX)⊥.
(iii) Only one of the two statements to follow is equivalent to x ∈ NE(F) : F(x) ∈
Φ(NX(x)), orΦF(x) ∈ NX(x). Which is it?

In Figures 2.3.7 through 2.3.10, we mark the Nash equilibria of our four population
games with dots. In the two-strategy games FC2 and FHD, the Nash equilibria are those
states x at which the payoff vector F(x) lies in the normal cone NX(x), as Theorem 2.3.2
requires. In both these games and in the three-strategy games FC3 and FRPS, the Nash
equilibria are those states x at which the projected payoff vector ΦF(x) lies in the projected
normal cone Φ(NX(x)), as Corollary 2.3.4 demands. Even if the dots were not drawn, we
could locate the Nash equilibria of all four games by examining the arrows alone.

Exercise 2.3.6. Compute the Nash equilibria of the four games studied above, and verify
that the equilibria appear in the correct positions in Figures 2.3.7 through 2.3.10.

Exercise 2.3.7. Two-population two-strategy games. Let F be a game played by two unit mass
populations (p = 2) with two strategies for each (n1 = n2 = 2).

(i) Describe the state space X, tangent space TX, and orthogonal projectionΦ for this
setting.

(ii) Show that the state space X can be represented on a sheet of paper by a unit
square, with the upper left vertex representing the state at which all agents in both
populations play strategy 1, and with the upper right vertex representing the state
at which all agents in population 1 play strategy 1 and all agents in population 2
play strategy 2. Explain how the projected payoff vectorsΦF(x) can be represented
as arrows in this diagram.
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(iii) At (a) a point in the interior of the square, (b) a non-vertex boundary point, and (c)
a vertex, draw the tangent cone TX(x) and the projected normal cone Φ(NX(x)),
and give algebraic descriptions of each.

(iv) Suppose we draw projected payoff vectorsΦF(x) in the manner you described in
part (ii) and projected normal cones in the manner you described in part (iii). Verify
that in each of the cases considered in part (iii), the arrow representing ΦF(x) is
contained in the sketch ofΦ(NX(x)) if and only if x is a Nash equilibrium of F.

Appendix

2.A Affine Spaces, Tangent Spaces, and Orthogonal Projec-
tions

The simplex in Rn, the state space for single population games, is an n− 1 dimensional
subset of Rn; state spaces for multipopulation games are Cartesian products of scalar
multiples of simplices. For this reason, linear subspaces, affine spaces, and orthogonal
projections all play important roles in the study of population games.

2.A.1 Affine Spaces

The set Z ⊆ Rn is a (linear) subspace of Rn if it is closed under linear combination: if
z, ẑ ∈ Z and a, b ∈ R, then az + bẑ ∈ Z as well. Suppose that Z is a subspace of Rn of
dimension dim(Z) < n, and that the set A is a translation of Z by some vector v ∈ Rn:

A = Z + {v} = {x ∈ Rn : x = z + v for some z ∈ Z}.

Then we say that A is an affine space of dimension dim(A) = dim(Z).
Observe that any vector representing a direction of motion through A is itself an

element of Z: if x, y ∈ A, then y − x = (zy + v) − (zx + v) = zy
− zx for some zx and zy in Z;

since Z is closed under linear combinations, zy
− zx
∈ Z. For this reason, the set Z is called

the tangent space of A, and we often write TA in place of Z.
Since the origin is an element of Z, the translation vector v in the definition A = Z + {v}

can be any element of A. But is there a “natural” choice of v? Recall that the orthogonal
complement of Z, denoted by Z⊥, contains the vectors in Rn orthogonal to all elements of Z:
that is, Z⊥ = {v ∈ Rn : v′z = 0 for all z ∈ Z}. It is easy to show that the set A ∩ Z⊥ contains
a single element, which we denote by z⊥A, and that this orthogonal translation vector is the
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Figure 2.A.1: The state space and its affine hull for two-strategy games.

closest point in Z⊥ to every point in A (in the language of Section 2.A.3 below, PZ⊥x = z⊥A
for all x ∈ A). We will see that for many purposes, this translation vector is the most
convenient choice.

Example 2.A.1. Consider the subspace Rn
0 = {z ∈ Rn : 1′z = 0} and the affine space

A = Rn
0 + {e1} = {z ∈ Rn : 1′z = 1}, where 1 = (1, . . . , 1)′. Since (Rn

0)⊥ = span({1}) and
A ∩ span({1}) = { 1n1}, the vector 1

n1 is the orthogonal translation vector that generates A.
In particular, A = Rn

0 + { 1n1}, and 1
n1 is the closest point in span({1}) to every x ∈ A. We

illustrate the case in which n = 2 in Figure 2.A.1; note again our convention of using the
vertical axis to represent the first component of x = (x1, x2). §

2.A.2 Affine Hulls of Convex Sets

Let Y ⊆ Rn. The affine hull of Y, denoted aff(Y), is the smallest affine space that contains
Y. This set can be described as

(2.2) aff (Y) =

x ∈ Rn : x =

k∑
i=1

λiyi for some {yi
}
k
i=1 ⊂ Y and {λi

}
k
i=1 ⊂ R with

k∑
i=1

λi = 1

 .
The vector x is called an affine combination of the vectors yi. If we also required the λi to be
nonnegative, x would instead be an convex combination of the yi, and (2.2) would become
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conv(Y), the convex hull of Y.
Now suppose that Y is itself convex, let A = aff(Y) be its affine hull, and let Z = TA

be the tangent space of A; then we also call Z = TY the tangent space of Y, as Z contains
directions of motion from points in the (relative) interior of Y that stay in Y. We also call
dim(Y) = dim(Z) the dimension of Y.

In constructing the affine hull of a convex set as in (2.2), it is enough to take affine
combinations of a fixed set of dim(Y) + 1 points in Y. To accomplish this, let d = dim(Y),
fix y0

∈ Y arbitrarily, and choose y1, . . . , yd so that {y1
− y0, . . . , yd

− y0
} is a basis for Z. Then

letting λ0 = 1 −
∑d

i=1 λ
i, we see that

Z + {y0
} = span({y1

− y0, . . . , yd
− y0
}) + {y0

}

=
{
x ∈ Rn : x =

∑d

i=1
λi(yi

− y0) + y0 for some {λi
}
d
i=1 ⊂ R

}
.

=
{
x ∈ Rn : x =

∑d

i=0
λiyi for some {λi

}
d
i=0 ⊂ R with

∑d

i=0
λi = 1

}
= aff(Y).

Example 2.A.2. Population states. Let Xp = {xp
∈ Rnp

+ : 1′xp = mp
} be the set of population

states for a population of mass mp. This convex set has affine hull aff(Xp) = {xp
∈ Rnp :

1′xp = mp
} and tangent space TXp = {zp

∈ Rnp : 1′zp = 0} = Rnp

0 (cf Example 2.A.1). §

Example 2.A.3. Social states. Let X =
∏

p∈P Xp be the set of social states for a collection
of populations P = {1, . . . , p} with masses m1, . . .mp . This convex set has affine hull
aff(X) =

∏
p∈P aff(Xp) and tangent space TX =

∏
p∈P Rnp

0 . Thus, if z = (z1, . . . , zp) ∈ TX, then
each zp has components that sum to zero. §

2.A.3 Orthogonal Projections

If V and W are subspaces of Rn, their sum is V + W = span (V ∪W), the set of linear
combinations of elements of V and W. If V ∩W = {0}, every x ∈ V + W has a unique
decomposition x = v + w with v ∈ V and w ∈ W. In this case, we write V + W as V ⊕W,
and call it the direct sum of V and W. For instance, V ⊕ V⊥ = Rn for any subspace V ⊆ Rn.

Every matrix A ∈ Rn×n defines a linear operator from Rn to itself via x 7→ Ax. To
understand the action of this operator, remember that the ith column of A is the image
of the standard basis vector ei, and, more generally, that Ax is a linear combination of the
columns of A.

We call the linear operator P ∈ Rn×n a projection onto the subspace V ⊆ Rn if there is a
second subspace W ⊆ Rn satisfying V ∩W = {0} and V ⊕W = Rn such that
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Figure 2.A.2: A projection.

(i) Px = x for all x ∈ V, and
(ii) Py = 0 for all y ∈W.

If W = V⊥, we call P the orthogonal projection onto V, and write PV in place of P.
Every projection onto V maps all points in Rn to points in V. While for any given

subspace V there are many projections onto V, the orthogonal projection onto V is unique.
For example,

P1 =

0 0
1 1

 and P2 =

0 0
0 1


both define projections of R2 onto the horizontal axis {x ∈ R2 : x1 = 0}. (Recall again our
convention of representing x1 on the vertical axis.) However, since P2 maps the vertical
axis {x ∈ R2 : x2 = 0} to the origin, it is the orthogonal projection. The action of the two
projections is illustrated in Figures 2.A.2 and 2.A.3 below. The latter figure illustrates a
geometrically obvious property of orthogonal projections: the orthogonal projection of Rn

onto V maps each point y ∈ Rn to the closest point to y in V:

PV y = argmin
v∈V

∣∣∣y − v
∣∣∣2 .

Projections admit simple algebraic characterizations. Recall that the matrix A ∈ Rn×n

is idempotent if A2 = A. It is easy to see that projections are represented by idempotent
matrices: once the first application of P projects Rn onto the subspace V, the second
application of P does nothing more. In fact, we have

Theorem 2.A.4. (i) P is a projection if and only if P is idempotent.
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Figure 2.A.3: An orthogonal projection.

(ii) P is an orthogonal projection if and only if P is symmetric idempotent.

Example 2.A.5. The orthogonal projection onto Rnp

0 . In Example 2.A.2, we saw that the set
of population states Xp = {xp

∈ Rnp

+ : 1′xp = mp
} has tangent space TXp = Rnp

0 = {zp
∈

Rnp : 1′zp = 0}. We can decompose the space Rnp into the direct sum Rnp

0 ⊕ Rnp

1 , where
Rnp

1 = (Rnp

0 )⊥ = span({1}). The orthogonal projection of Rnp onto Rnp

1 is Ξ = 1
np 11′, the matrix

whose entries all equal 1
np ; to verify this, note that Ξzp = 0 for zp

∈ Rnp

0 and Ξ1 = 1. The
orthogonal projection of Rnp onto Rnp

0 is Φ = I − Ξ, since Φzp = zp for zp
∈ Rnp

0 and Φ1 = 0
(see Figure 2.A.4 for the case of np = 2). Both Ξ and Φ are clearly symmetric, and since
Ξ2 = ( 1

np 11′)( 1
np 11′) = 1

np 11′ = Ξ and Φ2 = (I−Ξ)(I−Ξ) = I−2Ξ+Ξ2 = I−2Ξ+Ξ = I−Ξ = Φ,
both are idempotent as well. §

More generally, it is easy to show that if P is the orthogonal projection of Rn onto V, then
I − P is the orthogonal projection of Rn onto V⊥. Or, in the notation introduced above,
PV⊥ = I − PV.

Example 2.A.6. The orthogonal projection onto TX. Recall from Example 2.A.3 that the set of
social states X =

∏
p∈P Xp has tangent space TX =

∏
p∈P Rnp

0 . We can decompose Rn into the
direct sum

∏
p∈P Rnp

0 ⊕
∏

p∈P Rnp

1 = TX ⊕
∏

p∈P span({1}). The orthogonal projection of Rn

onto
∏

p∈P span({1}) is the block diagonal matrix Ξ = diag(Ξ, . . . ,Ξ), while the orthogonal
projection of Rn onto TX is Φ = I − Ξ = diag(Φ, . . . ,Φ). Of course, Ξ and Φ are both
symmetric idempotent. §

Example 2.A.7. Ordinary least squares. Suppose we have a collection of n > k data points,
{(xi, yi)}ni=1, where each xi

∈ Rk contains k components of “explanatory” data and each
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Figure 2.A.4: The orthogonal projection Φ in R2.

yi
∈ R is the corresponding component of “explainable” data. We write these data as

X =


(x1)′
...

(xn)′

 ∈ Rn×k and y =


y1

...

yn

 ∈ Rn

and assume that X is of full rank. We seek the best linear predictor: the map x 7→ x′β that
minimizes the sum of squared prediction errors

∑n
i=1(yi

− (xi)′β)2 = |y − Xβ|2.
(The prediction function xi

7→ (xi)′β is a truly linear function of x, in the sense that
the input vector 0 generates a prediction of 0. Typically, one seeks an affine prediction
function—that is, one that allows for a nonzero constant term. To accomplish this, one
sets xi

1 = 1 for all i, leaving only k − 1 components of true explanatory data. In this case,
the component β1 serves as a constant term in the affine prediction function (x2, . . . , xk) 7→
β1 +

∑k
i=2 xiβi.)

Let span(X) = {Xb : b ∈ Rk
} be the column span of X. That β ∈ Rk minimizes |y − Xβ|2

is equivalent to the requirement that Xβ be the closest point to y in the column span of X:

Xβ = argmin
v∈span(X)

∣∣∣y − v
∣∣∣2 .

Both calculus and geometry tell us that for this to be true, the vector of prediction errors
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y − Xβ must be orthogonal to span(X), and hence to each column of X.

X′(y − Xβ) = 0.

One can verify that X ∈ Rn×k and X′X ∈ Rk×k have the same null space, and hence the same
(full) rank. Therefore, (X′X)−1 exists, and we can solve the previous equation for β:

β = (X′X)−1X′y.

To this point, we have taken X ∈ Rn×k and y ∈ Rn as given and used them to find the
vector β ∈ Rk, which we have viewed as defining a map from vectors of explanatory data
x ∈ Rk to predictions x′β ∈ R. Now, let us take X alone as given and consider the map from
vectors of “explainable” data y ∈ Rn to vectors of predictions Xβ = X(X′X)−1X′y ∈ Rn. By
construction, this linear map P = X(X′X)−1X′ ∈ Rn×n is the orthogonal projection of Rn onto
span(X). P is clearly symmetric (since the inverse of a symmetric matrix is symmetric),
and since P2 = X(X′X)−1X′X(X′X)−1X′ = X(X′X)−1X′ = P it is idempotent as well. §

2.B The Moreau Decomposition Theorem

A basic fact about projection onto subspaces holds that for any vector v ∈ Rn and any
subspace Z ⊆ Rn, the sum v = PZ(v) + PZ⊥(v) is the unique decomposition of v into the
sum of elements of Z and Z⊥. The Moreau Decomposition Theorem is a generalization of this
result that replaces the subspace Z and its orthogonal complement with a closed convex
cone and its polar cone. We use this theorem repeatedly in Chapter 6 in our analysis of
the projection dynamic.

To state this result, we need an appropriate analogue of orthogonal projection for the
context of closed, convex sets. To this end, we define ΠC : Rn

→ C, the (closest point)
projection of Rn onto the closed convex set C by

ΠC(y) = argmin
x∈C

∣∣∣y − x
∣∣∣ .

This definition generalizes that of the projection PZ onto the subspace Z ⊆ Rn to cases in
which the target set is not linear, but merely closed and convex. With this definition in
hand, we can state our new decomposition theorem; an illustration is provided in Figure
2.B.1.

Theorem 2.B.1 (The Moreau Decomposition Theorem). Let K ⊆ Rn and K◦ ⊆ Rn be a closed
convex cone and its polar cone, and let v ∈ Rn. Then the following are equivalent:
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K

K°

v

Π (v)K° Π (v)K

Figure 2.B.1: The Moreau Decomposition Theorem.

(i) vK = ΠK(v) and vK◦ = ΠK◦(v).
(ii) vK ∈ K, vK◦ ∈ K◦, v = vK + vK◦ , and vK

′vK◦ = 0.

2.N Notes

Congestion games are introduced in Beckmann et al. (1956); see the notes to Chapter
3 for further references. For the biological motivation for the Hawk-Dove game, see
Maynard Smith (1982, Chapter 2).

Portions of Section 2.3 follow Lahkar and Sandholm (2008). The link between normal
cones and Nash equilibria is known from the literature on variational inequalities; see
Harker and Pang (1990) and Nagurney (1999). For more on affine spaces, tangent cones,
normal cones, the Moreau Decomposition Theorem, and related notions, see Hiriart-
Urruty and Lemaréchal (2001). The algebra of orthogonal projections is explained, e.g., in
Friedberg et al. (1989, Section 6.6).
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CHAPTER

THREE

Potential Games, Stable Games, and Supermodular Games

3.0 Introduction

In the previous chapter, we offered a general definition of population games and
characterized their Nash equilibria geometrically. Still, since any continuous map F from
the state space X to Rn defines a population game, population games with even a moderate
number of strategies can be difficult to analyze. In this chapter, we define three important
classes of population games: potential games, stable games, and supermodular games. From
an economic point of view, each definition places constraints on the sorts of externalities
agents impose on one another through their choices in the game. From a mathematical
point of view, each definition imposes a structure on payoff functions that renders their
analysis relatively simple.

We show through examples that potential games, stable games, and supermodular
games each encompass a variety of interesting applications. We also establish the basic
properties of each class of games. Among other things, we show that for games in each
class, existence of Nash equilibrium can be proved using elementary methods. Beginning
in Chapter 7, we investigate the behavior of evolutionary dynamics in the three classes of
games; there, our assumptions on the structure of externalities will allow us to establish a
range of global convergence results.

The definitions of our three classes of games only require continuity of the payoff func-
tions. If we instead make the stronger assumption that payoffs are smooth (in particular,
continuously differentiable), we can avail ourselves of the tools of calculus. Doing so not
only simplifies computations, but also allows us to express our definitions and results
in simple, useful, and intuitively appealing ways. The techniques from calculus that we
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require are reviewed in the Appendices 3.A and 3.B.

3.1 Full Potential Games

In potential games, all information about payoffs that is relevant to agents’ incentives
can be captured in a single scalar-valued function. The existence of this function—the
game’s potential function—underlies potential games’ many attractive properties. In this
section, we consider full potential games, which can be analyzed using standard multi-
variate calculus techniques (Appendix 3.A), but at the expense of requiring an extension
of the payoff functions’ domain. In Section 3.2, we introduce a definition of potential
games that does not use this device, but that instead requires analyses that rely on affine
calculus (Appendix 3.B).

3.1.1 Full Population Games

To understand the issues alluded to above, consider a game F played by a single
population of agents. Since population states for this game are elements of X = {x ∈ Rn

+ :∑
k∈S xk = 1}, the simplex in Rn, the payoff Fi to strategy i is a real-valued function with

domain X.
In looking for useful properties of population games, a seemingly natural characteristic

to consider is the marginal effect of adding new agents playing strategy j on the payoffs
of agents currently choosing strategy i. This effect is captured by the partial derivative ∂Fi

∂x j
.

But herein lies the difficulty: if Fi is only defined on the simplex, then even if the function
F is differentiable, the partial derivative ∂Fi

∂x j
does not exist.

To ensure that partial derivatives exist, we extend the domain of the game F from
the state space X = {x ∈ Rn :

∑
k∈S xk = 1} to the entire positive orthant Rn

+. In mul-
tipopulation settings, the analogous extension is from the original set of social states
X = {x = (x1, . . . , xp) ∈ Rn

+ :
∑

i∈Sp xp
i = mp

} to Rn
+. In either setting, we call the game with

payoffs defined on the positive orthant a full population game. In many interesting cases,
one can interpret the extensions of payoffs as specifying the values that payoffs would
take were the population sizes to change—see Section 3.1.3.

3.1.2 Definition and Characterization

With these preliminaries addressed, we are now prepared to define full potential
games.
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Definition. Let F : Rn
+ → Rn be a full population game. We call F a full potential game if there

exists a continuously differentiable function f : Rn
+ → R satisfying

(3.1) ∇ f (x) = F(x) for all x ∈ Rn
+.

Property (3.1) can be stated more explicitly as

∂ f
∂xp

i

(x) = Fp
i (x) for all p ∈ P , i ∈ Sp and x ∈ Rn

+.

The function f , which is unique up to the addition of a constant, is called the full potential
function for the game F. It represents the game’s payoffs in an integrated form.

To explain the potential function’s role, suppose that x ∈ X is a population state at
which Fp

j (x) > Fp
i (x), so that an agent choosing strategy i ∈ Sp would be better off choosing

strategy j ∈ Sp. Now suppose some small group of agents switch from strategy i to
strategy j. These switches are represented by the displacement vector z = ep

j − ep
i , where

ep
i is the (i, p)th standard basis vector in Rn. The marginal impact that these switches have

on the value of potential is therefore

∂ f
∂z

(x) = ∇ f (x)′z =
∂ f
∂xp

j

(x) −
∂ f
∂xp

i

(x) = Fp
j (x) − Fp

i (x) > 0.

In other words, profitable strategy revisions increase potential. More generally, we will
see in later chapters that the “uphill” directions of the potential function include all
directions in which reasonable adjustment processes might lead. This fact underlies the
many attractive properties that potential games possess.

If the map F : Rn
+ → Rn is C1 (continuously differentiable), it is well known that F

admits a potential function if and only if its derivative matrices DF(x) are symmetric
(see Appendix 3.A.9). In the current game-theoretic context, we call this condition full
externality symmetry.

Observation 3.1.1. Suppose the population game F is C1. Then F is a full potential game if and
only if it satisfies full externality symmetry:

(3.2) DF(x) is symmetric for all x ∈ Rn
+
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More explicitly, F is a potential game if and only if

(3.3)
∂Fp

i

∂xq
j

(x) =
∂Fq

j

∂xp
i

(x) for all i ∈ Sp, j ∈ Sq, p, q ∈ P , and x ∈ Rn
+.

Observation 3.1.1 characterizes smooth full potential games in terms of a simple, eco-
nomically meaningful property: condition (3.2) requires that the effect on the payoffs to
strategy i ∈ Sp of introducing new agents choosing strategy j ∈ Sq always equals the effect
on the payoffs to strategy j of introducing new agents choosing strategy i.

3.1.3 Examples

Our first two examples build on ones studied in Chapter 2.

Example 3.1.2. Random matching in normal form games with common interests. Suppose a
single population is randomly matched to play symmetric two player normal form game
A ∈ Rn×n, generating the population game F(x) = Ax. While earlier we used this formula
to define F on the state space X, here we will use it to define F on all of Rn

+. (While this
choice works very well in the present example, it is not always innocuous, as will see in
Section 3.2.)

The symmetric normal form game A has common interests if both players always receive
the same payoff. This means that Ai j = A ji for all i and j, or, equivalently, that the matrix
A is symmetric. Since DF(x) = A, this is precisely what we need for F to be a full potential
game. The full potential function for F is

f (x) = 1
2x′Ax,

which is one-half of x′Ax =
∑

i∈S xiFi(x) = F(x), the aggregate payoff function for F.
To cover the multipopulation case, call the normal form game U = (U1, . . . ,Up) a

common interest game if there is a function V : S → R such that Up(s) = V(s) for all s ∈ S
and p ∈ P . As before, this means that under any pure strategy profile, all p players earn
the same payoff. This normal form game generates the full population game

Fp
sp(x) =

∑
s−p∈S−p

V(s)
∏
r,p

xr
sr
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on Rn
+. Aggregate payoffs in F are given by

F(x) =
∑
p∈P

∑
sp∈Sp

xp
spF

p
sp(x) = p

∑
s∈S

V(s)
∏
r∈P

xr
sr .

Hence, if we let f (x) =
∑

s∈S V(s)
∏

r∈P xr
sr = 1

p F(x), we obtain

∂ f
∂xp

sp

(x) =
∑

s−p∈S−p

V(s)
∏
r,p

xr
sr = Fp

sp(x).

So once again, random matching in a common interest game generates a full potential
game in which potential is proportional to aggregate payoffs. §

Exercise 3.1.3. In the multipopulation case, check directly that condition (3.2) holds.

Example 3.1.4. Congestion games. For ease of exposition, suppose that the congestion
game F models behavior in a traffic network. In this environment, an agent taking path
j ∈ Sq affects the payoffs of agents choosing path i ∈ Sp through the marginal increases in
congestion on the links φ ∈ Φ

p
i ∩Φ

q
j that the two paths have in common. But the marginal

effect of an agent taking path i on the payoffs of agents choosing path j is identical:

∂Fp
i

∂xq
j

(x) = −
∑

φ∈Φ
p
i ∩Φ

q
j

c′φ(uφ(x)) =
∂Fq

j

∂xp
i

(x).

In other words, congestion games satisfy condition (3.2), and so are full potential games.
The full potential function for the congestion game F can be written explicitly as

f (x) = −
∑
φ∈Φ

∫ uφ(x)

0
cφ(z) dz.

Hence, potential is typically unrelated to aggregate payoffs, which are given by

F(x) =
∑
p∈P

∑
i∈Sp

xp
i Fp

i (x) = −
∑
φ∈Φ

uφ(x)cφ(uφ(x)).

In Section 3.1.6, we offer conditions under which potential and aggregate payoffs are
directly linked. §

Example 3.1.5. Cournot competition. Consider a unit mass population of firms who choose
production quantities from the set S = {1, . . . ,n}. The firms’ aggregate production is given
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by a(x) =
∑

i∈S i xi. Let p : R+ → R+ denote inverse demand, a decreasing function of
aggregate production. Let the firms’ production cost function c : S → R be arbitrary.
Then the payoff to a firm producing quantity i ∈ S at population state x ∈ X is Fi(x) =

i p(a(x)) − c(i).
It is easy to check that F is a full potential game with full potential function

f (x) =

∫ a(x)

0
p(z) dz −

∑
i∈S

xi c(i).

In contrast, aggregate payoffs in F are

F(x) =
∑
i∈S

xiFi(x) = a(x)p(a(x)) −
∑
i∈S

xic(i).

The difference between the two is

f (x) − F(x) =

∫ a(x)

0

(
p(z) − p(a(x))

)
dz,

which is simply consumers’ surplus. Thus, the full potential function f = F + ( f − F)
measures the total surplus received by firms and consumers. (Total surplus differs from
aggregate payoffs because the latter ignores consumers, who are not modeled as active
agents.) §

Example 3.1.6. Games generated by variable externality pricing schemes. Population games
can be viewed as models of externalities for environments with many agents. One way to
force agents to internalize the externalities they impose upon others is to introduce pricing
schemes. Given an arbitrary full population game F with aggregate payoff function F,
define an augmented game F̃ as follows:

F̃p
i (x) = Fp

i (x) +
∑
q∈P

∑
j∈Sq

xq
j

∂Fq
j

∂xp
i

(x).

The double sum represents the marginal effect that an agent choosing strategy i has on
other agents’ payoffs.

Suppose that when the game F is played, a social planner charges each agent choosing
strategy i a tax equal to this double sum, and that each agent’s payoff function is separable
in this tax. The population game generated by this intervention is F̃.
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Now observe that

(3.4)
∂F
∂xp

i

(x) =
∂

∂xp
i

∑
q∈P

∑
j∈Sq

xq
jF

q
j(x) = Fp

i (x) +
∑
q∈P

∑
j∈Sq

xq
j

∂Fq
j

∂xp
i

(x) = F̃p
i (x).

Equation (3.4) tells us that the augmented game F̃ is a full potential game, and that its full
potential function is the aggregate payoff function of the original game F. Hence, changes
in strategy which are profitable in the augmented game increase efficiency with respect to
the payoffs of the original game. §

3.1.4 Nash Equilibria of Full Potential Games

We saw in Section 3.1.2 that in full potential games, profitable strategy revisions in-
crease potential. It is therefore natural to expect that Nash equilibria of full potential
games are related to local maximizers of potential. To investigate this idea, consider the
nonlinear program

max f (x) subject to
∑
i∈Sp

xp
i = mp for all p ∈ P , and

xp
i ≥ 0 for all i ∈ Sp and p ∈ P .

The Lagrangian for this maximization problem is

L(x, µ, λ) = f (x) +
∑
p∈P

µp

mp
−

∑
i∈Sp

xp
i

 +
∑
p∈P

∑
i∈Sp

λp
i xp

i ,

so the Kuhn-Tucker first order necessary conditions for maximization are

∂ f
∂xp

i

(x) = µp
− λp

i for all i ∈ Sp and p ∈ P ,(3.5)

λp
i xp

i = 0, for all i ∈ Sp and p ∈ P , and(3.6)

λp
i ≥ 0 for all i ∈ Sp and p ∈ P .(3.7)

Let

KT( f ) =
{
x ∈ X : (x, µ, λ) satisfies (3.5)-(3.7) for some λ ∈ Rn and µ ∈ Rp} .

Theorem 3.1.7 shows that the Kuhn-Tucker first order conditions for maximizing f on X
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characterize the Nash equilibria of F.

Theorem 3.1.7. If F is a full potential game with full potential function f, then NE(F) = KT( f ).

Proof. If x is a Nash equilibrium of F, then since F = ∇ f , the Kuhn-Tucker conditions
are satisfied by x, µp = max j∈Sp Fp

j (x), and λp
i = µp

−Fp
i (x). Conversely, if (x, µ, λ) satisfies the

Kuhn-Tucker conditions, then for every p ∈ P , (3.5) and (3.6) imply that Fp
i (x) =

∂ f
∂xp

i
(x) = µp

for all i in the support of xp. Furthermore, (3.5) and (3.7) imply that Fp
j (x) = µp

− λp
j ≤ µ

p

for all j ∈ Sp. Hence, the support of xp is a subset of argmax j∈Sp Fp
j (x), and so x is a Nash

equilibrium of F. �

Note that the multiplier µp represents the equilibrium payoff in population p, and that the
multiplier λp

i represents the “payoff slack” of strategy i ∈ Sp.
Since the set X satisfies constraint qualification, satisfaction of the Kuhn-Tucker con-

ditions is necessary for local maximization of the full potential function. Thus, Theorem
3.1.7, along with the fact that a continuous function on a compact set achieves its maxi-
mum, gives us a simple proof of existence of Nash equilibrium in full potential games.

On the other hand, the Kuhn-Tucker conditions are not sufficient for maximizing
potential. Therefore, while all local maximizers of potential are Nash equilibria, not all
Nash equilibria locally maximize potential.

Example 3.1.8. Consider again the 123 Coordination game introduced in Chapter 2:

F(x) =


F1(x)
F2(x)
F3(x)

 =


1 0 0
0 2 0
0 0 3



x1

x2

x3

 =


x1

2x2

3x3

 .
The full potential function for this game is the convex function f (x) = 1

2 (x1)2 + (x2)2 + 3
2 (x3)2.

The three pure states, e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1), all locally maximize
potential, and so are Nash equilibria. To focus on one instance, note that the Kuhn-Tucker
conditions are satisfied at state e1 by the multipliers µ = 1, λ1 = 0, and λ2 = λ3 = 1. The
global minimizer of potential, ( 6

11 ,
3

11 ,
2
11 ), is a state at which payoffs to all three strategies

are equal, and is therefore a Nash equilibrium as well; the Kuhn-Tucker conditions are
satisfied here with multipliersµ = 6

11 andλ1 = λ2 = λ3 = 0. Finally, at each of the boundary
states (2

3 ,
1
3 , 0), (3

4 , 0,
1
4 ), and (0, 3

5 ,
2
5 ), the strategies which are played receive equal payoffs,

which exceed the payoff accruing to the unused strategy; thus, these states are Nash
equilibria as well. These states, coupled with the appropriate multipliers, also satisfy the
Kuhn-Tucker conditions: for example, x = (2

3 ,
1
3 , 0) satisfies the conditions with µ = 2

3 ,
λ1 = λ2 = 0 and λ3 = 2

3 . This exhausts the set of Nash equilibria of F.
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Figure 3.1.1: The potential function of 123 Coordination.

Figures 3.1.1 and 3.1.2 contain a graph and a contour plot of the full potential function
f , and show the connection between this function and the Nash equilibria of F. §

The previous example demonstrates that in general, potential games can possess Nash
equilibria that do not maximize potential. But if the full potential function f is concave, the
Kuhn-Tucker conditions are not only necessary for maximizing f ; they are also sufficient.
This fact gives us the following corollary to Theorem 3.1.7.

Corollary 3.1.9. (i) If f is concave on X, then NE(F) is the convex set of maximizers of f on
X.

(ii) If f is strictly concave on X, then NE(F) is a singleton containing the unique maximizer of
f on X.

Example 3.1.10. A network of highways connects Home and Work. The two towns are
separated by a river. Highways A and D are expressways that go around bends in the
river, and that do not become congested easily: cA(u) = cD(u) = 4 + 20u. Highways B and
C cross the river over two short but easily congested bridges: cB(u) = cC(u) = 2 + 30u2. In
order to create a direct path between the towns, a city planner considers building a new
expressway E that includes a third bridge over the river. Delays on this new expressway
are described by cE(u) = 1 + 20u. The highway network as a whole is pictured in Figure
3.1.3.
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2 3

Figure 3.1.2: A contour plot of the potential function of 123 Coordination.

Before link E is constructed, there are two paths from Home to Work: path 1 traverses
links A and B, while path 2 traverses links C and D. The equilibrium driving pattern
splits the drivers equally over the two paths, yielding an equilibrium driving time (=
–equilibrium payoff) of 23.5 on each.

After link E is constructed, drivers may also take path 3, which uses links C, E, and B.
(We assume that traffic on link E only flows to the right.) The resulting population game
has payoff functions

F(x) =


F1(x)
F2(x)
F3(x)

 =


−(6 + 20x1 + 30(x1 + x3)2)
−(6 + 20x2 + 30(x2 + x3)2)

−(5 + 20x3 + 30(x1 + x3)2 + 30(x2 + x3)2)


and full potential function

f (x) = −
(
6x1 + 6x2 + 5x3 + 10((x1)2 + (x2)2 + (x3)2 + (x1 + x3)3 + (x2 + x3)3)

)
.

Figures 3.1.4 and 3.1.5 contain a graph and a contour plot of the full potential function.
Note that the full potential function for the two-path game is the restriction of f to the
states at which x3 = 0.

Evidently, the full potential function f is concave. (This is no coincidence—see Exercise
3.1.11 below.) The unique maximizer of potential on X, the state x ≈ (.4616, .4616, .0768),
is the unique Nash equilibrium of the game. In this equilibrium, the driving time on each
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Figure 3.1.3: A highway network.

Figure 3.1.4: The potential function of a congestion game.
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Figure 3.1.5: A contour plot of the congestion game’s potential function.

path is approximately 23.93, which exceeds the original equilibrium time of 23.5. In other
words, adding an additional link to the network actually increases equilibrium driving
times—a phenomenon known as Braess’ paradox.

The intuition behind this phenomenon is easy to see. By opening up the new link E, we
make it possible for a single driver on path 3 to use both of the easily congested bridges,
B and C. But while using path 3 is bad for the population as a whole, it is appealing to
individual drivers, as drivers do not account for the negative externalities their use of the
bridges imposes on others. §

Exercise 3.1.11. Uniqueness of equilibrium in congestion games.
(i) Let F be a congestion game with cost functions cφ and full potential function f .

Show that if each cφ is increasing, then f is concave, which implies that NE(F) is
the convex set of maximizers of f on X. (Hint: Fix y, z ∈ X, let x(t) = (1 − t)y + tz,
and show that g(t) = f (x(t)) is concave.)

(ii) Construct a congestion game in which each cφ is strictly increasing but in which
NE(F) is not a singleton.

(iii) Show that in case (ii), the equilibrium link utilization levels uφ are unique. (Hint:
Since f (x) only depends on the state x through the utilization levels uφ(x), we
can define a function g : U → R on U =

{
{vφ}φ∈Φ : vφ = uφ(x) for some x ∈ Rn

+

}
by

g(uφ(x)) = f (x). Show that x maximizes f on X if and only if uφ(x) maximizes g on
U.)
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Exercise 3.1.12. Example 3.1.6 shows that by adding state-dependent congestion charges
to a congestion game, a planner can ensure that drivers use the network efficiently, in
the sense of minimizing average travel times. Show that these congestion charges can be
imposed on a link-by-link basis, and that the price on each link need only depend on the
number of drivers on that link.

Exercise 3.1.13. Show that Cournot competition (Example 3.1.5) with a strictly decreasing
inverse demand function generates a potential game with a strictly concave potential
function, and hence admits a unique Nash equilibrium.

Exercise 3.1.14. Entry and exit. When we define a full population game F : Rn
+ → Rn, we

specify the payoffs of each of the n strategies for all possible vectors of population masses.
It is only a small additional step to allow agents to enter and leave the game. Fixing a
vector of population masses (m1, . . . ,mp), we define a population game with entry and exit by
assuming that the set of feasible social states is X = {x = (x1, . . . , xp) ∈ Rn

+ :
∑

i∈Sp xp
i ≤ mp

},
and that an agent who exits the game receives a payoff of 0.

(i) State an appropriate definition of Nash equilibrium for population games with
entry and exit.

(ii) A population game with entry and exit is a potential game if it satisfies full externality
symmetry (3.2). Prove an analogue of Theorem 3.1.7 for such games.

3.1.5 The Geometry of Nash Equilibrium in Full Potential Games

Theorem 3.1.7 shows that if F is a potential game with potential function f , then the set
of states satisfying the Kuhn-Tucker first order conditions for maximizing f are precisely
the Nash equilibria of F. We now offer a geometric proof of this result, and discuss its
implications.

The nonlinear program from Section 3.1.4 seeks to maximize the function f on the
polytope X. What do the Kuhn-Tucker conditions for this program mean?

The Kuhn-Tucker conditions adapt the classical approach to optimization based on
linearization to settings with both equality and inequality constraints. In the current
context, these conditions embody the following construction: To begin, one linearizes
the objective function f at the state x ∈ X of interest, replacing it with the function
l f ,x(y) = f (x)+∇ f (x)′(y−x). Then, one determines whether the linearized function reaches
its maximum on X at state x. Of course, this method can accept states that are not
maximizers: for instance, if x is an interior local minimizer of f , then the linearization l f ,x

is a constant function, and so is maximized everywhere in X. But because X is a polytope
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(in particular, since constraint qualification holds), x must maximize l f ,x on X if it is to
maximize f on X.

With this interpretation of the Kuhn-Tucker conditions in hand, we can offer a simple
geometric proof that NE(F) = KT( f ). The analysis employs our normal cone characteriza-
tion of Nash equilibrium from Chapter 2.

Theorem 3.1.7: If F is a full potential game with full potential function f, then NE(F) = KT( f ).

Second proof. x ∈ KT( f )⇔ x maximizes l f ,x on X.

⇔
[
z ∈ TX(x)⇒ ∇ f (x)′z ≤ 0

]
⇔ ∇ f (x) ∈ NX(x)

⇔ F(x) ∈ NX(x)

⇔ x ∈ NE(F). �

This proof is easy to explain in words. As we have argued, satisfying the Kuhn-Tucker
conditions for f on X is equivalent to maximizing the linearized version of f on X. This
in turn is equivalent to the requirement that if z is in the tangent cone of X at x—that is,
if z is a feasible displacement direction from x—then z forms a weakly obtuse angle with
the gradient vector ∇ f (x), representing the direction in which f increases fastest. But this
is precisely what it means for ∇ f (x) to lie in the normal cone NX(x). The definition of
potential tells us that we can replace ∇ f (x) with F(x); and we know from Chapter 2 that
F(x) ∈ NX(x) means that x is a Nash equilibrium of F.

This argument sheds new light on Theorem 3.1.7. The Kuhn-Tucker conditions, which
provide a way of finding the maximizers of the function f , are stated in terms of the
gradient vectors ∇ f (x). At first glance, it seems rather odd to replace ∇ f (x) with some
non-integrable map F: after all, what is the point of the Kuhn-Tucker conditions when there
is no function to maximize? But from the geometric point of view, replacing ∇ f (x) with F
makes perfect sense. When the Kuhn-Tucker conditions are viewed in geometric terms—
namely, in the form ∇ f (x) ∈ NX(x)—they become a restatement of the Nash equilibrium
condition; the fact that ∇ f (x) is a gradient vector plays no role. So to summarize, the
Nash equilibrium condition F(x) ∈ NX(x) is identical to the Kuhn-Tucker conditions, but
applies whether or not the map F is integrable.

Exercise 3.1.15. Let F be a full potential game with full potential function f . Let C ⊆ NE(F)
be smoothly connected, in the sense that if x, y ∈ C, then there exists a piecewise C1 path
α : [0, 1] → C with α(0) = x and α(1) = y. Show that f is constant on C. (Hint: Use the
Fundamental Theorem of Calculus and the fact that F(x) ∈ NX(x) for all x ∈ NE(F), along
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with the fact that when α(t) = x and α is differentiable at x, both α′(t) and −α′(t) are in
TX(x).)

3.1.6 Efficiency in Homogeneous Full Potential Games

We saw in Section 3.1.3 that when agents are matched to play normal form games with
common interests, the full potential function of the resulting population game is propor-
tional to the game’s aggregate payoff function. How far can we push this connection?

Definition. We call a full potential game F homogeneous of degree k if each of its payoff

functions Fp
i : Rn

+ → R is a homogeneous function of degree k, where k , −1.

Example 3.1.16. Random matching in normal form games with common interests. In the single
population setting, each payoff function F(x) = Ax is linear, so the full potential game
F is homogeneous of degree 1. With p ≥ 2 populations, the payoffs Fp to population
p’s strategies are multilinear in (x1, . . . , xp−1, xp+1, . . . , xp), so the full potential game F is
homogeneous of degree p − 1. §

Example 3.1.17. Isoelastic congestion games. Let F be a congestion game with cost functions
cφ. For each facility φ ∈ Φ, let

ηφ(u) =
uc′φ(u)

cφ(u)

denote φ’s cost elasticity, which is well defined whenever cφ(u) , 0. We call a congestion
game isoelastic with elasticity η ∈ R if ηφ = η for all φ ∈ Φ. Thus, a congestion game is
isoelastic if all facilities in Φ are equally sensitive to congestion at all levels of use.

Isoelasticity implies that all cost functions are of the form cφ(u) = aφuη, where the aφ are
arbitrary (i.e., positive or negative) scalar constants. (Notice that η cannot be negative, as
this would force facility costs to become infinite at u = 0.) Since each uφ is linear in x, each
payoff function Fp

i is a sum of functions that are homogeneous of degree η in x, and so is
itself homogeneous of degree η. Therefore, any isoelastic congestion game with elasticity
η is a homogeneous potential game of degree η. §

The efficiency properties of homogeneous potential games are consequences of the
following theorem.

Theorem 3.1.18. The full potential game F is homogeneous of degree k , −1 if and only if the
normalized aggregate payoff function 1

k+1F(x) is a full potential function for F and is homogeneous
of degree k + 1 , 0.
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Proof. If the potential game F is homogeneous of degree k , −1, then 1
k+1F(x) =

1
k+1

∑
p∈P

∑
j∈Sp xp

j F
p
j (x) is clearly homogeneous of degree k + 1. Therefore, condition (3.2)

and Euler’s law imply that

∂

∂xp
i

( 1
k + 1

F(x)
)

=
1

k + 1

∑
q∈P

∑
j∈Sq

xq
j

∂Fq
j

∂xp
i

(x) + Fp
i (x)


=

1
k + 1

∑
q∈P

∑
j∈Sq

xq
j

∂Fp
i

∂xq
j

(x) + Fp
i (x)


=

1
k + 1

(
kFp

i (x) + Fp
i (x)

)
= Fp

i (x),

so 1
k+1F is a full potential function for F. On the other hand, if 1

k+1F is homogeneous of
degree k+1 , 0 and is a full potential function for F, then each payoff function Fp

i = ∂
∂xp

i
( 1

k+1F)
is homogeneous of degree k, so the converse statement follows. �

To understand the connection between homogeneity and efficiency, consider the ex-
pression ∂

∂xp
i
F(x), which represents the impact of an agent who chooses strategy i on

aggregate payoffs. Recalling Example 3.1.6, we split this impact into two terms. The

first term,
∑

q
∑

j xq
j

∂Fq
j

∂xp
i
(x), represents the impact of this agent’s behavior on his opponents’

payoffs. The second term, Fp
i (x), represents the agent’s own payoffs. In homogeneous

potential games, these two effects are precisely balanced: the payoff an agent receives
from choosing a strategy is directly proportional to the social impact of his choice. For
this reason, self-interested behavior leads to desirable social outcomes.

Observe that if a potential game is homogeneous of degree less than −1, its full po-
tential function is negatively proportional to aggregate payoffs. In this case, self-interested
behavior leads to undesirable social outcomes. To remove this case from consideration,
we call a potential game positively homogeneous if its full potential function is homogeneous
of strictly positive degree, so that the game itself is homogeneous of degree k > −1.

With this definition in hand, we can present a result on the efficiency of Nash equilibria.
We call the social state x locally efficient in game F (x ∈ LE(F)) if there exists an ε > 0 such
that F(x) ≥ F(y) for all y ∈ X within ε of x. If this inequality holds for all y ∈ X, we call x
globally efficient (x ∈ GE(F)).

Corollary 3.1.19.

(i) If the full potential game F is positively homogeneous, then LE(F) ⊆ NE(F).
(ii) If in addition its full potential function f is concave, then GE(F) = LE(F) = NE(F).
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Exercise 3.1.20. Establish these claims.

Exercise 3.1.21. Let F be a congestion game with nondecreasing affine cost functions:
cφ(u) = aφu + bφ. Suppose that within each population, the fixed cost of each route is
equal: ∑

φ∈Φ
p
i

bφ = bp for all i ∈ Sp and p ∈ P .

Show that NE(F) = GE(F).

3.1.7 Inefficiency Bounds for Congestion Games

The results from the previous section provide stringent conditions under which Nash
equilibria of congestion games are efficient. Since exact efficiency rarely obtains, it is
natural to ask just how inefficient equilibrium behavior can be. We address this question
in the context of congestion games with nondecreasing cost functions—in other words,
congestion games in which congestion is a bad.

It will be convenient to use notation tailored to the questions at hand. Given the
facilities φ and the nondecreasing cost functions cφ, we let

Cp
i (x) = −Fp

i (x) =
∑
φ∈Φ

p
i

cφ(uφ(x))

denote the cost of strategy i ∈ Sp at state x and let

C(x) = −F(x) =
∑
p∈P

∑
i∈Sp

xp
i Cp

i (x) =
∑
φ∈Φ

uφ(x)cφ(uφ(x))

denote social cost at state x. We refer to the resulting congestion game either as C or as (C,m)
(to emphasize the population masses m). When we introduce alternative cost functions
γφ, we replace C with Γ in the notation above.

One approach to bounding the inefficiency of equilibria is to compare the equilibrium
social cost to the minimal social cost in a game with additional agents.

Proposition 3.1.22. Let C be a congestion game with nondecreasing cost functions. Let x∗ be a
Nash equilibrium of (C,m), and let y be a feasible state in (C, 2m). Then C(x∗) ≤ C(y).

Exercise 3.1.23. This exercise outlines a proof of Proposition 3.1.22.
(i) Define the cost functions γφ by γφ(u) = max{cφ(uφ(x∗)), cφ(u)}. Show that u(γφ(u) −

cφ(u)) ≤ cφ(uφ(x∗)) uφ(x∗).

51



(ii) Show that Γ
p
i (y) ≥ min j∈Sp Cp

j (x
∗).

(iii) Use parts (i) and (ii) to show that Γ(y) − C(y) ≤ C(x∗) and that Γ(y) ≥ 2C(x∗), and
conclude that C(x∗) ≤ C(y).

Exercise 3.1.24. This exercise applies Proposition 3.1.22 to settings with fixed population
masses but varying cost functions.

(i) Show that the equilibrium social cost under cost functions c̃φ(u) = 1
2cφ(u

2 ) is bounded
above by the minimal social cost under cost functions cφ.

(ii) Let C be a congestion game with cost functions cφ(u) = (kφ−u)−1 for some capacities
kφ > 0. (We assume that population masses are small enough that no edge can
reach its capacity.) Using part (i), show that the equilibrium social cost when
capacities are 2k is bounded above by the minimal social cost when capacities are k.
In other words, doubling the capacities of the edges reduces costs at least as much
as enforcing efficient behavior under the original capacities.

A more direct way of understanding inefficiency is to bound a game’s inefficiency ratio:
the ratio between the game’s equilibrium social cost and its minimal feasible social cost.

Example 3.1.25. A highway network consisting of two parallel links is to be traversed by
a unit mass of drivers. The links’ cost functions are c1(u) = 1 and c2(u) = u. In the unique
Nash equilibrium of this game, all drivers travel on route 2, creating a social cost of 1. The
efficient state, which minimizes C(x) = x1 + (x2)2, is xmin = ( 1

2 ,
1
2 ); it generates a social cost

of C(xmin) = 3
4 . Thus, the inefficiency ratio in this game is 4

3 .

The next result describes an easily established upper bound on inefficiency ratios.

Proposition 3.1.26. Suppose that the cost functions cφ are nondecreasing and satisfy ucφ(u) ≤
α
∫ u

0
cφ(z) dz for all u ≥ 0. If x∗ ∈ NE(C) and x ∈ X, then C(x∗) ≤ αC(x).

Exercise 3.1.27. (i) Prove Proposition 3.1.26. (Hint: Use a potential function argu-
ment.)

(ii) Show that if cost functions in C are polynomials of degree at most k with nonnega-
tive coefficients, then the inefficiency ratio in C is at most k + 1.

Exercise 3.1.27 tells us that the inefficiency ratio of a congestion game with affine cost
functions cannot exceed 2. Is it possible to establish a smaller upper bound? We saw in
Example 3.1.25 that inefficiency ratios as high as 4

3 can arise in very simple games with
nonnegative affine cost functions. Amazingly, 4

3 is the highest possible inefficiency ratio
for congestion games with cost functions of this form.
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Theorem 3.1.28. Let C be a congestion game whose cost functions cφ are nonnegative, non-
decreasing, and affine: cφ(u) = aφu + bφ with aφ, bφ ≥ 0. If x∗ ∈ NE(C) and x ∈ X, then
C(x∗) ≤ 4

3C(x).

Proof. Fix x∗ ∈ NE(C) and x ∈ X, and write v∗φ = uφ(x∗) and vφ = uφ(x). Let ΦL = {φ ∈

Φ : vφ < v∗φ} be the set of facilities that are underutilized at x relative to x∗.
Every r ∈ R satisfies (1 − r)r ≤ 1

4 . Multiplying both sides of this inequality by bφ (v∗φ)2

and setting r = vφ/v∗φ yields

(3.8) bφ (v∗φ − vφ) · vφ ≤ 1
4 bφ (v∗φ)2 whenever φ ∈ ΦL.

Thus, since x∗ is a Nash equilibrium, and by our assumptions on cφ, we have that

C(x∗) =
∑
φ∈Φ

cφ(v∗φ) v∗φ

≤

∑
φ∈Φ

cφ(v∗φ) vφ

=
∑
φ∈Φ

cφ(vφ) vφ +
∑
φ∈Φ

(
cφ(v∗φ) − cφ(vφ)

)
vφ

≤ C(x) +
∑
φ∈ΦL

bφ (v∗φ − vφ) · vφ

≤ C(x) + 1
4

∑
φ∈ΦL

bφ (v∗φ)2

≤ C(x) + 1
4

∑
φ∈ΦL

v∗φ · cφ(v∗φ)

= C(x) + 1
4C(x∗).

Rearranging yields C(x∗) ≤ 4
3C(x). �

That the highest inefficiency ratio for a given class of cost functions can be realized
in a very simple network is true quite generally. Consider a two-link network with link
cost functions c1(u) = 1 and c2(u) = uk, where k ≥ 1. With a unit mass population, the
Nash equilibrium for this network is x∗ = (0, 1), and has social cost C(x∗) = 1; the efficient
state is xmin = (1 − (k + 1)−1/k, (k + 1)−1/k), and has social cost C(xmin) = 1 − k(k + 1)−(k+1)/k.
Remarkably, it is possible to show that the resulting inefficiency ratio of (1−k(k+1)−(k+1)/k)−1

is the highest possible in any network whose cost functions are polynomials of degree at
most k. See the Notes for further details.

A minor modification of the proof of Theorem 3.1.28 allows us to improve the bound
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presented in Proposition 3.1.22. The earlier result showed that equilibrium social cost in a
congestion game cannot exceed the efficient level of social cost in the game with identical
cost functions but with population sizes that are twice as large. Corollary 3.1.29 shows
that in the affine case, this multiplicative factor can be reduced from 2 to 5

4 .

Corollary 3.1.29. Let C be a congestion game whose cost functions cφ are nonnegative, nonde-
creasing, and affine. Let x∗ be a Nash equilibrium of (C,m), and let y be a feasible state in (C, 5

4m).
Then C(x∗) ≤ C(y).

Exercise 3.1.30. Prove Corollary 3.1.29. (Hint: The proof of Theorem 3.1.28 establishes that∑
φ∈Φ cφ(uφ(x∗)) uφ(y) ≤ C(y) + 1

4C(x∗) for any y ∈ Rn
+. Combine this inequality with the fact

that x∗ is a Nash equilibrium of (C,m).)

While our treatment of inefficiency bounds has focused on congestion games with
affine and polynomial cost functions, it is possible to establish such bounds while placing
much less structure on the costs. In fact, one can generalize the arguments presented
above to obtain inefficiency bounds for general population games. See the Notes for
references to the relevant literature.

3.2 Potential Games

To define full potential games, we first defined full population games by extending the
domain of payoffs from the state space X to the positive orthant Rn

+. While this device for
introducing potential functions is simple, it is often artifical. By using ideas from affine
calculus (Appendix 3.B), we can define potential functions for population games without
recourse to changes in domain.

3.2.1 Motivating Examples

We can motivate the developments to come not only by parsimony, but also by gener-
ality, as the following two examples show.

Example 3.2.1. Random matching in symmetric normal form potential games. Recall that the
symmetric normal form game C ∈ Rn×n is a common interest game if C is a symmetric
matrix, so that both players always receive the same payoff. We call the symmetric normal
form game A ∈ Rn×n a potential game if A = C + 1r′ for some common interest game C and
some arbitrary vector r ∈ Rn. Thus, each player’s payoff is the sum of a common interest
term and a term that only depends on his opponent’s choice of strategy. (For the latter
point, note that Ai j = Ci j + r j.)
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Suppose a population of agents is randomly matched to play game A. Since the second
payoff term has no effect on agents’ incentives, it is natural to expect our characterization
of equilibrium from the previous section to carry over to the current setting. But this does
not follow directly from our previous definitions. Suppose we define the full population
game F : Rn

+ → Rn as in Example 3.1.2: F(x) = Ax. Then the resulting derivative matrix is
DF(x) = A = C + 1r′, and so

∂Fi

∂x j
(x) = Ci j + r j, but

∂F j

∂xi
(x) = C ji + ri.

Therefore, unless r is a constant vector (in which case A itself is symmetric), the full
population game F defined above is not a full potential game. §

Example 3.2.2. Two-strategy games. Recall that the population game F : X → Rn is a
two-strategy game if p = 1 and n = 2. In this setting, the state space X is the simplex
in R2, which can be viewed as a relabelling of the unit interval. Because all functions
defined on the unit interval are integrable, it seems natural to expect two-strategy games
to admit potential functions. If we wanted to show that F defines a full potential game,
we would first need to extend its domain to R2

+. Once we do this, the domain is no longer
one-dimensional, so our intuition about the existence of a potential function is lost. §

3.2.2 Definition, Characterizations, and Examples

Example 3.2.2 suggests that the source of our difficulties is the extension of payoffs
from the original state space X to the full-dimensional set Rn

+. As the definition of full
potential games relied on this extension, our new notion of potential games will require
some additional ideas. The key concepts are the tangent spaces and orthogonal projections
introduced in Chapter 2, which we briefly review here.

Recall that the state space for population p is given by Xp = {xp
∈ Rnp

+ :
∑

i∈Sp xp
i = mp

}.
The tangent space of Xp, denoted TXp, is the smallest subspace of Rnp that contains all
directions of motion through Xp; it is defined by TXp = Rnp

0 ≡ {z
p
∈ Rnp :

∑
i∈Sp zp

i = 0}.
The matrix Φ ∈ Rnp

×np , representing the orthogonal projection of Rnp onto TXp, is defined
by Φ = I − 1

np 11′. If πp
∈ Rnp is a payoff vector, then the projected payoff vector Φπp

represents relative payoffs under πp: it preserves the differences between components of
πp while normalizing their sum to zero. Changes in the social state x ∈ X =

∏
p∈P Xp

are represented by elements of TX =
∏

p∈P TXp, the tangent space of X. The matrix
Φ ∈ Rn×n, representing the orthogonal projection of Rn onto TX, is the block diagonal
matrix diag(Φ, . . . ,Φ). If π = (π1, . . . , πp) ∈ Rn is a payoff vector for the society, then
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Φπ = (Φπ1, . . . ,Φπp) normalizes each of the p pieces of the vector π separately.
With these preliminaries in hand, we are ready for our new definition.

Definition. Let F : X → Rn be a population game. We call F a potential game if it admits a
potential function: a C1 function f : X→ R that satisfies

(3.9) ∇ f (x) =ΦF(x) for all x ∈ X.

Since the potential function f has domain X, the gradient vector ∇ f (x) is by definition an
element of the tangent space TX (see Appendix 3.B.3). Our definition of potential games
requires that this gradient vector always equalΦF(x), the projection of the payoff vector
F(x) onto the subspace TX.

At the cost of sacrificing parsimony, one can define potential games without affine
calculus by using a function defined throughout Rn

+ to play the role of the potential
function f . To do so, one simply includes the projectionΦ on both sides of the analogue
of equation (3.9).

Observation 3.2.3. If F is a potential game with potential function f : X → R, then any C1

extension f̃ : Rn
+ → R of f satisfies

(3.10) Φ∇ f̃ (x) =ΦF(x) for all x ∈ X.

Conversely, if the population game F admits a function f̃ satisfying condition (3.10), then F is a
potential game, and the restriction f = f̃

∣∣∣
X

is a potential function for F.

This observation is immediate from the relevant definitions. In particular, if f̃ and f
agree on X, then for all x ∈ X the gradient vectors ∇ f̃ (x) and ∇ f (x) define identical
linear operators on TX, implying that Φ∇ f̃ (x) = Φ∇ f (x). But since Φ∇ f (x) = ∇ f (x) by
definition, it follows thatΦ∇ f̃ (x) = ∇ f (x); this equality and definition (3.9) yield the result.

Like full potential games, potential games can be characterized by a symmetry con-
dition on the payoff derivatives DF(x). Since potential games generalize full potential
games, the new symmetry condition is less restrictive than the old one.

Theorem 3.2.4. Suppose the population game F : X → Rn is C1. Then F is a potential game if
and only if it satisfies externality symmetry:

(3.11) DF(x) is symmetric with respect to TX × TX for all x ∈ X.

Proof. Immediate from Theorem 3.B.8 in Appendix 3.B. �
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Condition (3.11) demands that at each state x ∈ X, the derivative DF(x) define a
symmetric bilinear form on TX × TX:

z′DF(x)ẑ = ẑ′DF(x)z for all z, ẑ ∈ TX and x ∈ X.

Observation 3.2.5 offers a version of this condition that does not require affine calculus,
just as Observation 3.2.3 did for definition (3.9).

Observation 3.2.5. Suppose that the population game F : X→ Rn is C1, and let F̃ : Rn
+ → Rn be

any C1 extension of F. Then F satisfies externality symmetry (and so is a potential game) if and
only if

ΦDF̃(x)Φ is symmetric for all x ∈ X.

The next exercise characterizes externality symmetry in a more intuitive way.

Exercise 3.2.6. Show that externality symmetry (3.11) holds if and only if the previous
equality holds whenever z = ep

j − ep
i and ẑ = eq

l − eq
k. In other words, show that (3.11) is

equivalent to

(3.12)
∂(Fp

j − Fp
i )

∂(eq
l − eq

k)
(x) =

∂(Fq
l − Fq

k)

∂(ep
j − ep

i )
(x) for all i, j ∈ Sp, k, l ∈ Sq, p, q ∈ P , and x ∈ X.

The left hand side of equation (3.12) captures the change in the payoff to strategy j ∈ Sp

relative to strategy i ∈ Sp as agents switch from strategy k ∈ Sq to strategy l ∈ Sq. This
effect must equal the change in the payoff of l relative to k as agents switch from i to j, as
expressed on the right hand side of (3.12). This description is akin to that of full externality
symmetry (3.2) (see the discussion after equation (3.3)), but it only refers to relative payoffs
and to feasible changes in the social state.

Exercise 3.2.7. Let F be a C1 single population game. Show that F is a potential game if
and only if it satisfies triangular integrability:

∂Fi

∂(e j − ek)
(x) +

∂F j

∂(ek − ei)
(x) +

∂Fk

∂(ei − e j)
(x) = 0 for all i, j, k ∈ S and x ∈ X.

We now return to the examples that led off the section.

Example 3.2.8. Two-strategy games revisited. If F : X → R2 is a smooth two-strategy game,
its state space X is the simplex in R2, whose tangent space TX is spanned by the vector
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d = e1 − e2. If z and ẑ are vectors in TX, then z = kd and ẑ = k̂d for some real numbers k
and k̂; thus, however F is defined, we have that z′DF(x)ẑ = kk̂d′DF(x)d = ẑ′DF(x)z for all
x ∈ X. In other words, F is a potential game. Even if F is merely continuous, the function
f : X→ R defined by

(3.13) f (x1, 1 − x1) =

∫ x1

0
(F1(t, 1 − t) − F2(t, 1 − t)) dt

is a potential function for F, so F is still a potential game. (If you think that a 1
2 is needed

on the right hand side of equation (3.13), convince yourself that it is not.) §

Exercise 3.2.9. Random matching in symmetric normal form potential games. Let A = C + 1r′ be
a symmetric normal form potential game: C ∈ Rn×n is symmetric, and r ∈ Rn is arbitrary.
Define the population game F : X→ Rn by F(x) = Ax. Use one of the derivative conditions
above to verify that F is a potential game, and find a potential function f : X→ R for F.

Exercise 3.2.10. Random matching in normal form potential games. The normal form game
U = (U1, . . . ,Up) is a potential game if there is a potential function V : S→ R such that

Up(ŝp, s−p) −Up(s) = V(ŝp, s−p) − V(s) for all s ∈ S, ŝp
∈ Sp, and p ∈ P .

That is, after any unilateral deviation, the change in the deviator’s payoffs is equal to the
change in potential. It is easy to see that pure strategy profile s ∈ S is a Nash equilibrium
of U if and only if it is a local maximizer of the potential function V.

(i) Show that U is a potential game with potential function V if and only if there are
auxiliary functions Wp : S−p

→ R such that

Up(s) = V(s) + Wp(s−p) for all s ∈ S and p ∈ P .

In words: each player’s payoff function is the sum of a of a common payoff term
given by the value of potential, and a term that only depends on opponents’
behavior. This characterization accords with the definition of symmetric normal
form potential games from the previous exercise.

(ii) Define the full population game F̃ : Rn
+ → Rn by

F̃p
sp(x) =

∑
s−p∈S−p

Up(s)
∏
r,p

xr
sr =

∑
s−p∈S−p

(
V(s) + Wp(s−p)

)∏
r,p

xr
sr .

Show that F̃ is not a full potential game.
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(iii) Define the population game F : X → Rn using the equation from part (ii). By
verifying condition (3.11), show that F is a potential game.

(iv) Construct a potential function for F.

Exercise 3.2.11. This exercise provides the converse to Exercise 3.2.10(iii).
Let the population game F : X → Rn be generated by random matching in a p player

normal form game U. Show that if F is potential game with potential function f : X→ R,
then U is a potential game with potential function V(s) = f (ξ(s)), where ξ(s) ∈ X is the
pure population state with ξ(s)p

sp = 1 for all p ∈ P . (Hint: To evaluate f (ξ(ŝp, s−p))− f (ξ(s)),
use the Fundamental Theorem of Calculus, along with the fact that Fp(x) is independent
of xp.)

3.2.3 Potential Games and Full Potential Games

What is the relationship between full potential games and potential games? In the
former case, condition (3.1) requires that payoffs be completely determined by the potential
function, which is defined on Rn

+; in the latter, condition (3.9) asks only that relative payoffs
be determined by the potential function, now defined just on X.

To understand the relationship between the two definitions, take a potential game
F : X → Rn with potential function f : X → R as given, and extend f to a full potential
function f̃ : Rn

+ → R. Theorem 3.2.12 shows that the link between the full potential game
F̃ ≡ ∇ f̃ and the original game F depends on how the extension f̃ is chosen.

Theorem 3.2.12. Let F : X → Rn be a potential game with potential function f : X → R.
Let f̃ : Rn

+ → R be any C1 extension of f , and define the full potential game F̃ : Rn
+ → Rn by

F̃(x) = ∇ f̃ (x). Then
(i) The population games F and F̃

∣∣∣
X

have the same relative payoffs: ΦF(x) = ΦF̃(x) for all
x ∈ X.

(ii) One can choose the extension f̃ in such a way that F and F̃
∣∣∣
X

are identical.

Part (i) of the theorem shows that the full potential game F̃ generated from an arbitrary
extension of the potential function f exhibits the same relative payoffs as F on their
common domain X. It follows that F and F̃ have the same best response correspondences
and Nash equilibria, but may exhibit different average payoff levels. Part (ii) of the
theorem shows that by choosing the extension f̃ appropriately, we can make F̃ and F
identical on X. To accomplish this, we construct the extension f̃ in such a way (equation
(3.14) below) that its derivatives at states in X evaluated in directions orthogonal to TX
encode information about average payoffs from the original game F.
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In conclusion, Theorem 3.2.12(ii) demonstrates that if population masses are fixed, so
that the relevant set of social states is X, then definition (3.1), while more difficult to check,
does not entail a loss of generality relative to definition (3.9).

Proof of Theorem 3.2.12: Part (i) follows from the fact that ΦF̃(x) = Φ∇ f̃ (x) = ∇ f (x) =

ΦF(x) for all x ∈ X; compare the discussion following Observation 3.2.3.
To prove part (ii), we first extend f and F from the state space X to its affine hull

aff(X). Let f̂ : aff(X) → R be a C1 extension of f : X → R, and let ĝp : aff(X) → R be
a continuous extension of population p’s average payoff function, 1

np 1′Fp : X → R. (The
existence of these extensions follows from the Whitney Extension Theorem.) Then define
Ĝ : aff(X)→ Rn by Ĝp(x) = 1ĝp(x), so that F(x) =ΦF(x) + (I −Φ)F(x) = ∇ f̂ (x) + Ĝ(x) for all
x ∈ X. If after this we define F̂ : aff(X)→ Rn by F̂(x) = ∇ f̂ (x) + Ĝ(x), then F̂ is a continuous
extension of F, and ∇ f̂ (x) =ΦF̂(x) for all x ∈ aff(X).

With this groundwork complete, we can extend f to all of Rn
+ via

(3.14) f̃ (y) = f (ξ(y)) + (y − ξ(y))′F(ξ(y)),

where ξ(y) = Φy + z⊥TX is the closest point to y in aff(X). (Here, z⊥TX is the orthogonal
translation vector that sends TX to aff(X): namely, (z⊥TX)p = mp

np 1.) Theorem 3.B.10 shows
that ∇ f̃

∣∣∣
X

= F̃
∣∣∣
X

is identical to F. �

Theorem 3.2.12 implies that all of our results from Sections 3.1.4 and 3.1.5 on Nash
equilibria of full potential games apply unchanged to potential games. On the other hand,
the efficiency results from Section 3.1.6 do not. In particular, the proof of Theorem 3.1.18
depends on the game F being a full population game, as the application of Euler’s Theorem
makes explicit use of the partial derivatives of F. In fact, to establish that a potential game
F has efficiency properties of the sorts described in Section 3.1.6, one must show that F
can be extended to a homogeneous full potential game. This should come as no surprise:
since the potential function f : X→ R only captures relative payoffs, it cannot be used to
prove efficiency results, which depend on both relative and average payoffs.

Exercise 3.2.13. Consider population games with entry and exit (Exercise 3.1.14). Which
derivative condition is the right one for defining potential games in this context, (3.2) or
(3.11)? Why?

Exercise 3.2.14. Prove this simple “converse” to Theorem 3.2.12: Suppose F̃ : Rn
+ → Rn is

a full potential game with full potential function f̃ : Rn
+ → R. Let F = F̃

∣∣∣
X

and f = f̃
∣∣∣
X

.
Then F is a potential game with potential function f .
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3.2.4 Passive Games and Constant Games

We conclude this section by introducing two simple classes of population games.

Definition. The population game H : X→ Rn is a passive game if for each state x ∈ X and each
population p ∈ P , the payoffs to all of population p’s strategies are equal:

Hp
i (x) = Hp

j (x) for all i, j ∈ Sp, p ∈ P , and x ∈ X.

Definition. The population game K : X → Rn is a constant game if all strategies’ payoffs are
independent of the state: that is, if K(x) = π for all x ∈ X, or, more explicitly, if

Kp
i (x) = πp

i for all i ∈ Sp, p ∈ P , and x ∈ X.

In a passive game, an agent’s own behavior has no bearing on his payoffs; in a constant
game, each agent’s behavior is the sole determinant of his payoffs.

The following two propositions provide some alternate characterizations of these
games.

Proposition 3.2.15. The following statements are equivalent:

(i) H is a passive game.
(ii) There are functions cp : X→ R such that Hp(x) = cp(x)1 for all p ∈ P and x ∈ X.
(iii) H(x) ∈ (TX)⊥ for all x ∈ X.
(iv) ΦH(x) = 0 for all x ∈ X.
(v) z′H(x) = 0 for all z ∈ TX and x ∈ X.
(vi) H is a potential game whose potential function is constant.

Proposition 3.2.16. The following statements are equivalent:

(i) K is a constant game.
(ii) DK(x) = 0 for all x ∈ X.
(iii) K is a potential game that admits a linear potential function.

In particular, if K(x) = π is a constant game, then k(x) = π′x is a potential function for K.

One reason that passive and constant games are interesting is that adding them to a
population game from a certain class (the potential games, the stable games, the super-
modular games) results in a new game from the same class. For instance, suppose that F is
a potential game with potential function f , let H be a passive game, and let K be a constant
game with potential function k. Evidently, F + H is also a potential game with potential
function f ; thus, adding H to F leaves the Nash equilibria of F unchanged. F + K is also
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a potential game, but its potential function is not f , but f + k; thus, NE(F) and NE(F + K)
generally differ. Similar observations are true for stable games and for supermodular
games: adding a passive game or a constant game to a game from either of these classes
keeps us in the class, but only adding passive games leaves incentives unchanged.

When payoffs are smooth, the invariances just described can be represented in terms
of payoff derivatives. As an illustration, recall that the C1 population game F : X→ Rn is
a potential game if and only if it satisfies externality symmetry:

(3.11) DF(x) is symmetric with respect to TX × TX for all x ∈ X.

The first TX tells us that condition (3.11) constrains the effects of left multiplication of
DF(x) by elements of TX; this restricts the purview of (3.11) to changes in relative payoffs.
The second TX tells us that (3.11) constrains the effects of right multiplication of DF(x) by
elements of TX; this reflects that we can only evaluate how payoffs change in response
to feasible changes in the state. In summary, the action of the derivative matrices DF(x) on
TX×TX captures changes in relative payoffs due to feasible changes in the state. We have
seen that this action is enough to characterize potential games, and we will soon find that
it is enough to characterize stable and supermodular games as well.

It follows from this discussion that the additions to F that do not affect the action of its
derivative matrices on TX × TX are the ones that do not alter F’s class. These additions
are characterized by the following proposition.

Proposition 3.2.17. Let G be a C1 population game. Then DG(x) is the null bilinear form on
TX × TX for all x ∈ X if and only if G = H + K, where H is a passive game and K is a constant
game.

Exercise 3.2.18. Prove Propositions 3.2.15, 3.2.16, and 3.2.17. (Hints: For Proposition 3.2.16,
prove the equivalence of (i) and (iii) using the Fundamental Theorem of Calculus. For
3.2.17, use the previous propositions, along with the fact that DG(x) is the null bilinear
form on TX × TX if and only ifΦDG(x) = 0.)

Exercise 3.2.19.
(i) Suppose H(x) = Ax is a single population passive game. Describe A.
(ii) Suppose K(x) = Ax is a single population constant game. Describe A.

3.3 Stable Games

There are a variety of well-known classes of games whose Nash equilibria lie in a
single convex component: for instance, two player zero-sum games, wars of attrition,
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games with an interior ESS or NSS, and potential games with concave potential functions.
This shared property of these seemingly disparate examples springs from a common
source: all of these examples are stable games.

3.3.1 Definition

The common structure in the examples above is captured by the following definition.

Definition. The population game F : X→ Rn is a stable game if

(3.15) (y − x)′(F(y) − F(x)) ≤ 0 for all x, y ∈ X.

If the inequality in condition (3.15) holds strictly whenever x , y, we call F a strictly stable
game, while if this inequality always binds, we call F a null stable game.

For a first intuition, imagine for the moment that F ≡ ∇ f (x) is also a full potential
game. In this case, condition (3.15) is simply the requirement that the potential function f
be concave. Our definition of stable games thus extends the defining property of concave
potential games to games whose payoffs are not integrable.

Stable games whose payoffs are differentiable can be characterized in terms of the
action of their derivative matrices DF(x) on TX × TX.

Theorem 3.3.1. Suppose the population game F is C1. Then F is a stable game if and only if it
satisfies self-defeating externalities:

(3.16) DF(x) is negative semidefinite with respect to TX for all x ∈ X.

Before proving Theorem 3.3.1, let us provide some intuition for condition (3.16). This
condition asks that

z′DF(x)z ≤ 0 for all z ∈ TX and x ∈ X.

This requirement is in turn equivalent to

∑
p∈P

∑
i∈Sp

zp
i

∂Fp
i

∂z
(x) ≤ 0 for all z ∈ TX and all x ∈ X.

To interpret this expression, recall that the displacement vector z ∈ TX describes the
aggregate effect on the population state of strategy revisions by a small group of agents.

The derivative
∂Fp

i
∂z (x) represents the marginal effect that these revisions have on the payoffs
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of agents currently choosing strategy i ∈ Sp. Condition (3.16) considers a weighted sum of
these effects, with weights given by the changes in the use of each strategy, and requires
that this weighted sum be negative.

Intuitively, a game exhibits self-defeating externalities if the improvements in the
payoffs of strategies to which revising agents are switching are always exceeded by the
improvements in the payoffs of strategies which revising agents are abandoning. For
example, suppose the tangent vector z takes the form z = ep

j − ep
i , representing switches by

some members of population p from strategy i to strategy j. In this case, the requirement in

condition (3.16) reduces to
∂Fp

j

∂z (x) ≤
∂Fp

i
∂z (x): that is, any performance gains that the switches

create for the newly chosen strategy j are dominated by the performance gains created for
the abandoned strategy i.

Exercise 3.3.2. (i) Characterize the C1 two-strategy stable games using a derivative
condition.

(ii) Recall the Hawk-Dove game introduced in Chapter 2:

FHD(x) =

−1 2
0 1

 xH

xD

 =

2xD − xH

xD

 .
Verify that F is a stable game. Also, fill in the numerical details of the argument
from the previous paragraph for this specific choice of payoff function.

Proof of Theorem 3.3.1: To begin, suppose that F is a stable game. Fix x ∈ X and z ∈ TX;
we want to show that z′DF(x)z ≤ 0. Since F is C1, it is enough to consider x in the interior
of X. In this case, yε = x + εz lies in X whenever |ε| is sufficiently small, and so

F(yε) = F(x) + DF(x)(yε − x) + o(
∣∣∣yε − x

∣∣∣).
by the definition of DF(x). Premultiplying by yε − x and rearranging yields

(yε − x)′(F(yε) − F(x)) = (yε − x)′DF(x)(yε − x) + o(
∣∣∣yε − x

∣∣∣2).

Since the left hand side is nonpositive and since yε − x = εz, it follows that ε2z′DF(x)z +

o(ε2) ≤ 0, and hence that z′DF(x)z ≤ 0.
Next, suppose that condition (3.16) holds. Then if we let α(t) = ty + (1 − t)x, the
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Fundamental Theorem of Calculus implies that

(y − x)′(F(y) − F(x)) = (y − x)′
(∫ 1

0
DF(α(t))(y − x) dt

)
=

∫ 1

0
(y − x)′DF(α(t))(y − x) dt ≤ 0. �

Exercise 3.3.3. The derivative condition that characterizes potential games, externality
symmetry (3.11), requires that z′DF(x)ẑ = ẑ′DF(x)z. That z and ẑ are chosen separately
means that DF(x) is treated as a bilinear form. Exercise 3.2.6 shows that in order to check
that (3.11) holds for all z and ẑ in TX, it is enough to show that it holds for all z and ẑ in a
basis for TX—for example, the set of vectors of the form ep

j − ep
i .

In contrast, self-defeating externalities (3.16), which requires that z′DF(x)z ≤ 0, places
the same vector z on both sides of DF(x), thus viewing DF(x) as a quadratic form. Explain
why the conclusion of Exercise 3.2.6 does not extend to the present setting. Also, construct
a 3 × 3 symmetric game A such that z′Az ≤ 0 whenever z is of the form ep

j − ep
i but such

that F(x) = Ax is not a stable game.

3.3.2 Examples

Example 3.3.4. Random matching in symmetric normal form games with an interior evolutionarily
or neutrally stable state. Let A be a symmetric normal form game. State x ∈ X is an
evolutionarily stable state (or an evolutionarily stable strategy, or simply an ESS) of A if

x′Ax ≥ y′Ax for all y ∈ X; and(3.17)

x′Ax = y′Ax implies that x′Ay > y′Ay.(3.18)

Condition (3.17) says that x is a symmetric Nash equilibrium of A. Condition (3.18) says
that x performs better against any alternative best reply y than y performs against itself.
(Alternatively, (3.17) says that no y ∈ X can strictly invade x, and (3.17) and (3.18) together
say that if y can weakly invade x, then x can strictly invade y—see Section 3.3.3 below.) If
we weaken condition (3.18) to

(3.19) If x′Ax = y′Ax, then x′Ay ≥ y′Ay,

then a state satisfying conditions (3.17) and (3.19) is called a neutrally stable state (NSS).
Suppose that the ESS x lies in the interior of X. Then as x is an interior Nash equilibrium,

all pure and mixed strategies are best responses to it: for all y ∈ X, we have that x′Ax =
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y′Ax, or, equivalently, that (x− y)′Ax = 0. Next, we can rewrite the inequality in condition
(3.18) as (x − y)′Ay > 0. Subtracting this last expression from the previous one yields
(x − y)′A(x − y) < 0. But since x is in the interior of X, all tangent vectors z ∈ TX are
proportional to x − y for some choice of y ∈ X. Therefore, z′DF(x)z = z′Az < 0 for all
z ∈ TX, and so F is a strictly stable game. Similar reasoning shows that if F admits an
interior NSS, then F is a stable game. §

Example 3.3.5. Random matching in Rock-Paper-Scissors. In Rock-Paper-Scissors, Paper cov-
ers Rock, Scissors cut Paper, and Rock smashes Scissors. If a win in a match is worth
w > 0, a loss −l < 0, and a draw 0, we obtain the symmetric normal form game

A =


0 −l w
w 0 −l
−l w 0

 , where w, l > 0.

When w = l, we refer to A as (standard) RPS; when w > l, we refer to A as good RPS, and
when w < l, we refer to A as bad RPS. In all cases, the unique symmetric Nash equilibrium
of A is (1

3 ,
1
3 ,

1
3 ).

To determine the parameter values for which this game generates a stable population
game, define d = w− l. Since y′Ay = 1

2 y′(A + A′)y, it is enough to see when the symmetric
matrix

Â = A + A′ =


0 d d
d 0 d
d d 0


is negative semidefinite with respect to TX. Now Â has one eigenvalue of 2d correspond-
ing to the eigenvector 1, and two eigenvalues of −d corresponding to the orthogonal
eigenspace TX. Thus, z′Âz = −dz′z for each z ∈ TX. Since z′z > 0 whenever z , 0, we
conclude that F is stable if and only if d ≥ 0. Thus, good RPS is strictly stable, standard
RPS is stable, and bad RPS is neither. §

Exercise 3.3.6. Random matching in wars of attrition. A war of attrition is a two player
symmetric normal form game. Strategies represent amounts of time committed to waiting
for a scarce resource. If the two players choose times i and j > i, then the j player obtains
the resource, worth v, while both players pay a cost of ci: once the first player leaves, the
other seizes the resource immediately. If both players choose time i, the resource is split,
so payoffs are v

2 − ci each. Show that for any resource value v ∈ R and any cost vector
c ∈ Rn satisfying c1 ≤ c2 ≤ . . . ≤ cn, random matching in a war of attrition generates a
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stable game. §

Example 3.3.7. Random matching in symmetric zero-sum games. A symmetric two player
normal form game A is symmetric zero-sum if A is skew-symmetric: that is, if A ji = −Ai j

for all i, j ∈ S. This condition ensures that under single population random matching, the
total utility generated in any match is zero. Since payoffs in the resulting single population
game are F(x) = Ax, we find that z′DF(x)z = z′Az = 0 for all vectors z ∈ Rn, and so F is a
null stable game. §

Example 3.3.8. Random matching in standard zero-sum games. A two player normal form
game U = (U1,U2) is zero-sum if U2 = −U1, so that the two players’ payoffs always add up
to zero. Random matching of two populations to play U generates the population game

F(x1, x2) =

 0 U1

(U2)′ 0

 x1

x2

 =

 0 U1

−(U1)′ 0

 x1

x2

 .
If z is a vector in Rn = Rn1+n2 , then

z′DF(x)z =
(
(z1)′ (z2)′

)  0 U1

−(U1)′ 0

 z1

z2

 = (z1)′U1z2
− (z2)′(U1)′z1 = 0,

so F is a null stable game. §

Exercise 3.3.9. Random matching in multi-zero-sum games. Let U be a p player normal form
game in which each player p ∈ P chooses a single strategy from Sp to simultaneously
play a distinct zero-sum contest with each of his p − 1 opponents. We call such a U a
multi-zero-sum game.

(i) When p < q, let Zpq
∈ Rnp

×nq denote player p’s payoff matrix for his zero-sum contest
against player q. Define the normal form game U in terms of the Zpq matrices.

(ii) Let F be the p population game generated by random matching in U. Show that
z′DF(x)z = 0 for all x ∈ X and z ∈ Rn, and hence that F is a null stable game.

The previous example and exercise show that random matching across multiple pop-
ulations can generate a null stable game. Proposition 3.3.10 reveals that null stable games
are the only stable games that can be generated in this way.

Proposition 3.3.10. Suppose F is a C1 stable game without own-population interactions: Fp(x) is
independent of xp for all p ∈ P . Then F is a null stable game.

Proof. By Theorem 3.3.1, F is stable if and only if for all x ∈ X, DF(x) is negative
semidefinite with respect to TX. This requirement on DF(x) can be restated as (i)ΦDF(x)Φ
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is negative semidefinite (with respect to Rn); or as (ii) Φ(DF(x) + DF(x)′)Φ is negative
semidefinite, or (since the previous matrix is symmetric) as (iii)Φ(DF(x) + DF(x)′)Φ has
all eigenvalues nonpositive. By similar logic, F is null stable if and only if for all x ∈ X,
Φ(DF(x) + DF(x)′)Φ has all eigenvalues zero (and so is the null matrix).

Let DqFp(x) be the (p, q)th block of the derivative matrix DF(x). Since Fp is independent
of xp, it follows that DpFp(x) = 0, and hence that Φ(DpFp(x) + DpFp(x)′)Φ = 0. Since this
product is the (p, p)th block of the symmetric matrix Φ(DF(x) + DF(x)′)Φ, the latter has
zero trace, and so its eigenvalues sum to zero. Therefore, the only wayΦ(DF(x)+DF(x)′)Φ
can be negative semidefinite is if all of its eigenvalues are zero. In other words, if F is
stable, it is null stable. �

Proposition 3.3.10 tells us that within-population interactions are required to obtain a
strictly stable game. Thus, strictly stable games can arise when there is matching within a
single population to play a symmetric normal form game, but not when there is random
matching in multiple populations to play a standard normal form game.

On the other hand, strictly stable games can arise in multipopulation matching set-
tings that allow matches both across and within populations (see the Notes). Moreover,
in general population games—for instance, in congestion games—within-population in-
teractions are the norm, and strictly stable games are not uncommon. Our remaining
examples illustrate this point.

Example 3.3.11. (Perturbed) concave potential games. We call F : X → Rn a concave potential
game if it is a potential game whose potential function f : X → R is concave. Then since
y − x ∈ TX, since the orthogonal projection matrix Φ is symmetric, and since ∇ f ≡ ΦF,
we find that

(y − x)′(F(y) − F(x)) = (Φ(y − x))′(F(y) − F(x))

= (y − x)′(ΦF(y) −ΦF(x))

= (y − x)′(∇ f (y) − ∇ f (x))

≤ 0,

so F is a stable game. If the inequalities above are satisfied strictly, then they will continue
to be satisfied if the payoff functions are slightly perturbed. In other words, perturbations
of strictly concave potential games remain strictly stable games. §

Example 3.3.12. Negative dominant diagonal games. We call the full population game F a
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negative dominant diagonal game if it satisfies

∂Fp
i

∂xp
i

(x) ≤ 0 and

∣∣∣∣∣∣∂Fp
i

∂xp
i

(x)

∣∣∣∣∣∣ ≥ 1
2

∑
( j,q),(i,p)


∣∣∣∣∣∣∣∂Fq

j

∂xp
i

(x)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∂Fp
i

∂xq
j

(x)

∣∣∣∣∣∣∣


for all i ∈ Sp, p ∈ P , and x ∈ X. The first condition says that choosing strategy i ∈ Sp

imposes a negative externality on other users of this strategy. The second condition
requires that this externality exceeds the average of (i) the total externalities that strategy
i imposes on other strategies and (ii) the total externalities that other strategies impose on
strategy i. These conditions are precisely what is required for the matrix DF(x) + DF(x)′ to
have a negative dominant diagonal. The dominant diagonal condition implies that all of
the eigenvalues of DF(x) + DF(x)′ are negative; since DF(x) + DF(x)′ is also symmetric, it
is negative semidefinite. Therefore, DF(x) is negative semidefinite too, and so F is a stable
game. §

3.3.3 Invasion

In Section 3.3.4, we introduce new equilibrium concepts that are of basic importance
for stable games: global neutral stability and global evolutionary stability. These concepts
are best understood in terms of the notion of invasion to be presented now.

Let F : X→ Rn be a population game, and let x, y ∈ X be two social states. We say that
y can weakly invade x (y ∈ IF(x)) if (y−x)′F(x) ≥ 0. Similarly, y can strictly invade x (y ∈ IF(x))
if (y − x)′F(x) > 0.

The intuition behind these definitions is simple. Consider a single population of agents
who play the game F, and whose initial behavior is described by the state x ∈ X. Now
imagine that a very small group of agents decide to switch strategies. After these agents
select their new strategies, the distribution of choices within their group is described by
some y ∈ X, but since the group is so small the impact of its behavior on the overall
population state is negligible. Thus, the average payoff in the invading group is at
least as high as that in the incumbent population if y′F(x) ≥ x′F(x), or equivalently, if
y ∈ IF(x). Similarly, the average payoff in the invading group exceeds that in the incumbent
population if y ∈ IF(x).

The interpretation of invasion does not change much when there are multiple popu-
lations. If we write (y − x)′F(x) as

∑
p (yp
− xp)′Fp(x), we see that if y ∈ IF(x), there must be

some population p for which the small group switching to yp outperforms the incumbent
population playing xp at social state x.

These stories suggest a link with evolutionary dynamics. If y is any state in X, then
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Figure 3.3.1: Invasion in a two strategy game.

the vector y − x is a feasible displacement direction from state x. If in addition y ∈ IF(x),
then the direction y − x is not only feasible, but also respects the incentives provided by
the underlying game.

The invasion conditions also have simple geometric interpretations. That y ∈ IF(x)
means that the angle between the displacement vector y − x and the payoff vector F(x) is
weakly acute; if y ∈ IF(x), this angle is strictly acute. Figure 3.3.1 sketches the set IF(x) at
various states x in a two strategy game. Figure 3.3.2 does the same for a three-strategy
game. To draw the latter case, we need the observation that

y ∈ IF(x)⇔ (y − x)′F(x) > 0

⇔ (Φ(y − x))′F(x) > 0

⇔ (y − x)′ΦF(x) > 0.

In other words, y ∈ IF(x) if and only if the angle between the displacement vector y − x
and the projected payoff vectorΦF(x) is strictly acute.

3.3.4 Global Neutral Stability and Global Evolutionary Stability

Before introducing our new solution concepts, we first characterize Nash equilibrium
in terms of invasion: a Nash equilibrium is a state that no other state can strictly invade.

Proposition 3.3.13. x ∈ NE(F) if and only if IF(x) = ∅.
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Figure 3.3.2: Invasion in a three strategy game.

71



Proof. x ∈ NE(F)⇔ (y − x)′F(x) ≤ 0 for all y ∈ X⇔ IF(x) = ∅. �

With this background at hand, we call x ∈ X a globally neutrally stable state (GNSS) if

(y − x)′F(y) ≤ 0 for all y ∈ X.

Similarly, we call x a globally evolutionarily stable state (GESS) if

(y − x)′F(y) < 0 for all y ∈ X − {x}.

We let GNSS(F) and GESS(F) denote the sets of globally neutrally stable strategies and
globally evolutionarily stable strategies, respectively.

To see the reason for our nomenclature, note that the inequalities used to define GNSS
and GESS are the same ones used to define NSS and ESS in symmetric normal form
games (Example 3.3.4), but that they are now required to hold not just at those states
y that are optimal against x, but at all y ∈ X. NSS and ESS also require a state to be
a Nash equilibrium, but our new solution concepts implicitly require this as well—see
Proposition 3.3.15 below.

It is easy to describe both of these concepts in terms of the notion of invasion.

Observation 3.3.14. (i) GNSS(F) =
⋂

y∈X IF(y), and so is convex.
(ii) x ∈ GESS(F) if and only if x ∈

⋂
y∈X−{x} IF(y).

In words: a GNSS is a state that can weakly invade every state (or, equivalently, every
other state), while a GESS is a state that can strictly invade every other state.

Our new solution concepts can also be described in geometric terms. For example, x
is a GESS if a small motion from any state y , x in the direction F(y) (or ΦF(y)) moves
the state closer to x (see Figure 3.3.3). If we allow not only these acute motions, but also
orthogonal motions, we obtain the weaker notion of GNSS.

We conclude this section by relating our new solution concepts to Nash equilibrium.

Proposition 3.3.15. (i) If x ∈ GNSS(F), then x ∈ NE(F).
(ii) If x ∈ GESS(F), then NE(F) = {x}. Hence, if a GESS exists, it is unique.

Proof. To prove part (i), let x ∈ GNSS(F) and let y , x. Define xε = εy + (1 − ε)x.
Since x is a GNSS, (x − xε)′F(xε) ≥ 0 for all ε ∈ (0, 1]. Simplifying and dividing by ε yields
(x− y)′F(xε) ≥ 0 for all ε ∈ (0, 1], so taking ε to zero yields (y− x)′F(x) ≤ 0. In other words,
x ∈ NE(F).
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Figure 3.3.3: The geometric definition of GESS.
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Figure 3.3.4: Why every GNSS is a Nash equilibrium.
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To prove part (ii), it is enough to show that if x is a GESS, then no y , x is Nash. But if
x ∈ GESS(F), then x ∈ IF(y); since IF(y) is nonempty, y < NE(F). �

Evidently, this proposition implies that every GNSS is an NSS, and that every GESS is an
ESS.

The proof that every GNSS is Nash is easy to explain in pictures. In Figure 3.3.4, we
draw the GNSS x and an arbitrary state y, and place the state xε on the segment between
y and x. Since x is a GNSS, the angle between F(xε) and x− xε, and hence betweenΦF(xε)
and x − xε, is weakly acute. Taking ε to zero, it is apparent that the angle betweenΦF(x)
and y − x, and hence between y − x and ΦF(x), must be weakly obtuse. Since y was
arbitrary, x is a Nash equilibrium.

3.3.5 Nash Equilibrium and Global Neutral Stability in Stable Games

Proposition 3.3.15 tells us that every GNSS of an arbitrary game F is a Nash equilibrium.
Theorem 3.3.16 shows that much more can be said if F is stable: in these case, the sets
of globally neutrally stable states and Nash equilibria coincide. Together, this fact and
Observation 3.3.14 imply that the Nash equilibria of any stable game form a convex set.
In fact, if we can replace certain of the weak inequalities that define stable games with
strict ones, then the Nash equilibrium is actually unique.

Theorem 3.3.16. (i) If F is a stable game, then NE(F) = GNSS(F), and so is convex.
(ii) If in addition F is strictly stable at some x ∈ NE(F) (that is, if (y− x)′(F(y)− F(x)) < 0 for

all y , x), then NE(F) = GESS(F) = {x}.

Proof. Suppose that F is stable, and let x ∈ NE(F). To establish part (i), it is enough to
show that x ∈ GNSS(F). So fix an arbitrary y , x. Since F is stable,

(3.20) (y − x)′(F(y) − F(x)) ≤ 0.

And since x ∈ NE(F), (y − x)′F(x) ≤ 0. Adding these inequalities yields

(3.21) (y − x)′F(y) ≤ 0,

As y was arbitrary, x is a GNSS.
Turning to part (ii), suppose that F is strictly stable at x. Then inequality (3.20) holds

strictly, so inequality (3.21) holds strictly as well. This means that x is a GESS of F, and
hence the unique Nash equilibrium of F. �
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P S

Figure 3.3.5: The GESS of good RPS.

Example 3.3.17. Rock-Paper-Scissors revisited. Recall from Example 3.3.5 that good RPS is
a (strictly) stable game; standard RPS is a zero-sum game, and hence a (weakly) stable
game. The unique Nash equilibrium of both of games is x∗ = (1

3 ,
1
3 ,

1
3 ). In Figure 3.3.5, for

a selection of states x, we draw the projected payoff vectors ΦF(x) generated by good RPS
(with w = 3 and l = 1), as well as the vector from x to x∗. For each x, the angle between this
pair of vectors is acute, reflecting the fact that the Nash equilibrium x∗ is a GESS. In Figure
3.3.6, we perform the same exercise for standard RPS. In this case, the vectors ΦF(x) and
x∗ − x always form a right angle, so x∗ is a GNSS but not a GESS. §

Exercise 3.3.18. Let F be a stable game. Show that if x∗ is a Nash equilibrium of F such
that DF(x∗) is negative definite with respect to TX × TX, then x∗ is a GESS, and hence the
unique Nash equilibrium of F.

Exercise 3.3.19. Pseudostable games. We call the population game F pseudostable if for all x,
y ∈ X, (y − x)′F(x) ≤ 0 implies that (x − y)′F(y) ≥ 0. In other words, if y cannot strictly
invade x, then x can weakly invade y.

(i) Show that every stable game is pseudostable.
(ii) Show that if F is pseudostable, then NE(F) = GNSS(F), and so is convex.
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P S

Figure 3.3.6: The GNSS of standard RPS.

(A smooth real-valued function f is pseudoconcave if its gradient ∇ f is pseudostable.
Given facts (i) and (ii) above and the discussion in Section 3.1.5, it should be no surprise
that many results from concave programming (e.g., the convexity of the set of maximizers)
remain true when the objective function is only pseudoconcave.)

In addition to its role in establishing that the set of Nash equilibria of a stable game
is convex, the concept of global neutral stability enables us to carry out an important
theoretical exercise: that of devising an elementary proof of existence of Nash equilibrium
in stable games—in other words, one that does not rely on an appeal to a fixed point
theorem. The heart of the proof, Proposition 3.3.20, is a finite analogue of the result we
seek.

Proposition 3.3.20. Let F be a stable game, and let Y be a finite subset of X. Then there exists a
state x∗ ∈ conv(Y) such that (y − x∗)′F(y) ≤ 0 for all y ∈ Y.

In words: if F is a stable game, then given any finite set of states Y, we can always find
a state in the convex hull of Y that can weakly invade every element of Y. The proof of
this result uses the Minmax Theorem.

Proof. Suppose that Y has m elements. Define a two player zero-sum game U =
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(U1,U2) = (Z,−Z) with n1 = n2 = m as follows:

Zxy = (x − y)′F(y).

In this game, player 2 chooses a “status quo” state y ∈ Y, player 1 chooses an “invader”
x ∈ Y, and the payoff Zxy is the invader’s “relative payoff” in F. Split Z into its symmetric
and skew-symmetric parts:

ZS = 1
2 (Z + Z′) and ZSS = 1

2 (Z − Z′).

Since F is stable, equation (3.20) from the previous proof shows that

ZS
xy = 1

2

(
(x − y)′F(y) + (y − x)′F(x)

)
= 1

2 (x − y)′(F(y) − F(x)) ≥ 0

for all x, y ∈ Y.
The Minmax Theorem tells us that in any zero sum game, player 1 has a strategy that

guarantees him the value of the game. In the skew-symmetric game USS = (ZSS,−ZSS) =

(ZSS, (ZSS)′), the player roles are interchangeable, so the game’s value must be zero. Since
Z = ZSS + ZS and ZS

≥ 0, the value of U = (Z,−Z) must be at least zero. In other words, if
λ ∈ Rm is a maxmin strategy for player 1, then∑

x∈Y

∑
y∈Y

λxZxyµy ≥ 0

for all mixed strategies µ of player 2. If we let

x∗ =
∑
x∈Y

λxx ∈ conv(Y)

and fix an arbitrary pure strategy y ∈ Y for player 2, we find that

0 ≤
∑
x∈Y

λxZxy =
∑
x∈Y

λx(x − y)′F(y) = (x∗ − y)′F(y). �

With this result in hand, existence of Nash equilibrium in stable games follows from a
simple compactness argument. Theorem 3.3.16 and Observation 3.3.14 tell us that

NE(F) = GNSS(F) =
⋂
y∈X

{x ∈ X : (y − x)′F(y) ≤ 0}.

Proposition 3.3.20 shows that if we take the intersection above over an arbitrary finite set
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Y ⊂ X instead of over X itself, then the intersection is nonempty. Since X is compact, the
finite intersection property allows us to conclude that GNSS(F) is nonempty itself.

Exercise 3.3.21. In Exercise 3.1.14, we defined population games with entry and exit. If
F : Rn

+ → R is C1 and defines such a game, what condition on the derivative matrices
DF(x) is the appropriate definition of stable games for this context? Argue that all of the
results in this section continue to hold when entry and exit are permitted.

3.4 Supermodular Games

Of the classes of games we study in this chapter, supermodular games, a class that
includes models of coordination, search, and Bertrand competition, are the most famil-
iar to economists. By definition, supermodularity requires that higher choices by one’s
opponents make one’s own higher strategies look relatively more desirable. This com-
plementarity condition imposes a monotone structure on the agents’ best response corre-
spondences, which in turn imposes structure on the set of Nash equilibria.

3.4.1 Definition

Each strategy set Sp = {1, . . . ,np
} is naturally endowed with a linear order. To define

supermodular games, we introduce a corresponding partial order on the set of population
states Xp (and, implicitly, on the set of mixed strategies for population p). Define the matrix
Σ ∈ R(np

−1)×np by

Σ =


0 1 · · · 1
...
. . . . . .

...

0 · · · 0 1

 .
Then

(Σxp)i =

np∑
j=i+1

xp
j

equals the total mass on strategies greater than i at population state xp. If we view xp as
a discrete density function on Sp with total mass mp, then Σxp defines the corresponding
“decumulative distribution function” for xp. In particular, Σyp

≥ Σxp if and only if yp

stochastically dominates xp.
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We extend this partial order to all of X using the matrix Σ ∈ R(n−p)×n, which we define
as the block diagonal matrix Σ = diag(Σ, . . . ,Σ). Note that Σy ≥ Σx if and only if yp

stochastically dominates xp for all p ∈ P .
With these preliminaries in hand, we are ready to define our class of games.

Definition. We call the population game F : X → Rn a supermodular game if it exhibits
strategic complementarities:

(3.22) If Σy ≥ Σx, then Fp
i+1(y) − Fp

i (y) ≥ Fp
i+1(x) − Fp

i (x) for all i < np, p ∈ P , x ∈ X.

In words: if y stochastically dominates x, then for any strategy i < np, the payoff

advantage of i + 1 over i is greater at y than at x.
By introducing a bit more notation, we can express condition (3.22) in a more concise

way. Define the matrices Σ̃ ∈ Rnp
×(np
−1) and Σ̃ ∈ Rn×(n−p) by

Σ̃ =



−1 0 · · · 0

1 −1 . . .
...

0 1 . . . 0
...

. . . . . . −1

0 . . . 0 1


and Σ̃ = diag(Σ̃, . . . , Σ̃).

Observation 3.4.1. F is a supermodular game if and only if the following condition holds:

(3.23) Σy ≥ Σx implies that Σ̃′F(y) ≥ Σ̃′F(x).

As with potential games and stable games, we can characterize smooth supermodular
games in terms of conditions on the derivatives DF(x).

Theorem 3.4.2. Suppose the population game F is C1. Then F is supermodular if and only if either
of the following equivalent conditions holds.

∂(Fp
i+1 − Fp

i )

∂(eq
j+1 − eq

j)
(x) ≥ 0 for all i < np, j < nq, p, q ∈ P , and x ∈ X.(3.24)

Σ̃′DF(x)Σ̃ ≥ 0 for all x ∈ X.(3.25)

Condition (3.24) is the most transparent of the four conditions. It requires that if
some players in population q switch from strategy j to strategy j + 1, the performance of
strategy i + 1 ∈ Sp improves relative to that of strategy i. On the other hand, condition
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(3.25) provides the most concise characterization of supermodular games. Moreover,
since the range of Σ̃ is TX (i.e., since each column of Σ̃ lies in TX), condition (3.25) is a
restriction of the action of DF(x) on TX × TX—just like our earlier conditions (3.11) and
(3.16) characterizing potential games and stable games.

Proof. The equivalence of conditions (3.24) and (3.25) is easily verified. Given Obser-
vation 3.4.1, it is enough to show that (3.22) implies (3.24) and that (3.25) implies (3.23).

So suppose condition (3.22) holds, and fix x ∈ X; since F is C1 it is enough to consider
x in the interior of X. Let yε = x + ε(eq

j+1 − eq
j), which lies in X whenever |ε| is sufficiently

small, and which satisfies Σyε ≥ Σx. By the definition of DF(x), we have that

Fp
i+1(yε) − Fp

i (yε) = Fp
i+1(x) − Fp

i (x) + ε
∂(Fp

i+1 − Fp
i )

∂(eq
j+1 − eq

j)
(x) + o

(∣∣∣yε − x
∣∣∣) .

Thus, condition (3.22) implies that

ε
∂(Fp

i+1 − Fp
i )

∂(eq
j+1 − eq

j)
(x) + o(|ε|) ≥ 0,

which implies (3.24).
We now show that (3.25) implies (3.23). We consider only the single population case,

leaving the general case as an exercise. The idea behind the proof is simple. If state y
stochastically dominates state x, then we can transit from state x to state y by shifting
mass from strategy 1 to strategy 2, from strategy 2 to strategy 3, ... , and finally from
strategy n − 1 to strategy n. Condition (3.24) ≡ (3.25) says that each such shift improves
the payoff of each strategy k + 1 relative to that of strategy k. Since transiting from x to
y means executing all of the shifts, this transition too must improve the performance of
k + 1 relative to k, which is exactly what condition (3.22) ≡ (3.23) requires.

Our matrix notation makes it possible to formalize this argument in a streamlined way.
Recall the definitions of Σ̃ ∈ Rn×(n−1) and Σ ∈ R(n−1)×n, and define Ω ∈ Rn×n as follows:

Σ̃ =



−1 0 · · · 0

1 −1 . . .
...

0 1 . . . 0
...

. . . . . . −1

0 . . . 0 1


,Σ =


0 1 · · · · · · 1

0 0 1
...

...
. . . . . .

...

0 · · · · · · 0 1

 , and Ω =



1 1 · · · · · · 1
0 0 · · · · · · 0

0 0 . . .
...

...
...

. . .
...

0 0 · · · · · · 0


Then it is easy to verify this next observation.
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Observation 3.4.3. Σ̃Σ = I −Ω ∈ Rn×n.

In words, Observation 3.4.3 says that the stochastic dominance operator Σ is “inverted” by
the difference operator Σ̃, except for a remainder Ω that is a null operator on TX (i.e., that
satisfies Ωz = 0 for all z ∈ TX). (For completeness, we also note that ΣΣ̃ = I ∈ R(n−1)×(n−1).)

Now suppose that Σx ≤ Σy, and let α(t) = ty + (1 − t)x, so that α(0) = x, α(1) = y, and
α′(t) = y − x ∈ TX. Then using the Fundamental Theorem of Calculus, Observation 3.4.3,
condition (3.25), and the fact that Σ(y − x) ≥ 0, we find that

Σ̃′(F(y) − F(x)) = Σ̃′
∫ 1

0
DF(α(t)) (y − x) dt

=

∫ 1

0
Σ̃′DF(α(t)) (Σ̃Σ + Ω) (y − x) dt

=

∫ 1

0

(
Σ̃′DF(α(t))Σ̃

)
Σ(y − x) dt

≥ 0. �

3.4.2 Examples

Exercise 3.4.4. Random matching in supermodular normal form games. The normal form game
U = (U1, . . . ,Up) is supermodular if the difference Up(sp + 1, sq, s−{p,q}) − Up(sp, sq, s−{p,q}) is
nondecreasing in sq for all sp < np, s−{p,q} ∈

∏
r<{p,q} Sr and distinct p, q ∈ P . Show that

random matching of p populations to play U generates a supermodular game.

Exercise 3.4.5. Which symmetric normal form games generate supermodular population
games?

Example 3.4.6. Bertrand oligopoly with differentiated products. A population of firms produce
output at zero marginal cost and compete in prices S = {1, . . . ,n}. Suppose that the demand
faced by a firm increases when competitors raise their prices, and that this effect does not
diminish when the firm itself charges higher prices. More precisely, let qi(x), the demand
faced by a firm that charges price i when the price distribution is x, satisfy

∂qi

∂(e j+1 − e j)
(x) ≥ 0 and

∂(qk+1 − qk)
∂(e j+1 − e j)

(x) ≥ 0 for all i ≤ n and all j, k < n.

The payoff to a firm that charges price i is Fi(x) = i qi(x), and so

∂(Fi+1 − Fi)
∂(e j+1 − e j)

(x) = (i + 1)
∂qi+1

∂(e j+1 − e j)
(x) − i

∂qi

∂(e j+1 − e j)
(x)
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= i
∂(qi+1 − qi)
∂(e j+1 − e j)

(x) +
∂qi+1

∂(e j+1 − e j)
(x) ≥ 0.

Therefore, F is a supermodular game. §

Example 3.4.7. Search with positive externalities. A population of agents choose levels of
search effort in S = {1, . . . ,n}. The payoff to choosing effort i is

Fi(x) = m(i) b(a(x)) − c(i),

where a(x) =
∑

k≤n kxk is the aggregate search effort, b is some increasing benefit function,
m is an increasing multiplier function, and c is an arbitrary cost function. Notice that
the benefits from searching are increasing in both own search effort and in the aggregate
search effort. Since

∂(Fi+1 − Fi)
∂(e j+1 − e j)

(x) = m(i + 1) b′(a(x))
(
( j + 1) − j

)
−m(i) b′(a(x))

(
( j + 1) − j

)
= (m(i + 1) −m(i)) b′(a(x)) ≥ 0,

F is a supermodular game. §

Example 3.4.8. Relative consumption effects/Arms races. Agents from a single population
choose consumption levels (or armament levels) in S = {1, . . . ,n}. Payoffs take the form

Fi(x) = r(i − a(x)) + u(i) − c(i).

Here, r is a concave function of the difference between the agent’s consumption level and
the average consumption level in the population, while u and c are arbitrary functions of
the consumption level. (One would typically assume that r is increasing, but this property
is not needed for supermodularity.) Since

∂(Fi+1 − Fi)
∂(e j+1 − e j)

(x) = r′((i + 1) − a(x))
(
−( j + 1) + j

)
− r′(i − a(x))

(
−( j + 1) + j

)
= r′(i − a(x)) − r′((i + 1) − a(x)) ≥ 0,

F is a supermodular game. §

Exercise 3.4.9. Characterize the C1 two-strategy supermodular games using a derivative
condition. Compare them with the C1 two-strategy stable games (Exercise 3.3.2(i)). Are
all C1 two-strategy games in one class or the other?
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3.4.3 Best Response Monotonicity in Supermodular Games

Recall the definition of the pure best response correspondence for population p:

bp(x) = argmax
i∈Sp

Fp
i (x).

Theorem 3.4.10 establishes a fundamental property of supermodular games: their pure
best response correspondences are increasing.

Theorem 3.4.10. Let F be a supermodular game with pure best response correspondences bp. If
Σx ≤ Σy, then min bp(x) ≤ min bp(y) and max bp(x) ≤ max bp(y) for all p ∈ P .

This property is intuitively obvious: when opponents choose higher strategies, an
agent’s own higher strategies look relatively better, so his best strategies must be (weakly)
higher as well.

Proof. We consider the case in which p = 1, focusing on the first inequality; we leave
the remaining cases as exercises.

Let Σx ≤ Σy and i < j. Then condition (3.22) implies that

(
F j(y) − Fi(y)

)
−

(
F j(x) − Fi(x)

)
=

j−1∑
k=i

((
Fk+1(y) − Fk(y)

)
−

(
Fk+1(x) − Fk(x)

))
≥ 0.

Thus, if j = min b(x) > i, then F j(y) − Fi(y) ≥ F j(x) − Fi(x) > 0, so i is not a best response to
y. As i < min b(x) was arbitrary, we conclude that min b(x) ≤ min b(y). �

To state a version of Theorem 3.4.10 for mixed best responses, we need some additional
notation. Let vp

i ∈ Rnp denote the ith vertex of the simplex ∆p: that is, (vp
i ) j equals 1 if j = i

and equals 0 otherwise. (To summarize our notation to date: xp
i ∈ R, vp

i ∈ Rnp , and ep
i ∈ Rn.

Of course, the notation vp
i is unnecessary in the single population case.) We can describe

population p’s mixed best response correspondence in the following equivalent ways:

Bp(x) =
{
xp
∈ ∆p : xp

i > 0⇒ i ∈ bp(x)
}

= conv
({

vp
i : i ∈ bp(x)

})
,

We can also define the minimal and maximal elements of Bp(x) as follows:

Bp(x) = vp
min bp(x) and Bp(x) = vp

max bp(x).
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To extend this notation to the multipopulation environment, define

B(x) = (B1(x), . . . ,Bp(x)) and B(x) = (B1(x), . . . ,Bp(x)).

Then the following corollary follows immediately from Theorem 3.4.10.

Corollary 3.4.11. If F is supermodular and Σx ≤ Σy, then ΣB(x) ≤ ΣB(y) and ΣB(x) ≤ ΣB(y).

3.4.4 Nash Equilibria of Supermodular Games

We now use the monotonicity of the best response correspondence to show that every
supermodular game has a minimal and a maximal Nash equilibrium. The derivation
of this result includes a finite iterative method for computing the minimal and maximal
equilibria, and so provides a simple proof of the existence of equilibrium. We focus
attention on the case where each population has mass one, so that each set of population
states Xp is just the simplex in Rnp ; the extension to the general case is a simple but
notationally cumbersome exercise.

Let x and x be the minimal and maximal states in X : xp = vp
1 and xp = vp

np for all p ∈ P .
Recall that Xv denotes the set of vertices of X, and let n∗ = #Xv =

∏
p∈P np. Finally, for

states y, z ∈ X, define the interval [y, z] ⊆ X by [y, z] = {x ∈ X : Σy ≤ Σx ≤ Σz}.

Theorem 3.4.12. Suppose F is a supermodular game. Then
(i) The sequences {Bk(x)}k≥0 and {Bk(x)}k≥0 are monotone sequences in Xv, and so converge

within n∗ steps to their limits, x∗ and x∗.
(ii) x∗ = B(x∗) and x∗ = B(x∗), so x∗ and x∗ are pure Nash equilibria of F.
(iii) NE(F) ⊆ [x∗, x∗]. Thus, if x∗ = x∗, then this state is the Nash equilibrium of F.

In short, iterating B and B from the minimal and maximal states in X yields Nash equilibria
of F, and all other Nash equilibria of F lie between the two so obtained.

Proof. Part (i) follows immediately from Corollary 3.4.11. To prove part (ii), note that
since x∗ = Bn∗(x) and Bn∗+1(x) = Bn∗(x) by part (i), it follows that

B(x∗) = B(Bn∗(x)) = Bn∗+1(x) = Bn∗(x) = x∗.

An analogous argument shows that B(x∗) = x∗.
We finish with the proof of part (iii). If Y ⊆ X and min Y and max Y exist, then the

monotonicity of B implies that B(Y) ⊆ [B(min Y),B(max Y)]. Iteratively applying B to the
set X therefore yields Bn∗(X) ⊆ [Bn∗(x),Bn∗(x)] = [x∗, x∗]. Also, if x ∈ NE(F), then x ∈ B(x),
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and so Bk−1(x) ⊆ Bk−1(B(x)) = Bk(x), implying that x ∈ Bk(x) for all k ≥ 1. We therefore
conclude that x ∈ Bn∗(x) ⊆ Bn∗(X) ⊆ [x∗, x∗]. �

Appendix

3.A Multivariate Calculus

3.A.1 Univariate Calculus

Before discussing multivariate calculus we review some ideas from univariate calculus.
A function f from the real line to itself is differentiable at the point x if

f ′(x) = lim
y→x

f (y) − f (x)
y − x

exists; this limit is called the derivative of f at x. Three useful facts about derivatives are

The Product Rule: ( f g)′(x) = f (x)g′(x) + g(x) f ′(x);
The Chain Rule: (g ◦ f )′(x) = g′( f (x)) f ′(x);
The Fundamental Theorem of Calculus: f (y) − f (x) =

∫ y

x
f ′(z) dz.

The definition of f ′(x) above is equivalent to the requirement that

(3.26) f (y) = f (x) + f ′(x)(y − x) + o(y − x),

where o(z) represents a remainder function r : R→ R satisfying

lim
z→0

r(z)
z

= 0.

(In words: r(z) approaches zero faster than z approaches zero.) In the approximation
(3.26), f ′(x) acts as a linear map from R to itself; it sends the displacement of the input,
y − x, to the displacement of the output, f ′(x)(y − x).

3.A.2 The Derivative as a Linear Map

Let L(Rn,Rm) denote the space of linear maps from Rn to Rm:

L(Rn,Rm) = {λ : Rn
→ Rm

| λ(az + bẑ) = aλ(z) + bλ(ẑ) for all a, b ∈ R and z, ẑ ∈ Rn
}.
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Each matrix A ∈ Rm×n defines a linear map in L(Rn,Rm) via λ(z) = Az, and such a matrix
can be found for every map λ in L(Rn,Rm) (see Appendix 3.B.1). It is common to identify a
linear map with its matrix representation. But it is important to be aware of the distinction
between these two objects: if we replace the domain Rn with a proper subspace of Rn,
matrix representations of linear maps are no longer unique—see Appendix 3.B.

Let F be a function from Rn to Rm. (Actually, we can replace the domain Rn with any
open set in Rn, or even with a closed set in Rn, as discussed in Appendix 3.A.7.) We say
that F is differentiable at x if there is a linear map DF(x) ∈ L(Rn,Rm) satisfying

(3.27) F(y) = F(x) + DF(x)(y − x) + o(y − x)

Here, o(z) represents a remainder function r : Rn
→ Rm that satisfies

lim
z→0

r(z)
|z|

= 0.

If the function DF : Rn
→ L(Rn,Rm) is continuous, we say that F is continuously differentiable

or of class C1.
When we view DF(x) as a matrix in Rm×n, we call it the Jacobian matrix or derivative

matrix of F at x. To express this matrix explicitly, define the partial derivatives of F at x by

∂Fi

∂x j
(x) = lim

y j→x j

Fi(y j, x− j) − Fi(x)
y j − x j

.

Then the derivative matrix DF(x) can be expressed as

DF(x) =


∂F1
∂x1

(x) · · · ∂F1
∂xn

(x)
...

...
...

∂Fm
∂x1

(x) · · · ∂Fm
∂xn

(x)

 .
If f is a function from Rn to R (i.e., if m = 1), then its derivative at x can be represented

by a vector. We call this vector the gradient of f at x, and define it by

∇ f (x) =


∂ f
∂x1

(x)
...

∂ f
∂xn

(x)

 .
Our notations for derivatives are related by D f (x) = ∇ f (x)′, where the prime represents
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transposition, and also by

DF(x) =


∇F1(x)′

...

∇Fm(x)′

 .
Suppose we are interested in how quickly the value of f changes as we move from the

point x ∈ Rn in the direction z ∈ Rn
− {0}. This rate is described by the directional derivative

of f at x in direction z, defined by

(3.28)
∂ f
∂z

(x) = lim
ε→0

f (x + εz) − f (x)
ε

.

It is easy to verify that

∂ f
∂z

(x) = ∇ f (x)′z.

More generally, the rate of change of the vector-valued function F at x in direction z can
be expressed as DF(x)z.

It is worth noting that a function can admit directional derivatives at x in every di-
rection z , 0 without being differentiable at x (i.e., without satisfying definition (3.27)).
Amazingly, such a function need not even be continuous at x, as the following example
shows.

Example 3.A.1. Define the function f : R2
→ R by

f (x1, x2) =


x1(x2)2

(x1)2 + (x2)4 if x1 , 0,

0 if x1 = 0.

Using definition (3.28), it is easy to verify that the directional derivatives of f at the origin
in every direction z , 0 exist:

∂ f
∂z

(0) =


(z2)2

z1
if z1 , 0,

0 if z1 = 0.

But while f (0) = 0, f (x) = 1
2 at all other x that satisfy x1 = (x2)2, and so f is discontinuous

at 0. �
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On the other hand, if all (or even all but one) of the partial derivatives f exist and are
continuous in a neighborhood of x, then f is differentiable at x.

3.A.3 Differentiation as a Linear Operation

We can view differentiation as an operation that takes functions as inputs and returns
functions as outputs. From this point of view, differentiation is a linear operation between
spaces of functions. As an example, suppose that f and g are functions from R to itself,
and that a and b are real numbers. Then the scalar product a f is a function from R to itself,
as is the linear combination a f + bg. (In other words, the set of functions from R to itself is
a vector space.) The fact that differentiation is linear means that the derivative of the linear
combination, (a f + bg)′, is equal to the linear combination of the derivatives, a f ′ + bg′.

We can express this idea in a multivariate setting using a simple formula. Suppose
that F : Rn

→ Rm is a differentiable function and that A is a matrix in Rl×m. Then AF is
the function from Rn to Rl defined by (AF)k(x) =

∑m
j=1 AkjF j(x) for k ∈ {1, . . . , l}. Linearity of

differentiation says that D(AF) = A(DF), or, more explicitly, that

Linearity of differentiation: D(AF)(x) = A(DF)(x) for all x ∈ Rn.

Put differently, the differential operator D and the linear map A commute.

3.A.4 The Product Rule and the Chain Rule

Suppose f and g are differentiable functions from R to itself. Then the product rule
tells us that ( f g)′(x) = f (x)g′(x) + g(x) f ′(x). In other words, to find the effect of changing x
on the value ( f g)(x) of the product function, first find the effect of changing x on g(x), and
scale this effect by f (x); then, find the effect of changing x on f (x), and scale this effect by
g(x); and finally, add the two terms.

This same idea can be applied in multidimensional cases as well. Let F : Rn
→ Rm and

G : Rn
→ Rm be differentiable vector-valued functions. Then F′G : Rn

→ R, defined by
(F′G)(x) = F(x)′G(x), is a scalar-valued function. The derivative D(F′G)(x) ∈ R1×n of our
new function is described by the following product rule:

Product Rule 1: D(F′G)(x) = (∇(F′G)(x))′ = F(x)′DG(x) + G(x)′DF(x).

(Notice that in the previous paragraph, a prime (′) denoted the derivative of a scalar-
valued function, while here it denotes matrix transposition. So long as we keep these
scalar and matrix usages separate, no confusion should arise.)
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If a : Rn
→ R is a differentiable scalar-valued function, then aF : Rn

→ Rm, defined by
(aF)(x) = a(x)F(x), is a vector-valued function. Its derivative D(aF)(x) ∈ Rm×n is described
our next product rule:

Product Rule 2: D(aF)(x) = a(x)DF(x) + F(x)∇a(x)′ = a(x)DF(x) + F(x)Da(x).

Finally, we can create a vector-valued function from F : Rn
→ Rm and G : Rn

→ Rm

by introducing the componentwise product F • G : Rn
→ Rm. This function is defined by

(F•G)i(x) = Fi(x)Gi(x), or, in matrix notation, by (F•G)(x) = diag(F(x))G(x) = diag(G(x))F(x),
where diag(v) denotes the diagonal matrix whose diagonal entries are the components
of the vector v. The derivative of the componentwise product, D(F • G)(x) ∈ Rm×n, is
described by our last product rule:

Product Rule 3: D(F • G)(x) = diag(F(x))DG(x) + diag(G(x))DF(x).

One can verify each of the formulas above by expanding them and then applying the
univariate product rule term by term. To remember the product rules, bear in mind that
the end result must be a sum of two terms of the same dimensions, and that each of the
terms must end with a derivative, so as to operate on a displacement vector z ∈ Rn to be
placed on the right hand side.

In the one dimensional setting, the chain rule tells us that (g ◦ f )′(x) = g′( f (x)) f ′(x). In
words, the formula says that we can decompose the effect of changing x on (g ◦ f )(x) into
two pieces: the effect of changing x on the value of f (x), and the effect of this change in
f (x) on the value of g( f (x)).

This same idea carries through to multivariate functions. Let F : Rn
→ Rm and

G : Rm
→ Rl be differentiable, and let G ◦ F : Rn

→ Rl be their composition. The chain rule
says that the derivative of this composition at x ∈ Rn, D(G ◦ F)(x) ∈ Rl×n, is obtained as the
product of the derivative matrices DG(F(x)) ∈ Rl×m and DF(x) ∈ Rm×n.

The Chain Rule: D(G ◦ F)(x) = DG(F(x)) DF(x).

This equation can be stated more explicitly as

∂(G ◦ F)k

∂xi
(x) =

m∑
j=1

∂Gk

∂y j
(F(x))

∂F j

∂xi
(x).

The chain rule can be viewed as a generalization of the earlier formula on linearity of
differentiation, with the linear map A replaced by the nonlinear function G.
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3.A.5 Homogeneity and Euler’s Theorem

Let f be a differentiable function from Rn to R. (We can replace the domain Rn with an
open (or even a closed) convex cone: a convex set which, if it contains x ∈ Rn, also contains
tx for all t > 0.) We say that f is homogeneous of degree k if

(3.29) f (tx) = tk f (x)

for all x ∈ Rn and t > 0.
By definition, homogeneous functions are monomials along each ray from the origin.

Indeed, when n = 1 the homogeneous functions are precisely the monomials: if x ∈
R, g(tx) = tkg(x), and g(1) = a, then g(x) = axk. But when n > 1 more complicated
homogeneous functions can be found.

Nevertheless, the basic properties of homogeneous functions are generalizations of
properties of monomials. If we take the derivative of each side of equation (3.29) with
respect to xi, applying the chain rule on the left hand side, we obtain

∇ f (tx)′(tei) = tk ∂ f
∂xi

(x).

Dividing both sides of this equation by t and simplifying yields

∂ f
∂xi

(tx) = tk−1 ∂ f
∂xi

(x).

In other words, the partial derivatives of a homogeneous function of degree k are them-
selves homogeneous of degree k − 1.

If we instead take the derivative of each side of (3.29) with respect to t, again using the
chain rule on the left hand side, we obtain

∇ f (tx)′x =

0 if k = 0,

ktk−1 f (x) otherwise.

Setting t = 1 yields Euler’s Theorem: if f is homogeneous of degree k, then

∇ f (x)′x = k f (x) for all x ∈ Rn.

In fact, the converse of Euler’s Theorem is also true: one can show that if f satisfies the
previous identity, it is homogeneous of degree k.
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3.A.6 Higher Order Derivatives

As we have seen, the derivative of a function F : Rn
→ Rm is a new function

(3.30) DF : Rn
→ L(Rn,Rm).

For each x ∈ Rn, DF(x) describes how the value of F in Rm changes as we move away from
x in any direction z ∈ Rn. Notice that in expression (3.30), the point x around which we
evaluate the function F inhabits the first Rn, while the displacement vector z inhabits the
second Rn.

The second derivative of F at x, D2F(x) = D(DF(x)), describes how the value of the first
derivative DF(x) ∈ L(Rn,Rm) changes as we move away from x in direction ẑ ∈ Rn. Thus,
D2F(x) is an element of the set of maps L(Rn,L(Rn,Rm)), which we denote by L2(Rn,Rm).
Elements of L2(Rn,Rm) are called bilinear maps from Rn

× Rn to Rm: they take two vectors
in Rn as inputs, are linear in each of these vectors, and return elements of Rm as outputs.

If F is twice continuously differentiable (i.e., if DF and D2F are both continuous in x),
then it can be shown that D2F(x) is symmetric, in the sense that D2F(x)(z, ẑ) = D2F(x)(ẑ, z) for
all z, ẑ ∈ Rn. We therefore say that D2F(x) is an element of L2

s (Rn,Rm), the set of symmetric
bilinear maps from Rn

× Rn to Rm.
More generally, the kth derivative of F is a map DkF : Rn

→ Lk
s(Rn,Rm). For each x ∈ Rn,

DkF(x) is a symmetric multilinear map; it takes k displacement vectors in Rn as inputs, is
linear in each, and returns an output in Rm; this output does not depend on the order of
the inputs. If F has continuous derivatives of orders zero through K, we say that it is in
class CK.

We can use higher order derivatives to write the Kth order version of Taylor’s Formula,
which provides a polynomial approximation of a CK function F around the point x.

Taylor’s Formula: F(y) = F(x) +

K∑
k=1

1
k!

DkF(x)(y − x, . . . , y − x) + o
(∣∣∣y − x

∣∣∣K).
Here, DkF(x)(y − x, . . . , y − x) ∈ Rm is the output generated when the multilinear map
DkF(x) ∈ Lk

s(Rn,Rm) acts on k copies of the displacement vector (y− x) ∈ Rn. (To see where
the factorial terms come from, try expressing the coefficients of a Kth order polynomial in
terms of the polynomial’s derivatives.)

The higher order derivative that occurs most frequently in applications is the second
derivative of a scalar valued function f : Rn

→ R. This second derivative, D2 f , sends
each x ∈ Rn to a symmetric bilinear map D2 f (x) ∈ L2

s (Rn,R). We can represent this map
using a Hessian matrix ∇2 f (x) ∈ Rn×n, the elements of which are the second order partial

91



derivatives of f :

∇
2 f (x) =


∂2 f

(∂x1)2 (x) · · ·
∂2 f
∂x1∂xn

(x)
...

...
...

∂2 f
∂xn∂x1

(x) · · ·
∂2 f

(∂xn)2 (x)


When f is C2, the symmetry of the map D2 f (x) is reflected in the fact that the Hessian
matrix is symmetric: corresponding pairs of mixed partial derivatives are equal.

The value D2 f (x)(z, ẑ) is expressed in terms of the Hessian matrix in this way:

D2 f (x)(z, ẑ) = z′∇2 f (x)ẑ.

Using the gradient vector and Hessian matrix, we can express the second-order Taylor
approximation of a C2 scalar-valued function as follows:

f (y) = f (x) + ∇ f (x)′(y − x) + 1
2 (y − x)′∇2 f (x)(y − x) + o

(∣∣∣y − x
∣∣∣2) .

3.A.7 The Whitney Extension Theorem

While we have defined our K times continuously differentiable functions to have
domain Rn, nothing we have discussed so far would change were our functions only
defined on open subsets of Rn. In fact, it is also possible to define CK functions on closed
sets X ⊂ Rn. To do so, one requires F : X → Rm to be CK in the original sense on int(X),
and to admit “local uniform Taylor expansions” at each x on bd(X). The Whitney Extension
Theorem tells us that such functions F can always be extended to CK functions defined
on all of Rn. In effect, the Whitney Extension Theorem provides a definition of (K times)
continuously differentiability for functions defined on closed sets.

3.A.8 Vector Integration and the Fundamental Theorem of Calculus

Let α : R→ Rn be a vector-valued function defined on the real line. Integrals of α are
computed componentwise: in other words,

(3.31)
(∫ b

a
α(t) dt

)
i
=

∫ b

a
αi(t) dt.
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It is easy to verify that integration, like differentiation, is linear: if A ∈ Rm×n then∫ b

a
Aα(t) dt = A

∫ b

a
α(t) dt.

With definition (3.31) in hand, we can state a multivariate version of the Fundamental
Theorem of Calculus. Suppose that F : Rn

→ Rm is a C1 function. Let α : [0, 1]→ Rn be a
C1 function satisfying α(0) = x and α(1) = y, and call its derivative α′ : R→ Rn. Then we
have

The Fundamental Theorem of Calculus: F(y) − F(x) =

∫ 1

0
DF(α(t))α′(t) dt.

3.A.9 Potential Functions and Integrability

When can a continuous vector field F : Rn
→ Rn be expressed as the gradient of some

scalar valued function f ? In other words, when does F = ∇ f for some potential function
f : Rn

→ R? One can characterize the vector fields that admit potential functions in terms
of their integrals over closed curves: if F : Rn

→ Rn is continuous, it admits a potential
function if and only if

(3.32)
∫ 1

0
F(α(t))′

(
d
dtα(t)

)
dt = 0

for every piecewise C1 function α : [0, 1]→ Rn with α(0) = α(1). If we use C to denote the
closed curve through Rn traced by α, then (3.32) can be expressed more concisely as∮

C
F(x) · dx = 0.

When F is not only continuous, but also C1, the question of the integrability of F can be
answered by examining cross-partial derivatives. Note first that if F admits a C2 potential
function f , then the symmetry of the Hessian matrices of f implies that

(3.33)
∂Fi

∂x j
(x) =

∂2 f
∂xi∂x j

(x) =
∂2 f
∂x j∂xi

(x) =
∂F j

∂xi
(x),

and hence that the derivative matrix DF(x) is symmetric for all x ∈ Rn. The converse
statement is also true, and provides the characterization of integrability we seek: if F is
C1, with DF(x) symmetric for all x ∈ Rn (i.e., whenever the integrability condition (3.33)
holds), there is a function f : Rn

→ R such that ∇ f = F. This sufficient condition for
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integrability remains valid whenever the domain of F is an open (or closed) convex subset
of Rn. However, condition (3.33) does not ensure the existence of a potential function for
vector fields defined on more general domains.

3.B Affine Calculus

The simplex in Rn, which serves as our state space in single population games, is an
n − 1 dimensional set. As a consequence, derivatives of functions defined on the simplex
can not be computed in the manner described in Appendix 3.A, as partial derivatives of
such functions do not exist. To understand differential calculus in this context, and in the
more general context of multipopulation games, we must develop the tools of calculus
for functions defined on affine spaces.

3.B.1 Linear Forms and the Riesz Representation Theorem

Let Z be a subspace of Rn, and let L(Z,R) be the set of linear maps from Z to R. L(Z,R)
is also known as the dual space of Z, and elements of L(Z,R), namely, maps λ : Z→ R that
satisfy λ(az + bẑ) = aλ(z) + bλ(ẑ), are also known as linear forms.

Each vector y ∈ Z defines a linear form λ ∈ L(Z,R) via λ(z) = y′z. In fact, the converse
statement is also true: every linear form can be uniquely represented in this way.

Theorem 3.B.1 (The Riesz Representation Theorem). For each linear form λ ∈ L(Z,R), there
is a unique y ∈ Z, the Riesz representation of λ, such that λ(z) = y′z for all z ∈ Z.

Another way of describing the Riesz representation theorem is to say that Z and L(Z,R)
are linearly isomorphic: the map from Z to L(Z,R) described above is linear, one-to-one,
and onto.

It is crucial to note that when Z is a proper subspace of Rn, the linear form λ can
be represented by many vectors in Rn. What Theorem 3.B.1 tells us is that λ can be
represented by a unique vector in Z itself.

Example 3.B.2. Let Z = R2
0 = {z ∈ R2 : z1 + z2 = 0}, and define the linear form λ ∈ L(Z,R) by

λ(z) = z1 − z2. Then not only

y =

 1
−1

 , but also ŷ =

3
1


represents λ: if z ∈ Z, then ŷ′z = 3z1 + z2 = 3z1 + (−z1) = 2z1 = z1 − z2 = y′z = λ(z). But
since y is an element of Z, it is the Riesz representation of λ. §
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In this example, the reason that both y and ŷ can represent λ is that their difference,

ŷ − y =

2
2


is orthogonal to Z. This suggests a simple way of recovering the Riesz representation of
a linear form from an arbitrary vector representation: eliminate the portion orthogonal to
Z by applying the orthogonal projection PZ.

Theorem 3.B.3. Let λ ∈ L(Z,R) be a linear form. If ŷ ∈ Rn represents λ, in the sense that
λ(z) = ŷ′z for all z ∈ Z, then y = PZ ŷ is the Riesz representation of λ.

Example 3.B.4. Recall that the orthogonal projection onto R2
0 is Φ = I − 1

211′. Thus, in the
previous example, we can recover y from ŷ in the following way:

y = Φŷ = (I − 1
211′)

3
1

 =

3
1

 − 2
2

 =

 1
−1

 . §
3.B.2 Dual Characterizations of Multiples of Linear Forms

Before turning our attention to calculus, we present some results that characterize
when two linear forms are scalar multiples of one another. We will use these results
when studying imitative dynamics in Chapters 5 and 8; see especially Exercise 5.4.18 and
Theorem 8.5.9.

If the vectors v ∈ Rn and w ∈ Rn are non-zero multiples of one another, then v and w
clearly are orthogonal to the same set of vectors in Rn. Conversely, if {v}⊥ = {y ∈ Rn : v′y =

0} equals {w}⊥, then v and w must be (non-zero) multiples of one another, as they are both
normal vectors of the same hyperplane.

When are v and w positive multiples of one another? This is the case if and only if
the set H (v) = {y ∈ Rn : v′y ≥ 0}, the closed half-space consisting of those vectors with
which v forms an acute or right angle, is equal to the corresponding set H (w). Clearly,
H (v) = H (w) implies that {v}⊥ = {w}⊥, and so that v = cw; since v ∈ H (v) = H (w), it must
be that c > 0.

In summary, we have

Observation 3.B.5.

(i) {x ∈ Rn : v′x = 0} = {x ∈ Rn : w′x = 0} if and only if v = cw for some c , 0.
(ii) {x ∈ Rn : v′x ≥ 0} = {x ∈ Rn : w′x ≥ 0} if and only if v = cw for some c > 0.
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Proposition 3.B.6 provides analogues of the characterizations above for settings in
which one can only compare how v and w act on vectors in some subspace Z ⊆ Rn. Since
these comparisons relate v and w as linear forms on Z, Theorem 3.B.3 suggests that the
characterizations should be expressed in terms of the orthogonal projections of v and w
onto Z.

Proposition 3.B.6.

(i) {z ∈ Z : v′z = 0} = {z ∈ Z : w′z = 0} if and only if PZv = c PZw for some c , 0.
(ii) {z ∈ Z : v′z ≥ 0} = {z ∈ Z : w′z ≥ 0} if and only if PZv = c PZw for some c > 0.

Proof. The “if” direction of part (i) is immediate. For the “only if” direction, observe
that v′z = 0 for all z ∈ Z if and only if v′PZx = 0 for all x ∈ Rn. Since the matrix PZ is
symmetric, we can rewrite the equality above as (PZv)′x = 0; thus, the conclusion that
PZv = c PZw with c , 0 follows from Observation 3.B.5(i). The proof of part (ii) follows
similarly from Observation 3.B.5(ii). �

To cap this discussion, we note that both parts of Observation 3.B.5 are the simplest
cases of more general duality results that link a linear map A ∈ L(Rm,Rn) ≡ Rn×m with its
transpose A′ ∈ L(Rn,Rm) ≡ Rm×n. Part (i) is essentially the m = 1 case of the Fundamental
Theorem of Linear Algebra:

(3.34) range(A) = (nullspace(A′))⊥.

In equation (3.34), the set range(A) = {w ∈ Rn : w = Ax for some x ∈ Rm
} is the span of

the columns of A. The set nullspace(A′) = {y ∈ Rn : A′y = 0} consists of the vectors that
A′ maps to the origin; equivalently, it is the set of vectors that are orthogonal to every
column of A. Viewed in this light, equation (3.34) says that w is a linear combination of the
columns of A if and only if any y that is orthogonal to each column of A is also orthogonal
to w. While (3.34) is of basic importance, it is quite easy to derive after taking orthogonal
complements:

(range(A))⊥ = {y ∈ Rn : y′Ax = 0 for all x ∈ Rm
} = {y ∈ Rn : y′A = 0′} = nullspace(A′).

Part (ii) of Observation 3.B.5 is essentially the m = 1 case of Farkas’s Lemma:

(3.35) [w = Ax for some x ∈ Rm
+ ] if and only if [[A′y ≥ 0 ⇒ w′y ≥ 0] for all y ∈ Rn].

In words: w is a nonnegative linear combination of the columns of A if and only if any y
that forms a weakly acute angle with each column of A also forms a weakly acute angle with
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w. Despite their analogous interpretations, statement (3.35) is considerably more difficult
to prove than statement (3.34)—see the Notes.

3.B.3 Derivatives of Functions on Affine Spaces

Before considering calculus on affine spaces, let us briefly review differentiation of
scalar-valued functions on Rn. If f is a C1 function from Rn to R, then its derivative at x,
denoted D f (x), is an element of L(Rn,R), the set of linear maps from Rn to R. For each
x ∈ Rn, the map D f (x) takes vectors z ∈ Rn as inputs and returns scalars D f (x)z ∈ R as
outputs. The latter expression appears in the first order Taylor expansion

f (x + z) = f (x) + D f (x) z + o(z) for all z ∈ Rn.

By the Riesz Representation Theorem, there is a unique vector ∇ f (x) ∈ Rn satisfying
D f (x) z = ∇ f (x)′z for all z ∈ Rn. We call ∇ f (x) the gradient of f at x. In the present
full-dimensional case, ∇ f (x) is the vector of partial derivatives ∂ f

∂xi
(x) of f at x.

Now, let A ⊆ Rn be an affine space with tangent space TA, and consider a function
f : A → R. (As in Appendix 3.A, the ideas to follow can also be applied to functions
whose domain is a set that is open (or closed) relative to A.) We say that f is differentiable
at x ∈ A if there is a linear map D f (x) ∈ L(TA,R) satisfying

f (x + z) = f (x) + D f (x) z + o(z) for all z ∈ TA.

The gradient of f at x is the Riesz representation of D f (x). In other words, it is the unique
vector ∇ f (x) ∈ TA such that D f (x) z = ∇ f (x)′z for all z ∈ TA. If the function ∇ f : A→ TA
is continuous, then f is continuously differentiable, or of class C1.

When A = Rn, this definition of the gradient is simply the one presented earlier, and
∇ f (x) is the only vector in Rn that represents D f (x). But in lower dimensional cases, there
are many vectors in Rn that can represent D f (x). The gradient vector ∇ f (x) is the only one
lying in TA; all others are obtained by summing ∇ f (x) and an element of (TA)⊥.

When A = Rn, the gradient of f at x is just the vector of partial derivatives of f at x.
But in other cases, the partial derivatives of f may not even exist. How does one compute
∇ f (x) then? Usually, it is easiest to extend the function f to all of Rn in some smooth way,
and then to compute the gradient by way of this extension. In some cases (e.g., when f is
a polynomial), obtaining the extension is just a matter of declaring that the domain is Rn.
But even in this situation, there is an alternative extension that is often handy.

Proposition 3.B.7. Let f : A→ R be a C1 function on the affine set A, and let Z = TA.
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(i) Let f̃ : Rn
→ R be any C1 extension of f . Then ∇ f (x) = PZ∇ f̃ (x) for all x ∈ A.

(ii) Define f : Rn
→ R by

f (y) = f (PZy + z⊥A),

where z⊥A is the unique element of A ∩ Z⊥. Then ∇ f (x) = ∇ f (x) for all x ∈ A.

In words, f assigns the value f (x) to each point in Rn whose orthogonal projection onto
TA = Z is the same as that of x ∈ A; the gradient of f is identical to the gradient of f on
the set A.

Proof. Part (i) follows immediately from the relevant definitions. To prove part (ii),
suppose that x ∈ A. Then by the chain and product rules,

D f (x) = D( f (PZx + z⊥A)) = D f (x)PZ.

This linear form on Rn is represented by the (column) vector ∇ f (x) = (∇ f (x)′PZ)′ ∈ Rn. But
since the orthogonal projection matrix PZ is symmetric, and since ∇ f (x) ∈ Z, we conclude
that

∇ f (x) = (∇ f (x)′PZ)′ = P′Z∇ f (x) = PZ∇ f (x) = ∇ f (x). �

The fact that PZ is an orthogonal projection makes this proof simple: since PZ is symmetric,
we are able to transfer its action from the displacement direction z ∈ Z to the vector ∇ f (x)
itself.

Similar considerations arise for vector-valued functions defined on affine spaces, and
also for higher order derivatives. If F : A→ Rm is C1, its derivative at x ∈ A is a linear map
DF(x) ∈ L(Z,Rm), where we once again write Z for TA. While there are many matrices
in Rm×n that represent this derivative, applying the logic above to each component of F
shows that there is a unique such matrix, called the Jacobian matrix or derivative matrix,
whose rows are elements of Z. As before, we abuse notation by denoting this matrix
DF(x). But unlike before, this abuse can create some confusion: if F is “automatically”
defined on all of Rn, one must be careful to distinguish between the derivative matrix of
F : Rn

→ Rm at x and the derivative matrix of its restriction F|A : A → Rm at x; they are
related by DF|A (x) = DF(x)PZ.

If the function f : A → R is C2, then its second derivative at x ∈ A is a symmetric
bilinear map D2 f (x) ∈ L2

s (Z,R). There are many symmetric matrices in Rn×n that represent
D2 f (x), but there is a unique such matrix whose rows and columns are in Z. We call this
matrix the Hessian of f at x, and denote it ∇2 f (x). If f̃ : Rn

→ R is any C2 extension of f ,
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then we can compute the Hessian of f as ∇2 f (x) = PZ∇
2 f̃ (x)PZ; if f (y) = f (PZy + z⊥A) is the

constant orthogonal extension of f to Rn, then ∇2 f (x) = ∇2 f (x).

3.B.4 Affine Integrability

A necessary and sufficient condition for a C1 vector field F : Rn
→ Rn to admit

a potential function—that is, a scalar valued function f satisfying ∇ f (x) = F(x) for all
x ∈ Rn—is that its derivative matrix DF(x) be symmetric for all x ∈ Rn. We now state
a definition of potential functions for cases in which the map F is only defined on an
affine space, and show that an appropriate symmetry condition on DF(x) is necessary
and sufficient for a potential function to exist. We also relate these notions to their full-
dimensional analogues.

Let A ⊆ Rn be an affine space with tangent space Z = TA, and let z⊥A be the unique
element of A ∩ Z⊥. Suppose that the map F : A→ Rn is continuous. We call the function
f : A→ R a potential function for F if

(3.36) ∇ f (x) = PZF(x) for all x ∈ A.

What does this definition require? Since ∇ f (x) ∈ Z, the action of ∇ f (x) on Z⊥ is null (that
is, (z⊥)′∇ f (x) = 0 whenever z⊥ ∈ Z⊥). But since F(x) ∈ Rn, the action of F(x) on Z⊥ is not
restricted in this way. Condition (3.36) requires that F(x) have the same action as ∇ f (x) on
Z, but places no restriction on how F(x) acts on the complementary set Z⊥.

Theorem 3.B.8 characterizes the smooth maps on A that admit potential functions. The
characterization is stated in terms of a symmetry condition on the derivatives DF(x).

Theorem 3.B.8. The C1 map F : A → Rn admits a potential function if and only if DF(x) is
symmetric with respect to Z × Z for all x ∈ A (i.e., if and only if z′DF(x)ẑ = ẑ′DF(x)z for all
z, ẑ ∈ Z and x ∈ A).

Proof. To prove the “only if” direction, suppose that F admits a potential function f
satisfying condition (3.36). This means that for all x ∈ A, F(x) and ∇ f (x) define identical
linear forms in L(Z,R). By taking the derivative of each side of this identity, we find that
DF(x) = ∇2 f (x) as bilinear forms in L2(Z,R). But since ∇2 f (x) is a symmetric bilinear form
on Z × Z (by virtue of being a second derivative), DF(x) is as well.

The “if” direction is a consequence of the following proposition.

Proposition 3.B.9. Define the map F : Rn
→ Rn by

F(y) = PZF(PZy + z⊥A).
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Then F admits a potential function f : Rn
→ R if and only if DF(x) is symmetric with respect to

Z × Z for all x ∈ A. In this case, f = f
∣∣∣∣
A

is a potential function for F.

Proof. Define the function ξ : Rn
→ A by ξ(y) = PZy + z⊥A. Then

(3.37) DF(y) = D
(
PZF(ξ(y))

)
= PZ

(
DF(ξ(y))

)
PZ.

Now F admits a potential function if and only if DF(y) is symmetric for all y ∈ Rn. Equation
(3.37) tells us that the latter statement is true if and only if DF(x) is symmetric with respect
to Z × Z for all x ∈ A, proving the first statement in the proposition.

To prove the second statement, suppose that f is a potential function for F, and let
f = f

∣∣∣∣
A

. Then since ξ(x) = x for all x ∈ A, we find that

∇ f (x) = PZ∇ f (x) = PZF(x) = PZ

(
PZF(ξ(x))

)
= PZF(x). �

This completes the proof of Theorem 3.B.8. �

If the C1 map F : A→ Rn is integrable (i.e., if it admits a potential function f : A→ R),
can we extend F to all of Rn in such a way that the extension is integrable too? One
natural way to proceed is to extend the potential function f to all of Rn. If one does so
in an arbitrary way, then the projected maps PZF and PZF̃ will agree regardless of how
the extended potential function f̃ is chosen (cf Observation 3.2.3 and the subsequent
discussion). But is it always possible to choose f̃ in such a way that that F and F̃ are
identical on A, so that the function F̃ is a genuine extension of the function F? Theorem
3.B.10 shows one way that this can be done.

Theorem 3.B.10. Suppose F : A→ Rn is continuous with potential function f : A→ R. Define
f̃ : Rn

→ R by

f̃ (y) = f (ξ(y)) + (y − ξ(y))′F(ξ(y)), where ξ(y) = PZy + z⊥A,

and define F̃ : Rn
→ Rn by F̃(y) = ∇ f̃ (y). Then F̃

∣∣∣
A

= F. Thus, any integrable map/potential
function pair defined on A can be extended to a vector field/potential function pair defined on all of
Rn.

Proof. We can compute F̃ from f̃ using the chain and product rules:

F̃(y)′ = ∇ f̃ (y)′

= ∇ f (ξ(y))′PZ + (y − ξ(y))′DF(ξ(y))PZ + F(ξ(y))′(I − PZ)
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=
(
PZF(ξ(y))

)′
PZ + (y − ξ(y))′DF(ξ(y))PZ + F(ξ(y))′ − F(ξ(y))′PZ

= F(ξ(y))′PZPZ + (y − ξ(y))′DF(ξ(y))PZ + F(ξ(y))′ − F(ξ(y))′PZ

= F(ξ(y))′ + (y − ξ(y))′DF(ξ(y))PZ

If x ∈ A, then ξ(x) = x, allowing us to conclude that F̃(x) = F(x). �

If F takes values in Z, so that F(x) = PZF(x) for all x ∈ A, then f̃ (y) is simply f (ξ(y)),
and so F̃(y) = PZ∇ f (ξ(y)) = PZF(ξ(y)); in this case, the construction in Theorem 3.B.10 is
identical to the one introduced in Proposition 3.B.9. The novelty in Theorem 3.B.10 is that
it lets us extend the domain of F to all of Rn in an integrable fashion even when F takes
values throughout Rn.

3.N Notes

Section 3.1. Sections 3.1.1 through 3.1.6 follow Sandholm (2001), while Section 3.1.7
follows Roughgarden and Tardos (2002, 2004) and Correa et al. (2004, 2008).

Random matching in two player games with common interests defines a fundamental
model from population genetics; the common interest assumption reflects the shared fate
of two genes that inhabit the same organism. See Hofbauer and Sigmund (1988, 1998)
for further discussion. Congestion games first appear in the seminal book of Beckmann
et al. (1956), who define a general model of traffic flow with inelastic demand, and
use a potential function argument to establish the existence and uniqueness of Nash
equilibrium. The textbook of Sheffi (1985) treats congestion games from a transportation
science perspective at an undergraduate level; the more recent monograph of Patriksson
(1994) provides a comprehensive treatment of the topic from this point of view. Important
examples of finite player potential games are introduced by Rosenthal (1973) and Slade
(1994), and characterizations of this class of normal form games are provided by Monderer
and Shapley (1996), Ui (2000), and Sandholm (2008a). Example 3.1.6 and Exercise 3.1.12
are due to Sandholm (2005b). Braess’s paradox (Example 3.1.10) was first reported in
Braess (1968). Exercise 3.1.11 is well known in the transportation science literature; it also
corrects a mistake (!) in Corollary 5.6 of Sandholm (2001). Versions of the efficiency results
in Section 3.1.6 are established by Dafermos and Sparrow (1969) for a model of traffic
congestion model and by Hofbauer and Sigmund (1988) for single population games. For
further discussion of constraint qualification and of the interpretation of the Kuhn-Tucker
first order conditions, see Avriel (1976, Section 3.1) and Harker and Pang (1990).

Inefficiency bounds were introduced in the computer science literature by Koutsoupias
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and Papadimitriou (1999) and by Papadimitriou (2001), who introduced the term “price of
anarchy” to refer to these bounds. Most of the results in presented in Section 3.1.7 are due
to Roughgarden and Tardos (2002, 2004) and are presented in the book of Roughgarden
(2005). The simple proof of Theorem 3.1.28 presented here is due to Correa et al. (2004,
2008), as is Corollary 3.1.29. These references present a variety of additional inefficiency
bounds for congestion games with general classes of cost functions, as well as inefficiency
bounds for general population games.

Section 3.2. This section follows Sandholm (2008b).
The general definition and basic properties of normal form potential games are es-

tablished by Monderer and Shapley (1996). The triangular integrability condition from
Exercise 3.2.7 is due to Hofbauer (1985). The fact that constant games are potential games
in which potential equals aggregate payoffs is important in models of evolutionary im-
plementation; see Sandholm (2002, 2005b, 2007b).

Section 3.3. This section follows Hofbauer and Sandholm (2008).
Evolutionarily stable strategies and neutrally stable strategies are introduced in the

single population random matching context by Maynard Smith and Price (1973) and
Maynard Smith (1982), respectively. The connection between interior ESS and negative
definiteness of the payoff matrix was first noted by Haigh (1975). See Hines (1987) for
a survey of early work on these and related concepts. A version of the GESS concept is
used by Hamilton (1967) in his pioneering analysis of sex-ratio selection under the name
“unbeatable strategy”; see Hamilton (1996, p. 373–374) for an intriguing discussion of the
links between the notions of unbeatable strategy and ESS. Further discussion of ESS can
be found in the Notes to Chapter 8.

For more on Rock-Paper-Scissors, see Gaunersdorfer and Hofbauer (1995). The War
of Attrition is introduced in Bishop and Cannings (1978); for economic applications, see
Bulow and Klemperer (1999) and the references therein. Imhof (2005) derives a closed-
form expression for the Nash equilibrium of the war of attrition in terms of Chebyshev
polynomials of the second kind. The dominant diagonal condition used in Example 3.3.12
is a consequence of the Geršgorin Disk Theorem; see Horn and Johnson (1985). This
reference also presents the trace condition used in proving Proposition 3.3.10.

In the convex analysis literature, functions that satisfy our definition of stability
(though typically with the inequality reversed) are called “monotone”—see Rockafel-
lar (1970) or Hiriart-Urruty and Lemaréchal (2001). For more on pseudomonotonicity and
pseudoconvexity, see Avriel (1976, Chapter 6) and Crouzeix (1998). The elementary proof
of existence of Nash equilibrium in stable games presented in Section 3.3.5 is a translation
to the present context of work on monotone operators on vector spaces due to Minty
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(1967). Good references on the Minmax Theorem and its connection with the Separating
Hyperplane Theorem are Kuhn (2003) and Luce and Raiffa (1957).

Section 3.4. The definition of supermodular population games here comes from Hof-
bauer and Sandholm (2007). Finite player analogues of the results presented here are
established by Topkis (1979), Vives (1990), and Milgrom and Roberts (1990). Accounts
of these results can be found in Fudenberg and Tirole (1991, Sec. 12.3) and Vives (2005);
Topkis (1998) and Vives (2000) are book-length studies. For macroeconomic applications,
see Cooper (1999).

Appendix 3.A. For a textbook treatment of multivariate calculus that emphasizes the
notion of the derivative as a linear map, see Lang (1997, Chapter 17). For the Whitney
Extension Theorem, see Abraham and Robbin (1967) or Krantz and Parks (1999).

Appendix 3.B. The version of the Riesz Representation Theorem presented here, along
with further discussion of calculus on affine spaces, can be found in Akin (1990). For
further discussion of the dual characterizations described at the end of Section 3.B.2, see
Lax (2007, Chapter 13) or Hiriart-Urruty and Lemaréchal (2001, Section A.4.3).
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Part II

Deterministic Evolutionary Dynamics
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CHAPTER

FOUR

Revision Protocols and Evolutionary Dynamics

4.0 Introduction

The theory of population games developed in the previous chapters provides a simple
framework for describing strategic interactions among large numbers of agents. Having
explored these games’ basic properties, we now turn to modeling the behavior of the
agents who play them.

Traditionally, predictions of behavior in games are based on some notion of equilib-
rium, typically Nash equilibrium or some refinement thereof. These notions are founded
on the assumption of equilibrium knowledge, which posits that each player correctly an-
ticipates how his opponents will act. The equilibrium knowledge assumption is difficult
to justify, and in contexts with large numbers of agents it is particularly strong.

As an alternative to the equilibrium approach, we introduce an explicitly dynamic
model of choice, a model in which agents myopically alter their behavior in response to
their current strategic environment. This dynamic model does not assume the automatic
coordination of agents’ beliefs, and it can accommodate many specifications of agents’
choice procedures.

These procedures are specified formally by defining a revision protocol ρ. A revision
protocol takes current payoffs and aggregate behavior as inputs; its outputs are conditional
switch rates ρp

ij(π
p, xp), which describe how frequently agents playing strategy i ∈ Sp who

are considering switching strategies switch to strategy j ∈ Sp, given that the current payoff

vector and population state are πp and xp. Revision protocols are flexible enough to
accommodate a wide variety of choice paradigms, including ones based on imitation,
optimization, and other approaches.
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A population game F describes a strategic environment; a revision protocol ρ describes
the procedures agents follow in adapting their behavior to that environment. Together F
and ρ define a stochastic evolutionary process in which all random elements are idiosyn-
cratic across agents. Since the number of agents are large, intuition from the law of large
numbers suggests that the idiosyncratic noise will average out, so that aggregate behavior
evolves according to an essentially deterministic process.

After formally defining revision protocols, we spend Section 4.1 deriving the differen-
tial equation that describes this deterministic process. As the differential equation captures
expected motion under the original stochastic process, we call it the mean dynamic gener-
ated by F and ρ. The examples we present in Section 4.2 show how common dynamics
from the evolutionary literature can be derived through this approach.

In the story above, we began with a game and a revision protocol and derived a
differential equation on the state space X. But if our goal is to investigate the consequences
of a particular choice procedure, it is preferable to fix this revision protocol and let the
game F vary. By doing so, we generate a map from population games to differential
equations that we call an evolutionary dynamic. This notion of an evolutionary dynamic is
developed in detail in Section 4.3.

Our derivation of deterministic evolutionary dynamics in this chapter is informal,
based solely on an appeal to the idea that idiosyncratic noise should be averaged away
when populations are large. We will formalize this logic in Chapter 10. There we specify
a Markov process to describe stochastic evolution in a large but finite population. We
then prove that over finite time spans, this Markov process converges to a deterministic
limit—namely, a solution trajectory of the mean dynamic—as the population size becomes
arbitrarily large.

Until then, we spend Chapters 4 through 9 working directly with the deterministic
limit. To prepare for this, we introduce the rudiments of the theory of ordinary differential
equations in Appendix 4.A and pursue this topic further in the appendices of the chapters
to come.

4.1 Revision Protocols and Mean Dynamics

4.1.1 Revision Protocols

We now introduce a simple, general model of myopic individual choice in population
games.

Let F : X → Rn be a population game with pure strategy sets (S1, . . .,Sp) and integer-
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valued population masses (m1, . . .,mp). We suppose for now that each population is large
but finite: population p ∈ P has Nmp members, where N is a positive integer. The set
of feasible social states is therefore X N = X ∩ 1

N Zn = {x ∈ X : Nx ∈ Zn
}, a discrete grid

embedded in the original state space X. We refer to the parameter N somewhat loosely as
the population size.

The procedures agents follow in deciding when to switch strategies and which strate-
gies to switch to are called revision protocols.

Definition. A revision protocol ρp is a map ρp : Rnp
× Xp

→ Rnp
×np

+ . The scalar ρp
ij (πp, xp) is

called the conditional switch rate from strategy i ∈ Sp to strategy j ∈ Sp given payoff vector πp

and population state xp.

We will also refer to the collection ρ = (ρ1, . . . , ρp) as a revision protocol when no confusion
will arise.

A population game F, a population size N, and a revision protocolρdefine a continuous
time evolutionary process on X N. A one-size-fits-all interpretation of this process is as
follows. Each agent in the society is equipped with a “stochastic alarm clock”. The
times between rings of an agent’s clock are independent, each with a rate R exponential
distribution. (This modeling device is often called a “Poisson alarm clock” for reasons to
be made clear below.) We assume that the rate R satisfies

R ≥ max
xp,πp,i, p

∑
j∈Sp

ρp
ij(π

p, xp),

and that the ring times of different agents’ clocks are independent of one another.
The ringing of a clock signals the arrival of a revision opportunity for the clock’s

owner. If an agent playing strategy i ∈ Sp receives a revision opportunity, he switches to
strategy j , i with probability ρp

ij/R, and he continues to play strategy i with probability
1 −

∑
j,i ρ

p
ij/R; this decision is made independently of the timing of the clocks’ rings. If a

switch occurs, the population state changes accordingly, from the old state x to a new state
y that accounts for the agent’s choice. As the evolutionary process proceeds, the alarm
clocks and the revising agents are only influenced by the prior history of the process by
way of the current values of payoffs and the social state.

This interpretation of the evolutionary process can be applied to any revision protocol.
Still, simpler interpretations are often available for protocols with additional structure.

To motivate one oft-satisfied structural condition, observe that in the interpretation
provided above, the diagonal components ρp

ii of the revision protocol play no role what-
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soever. But if the protocol is exact—that is, if there is a constant R > 0 such that

(4.1)
∑
j∈Sp

ρp
ij(π

p, xp) = R for all πp
∈ Rnp

, xp
∈ Xp, i ∈ Sp, and p ∈ P ,

then the values of these diagonal components become meaningful: in this case, ρp
ii/R =

1−
∑

j,i ρ
p
ij/R is the probability that a strategy i player who receives a revision opportunity

does not switch strategies.
Exact protocols are particularly easy to interpret when R = 1: in this case, agents’

clocks ring at rate 1, and for every strategy j ∈ Sp, ρp
ij itself represents the probability that

an i player whose clock rings proceeds by playing strategy j. We will henceforth assume
that protocols described as exact have clock rate R = 1 unless a different clock rate is
specified explicitly. This focus on unit clock rates is not very restrictive: the only effect
of replacing a protocol ρ with its scalar multiple 1

Rρ is to change the speed at which the
evolutionary process runs by a constant factor.

Other examples of protocols that allow alternative interpretations of the evolutionary
process can be found in Section 4.2.

4.1.2 Mean Dynamics

The model above defines a stochastic process {XN
t } on the state space X N. We now

derive a deterministic process that describes the expected motion of {XN
t }. In Chapter 10,

we will prove that this deterministic process provides a very good approximation of the
behavior of the stochastic process {XN

t } so long as the time horizon of interest is finite and
the population size is sufficiently large. But having noted this result, we will focus in the
intervening chapters on the deterministic process itself.

The times between rings of each agent’s stochastic alarm clock are independent and
follow a rate R exponential distribution. How many times will this agent’s clock ring
during the next t time units? A basic result from probability theory shows that the
number of rings during time interval [0, t] follows a Poisson distribution with mean Rt.
This fact is all we need to perform the analysis below; a detailed account of the exponential
and Poisson distributions can be found in Appendix 10.A.

Let us now compute the expected motion of the stochastic process {XN
t } over the next

dt time units, where dt is small. To rein in our notation we focus on the single population
case.

Each agent in the population receives revision opportunities according to an expo-
nential distribution with rate R, and so each expects to receive R dt opportunities during
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the next dt time units. Thus, if the current state is x, the expected number of revision
opportunities received by agents currently playing strategy i is approximately

Nxi R dt.

We say “approximately” because the value of xi may change during time interval [0, dt],
but this change is very likely to be small if dt is small.

Since an i player who receives a revision opportunity switches to strategy j with
probability ρi j/R, the expected number of such switches during the next dt time units is
approximately

Nxi ρi j dt.

It follows that the expected change in the use in strategy i during the next dt time units is
approximately

(4.2) N

∑
j∈S

x jρ ji − xi

∑
j∈S

ρi j

 dt.

The first term in expression (4.2) captures switches to strategy i from other strategies, while
the second captures switches to other strategies from strategy i. Dividing expression (4.2)
by N yields the expected change in the proportion of agents choosing strategy i: that is, in
component xi of the social state. We obtain a differential equation for the social state by
eliminating the time differential dt :

ẋi =
∑
j∈S

x jρ ji − xi

∑
j∈S

ρi j.

This ordinary differential equation is the mean dynamic corresponding to revision protocol
ρ.

We now describe the mean dynamic for the general multipopulation case.

Definition. Let F be a population game, and let ρ be a revision protocol. The mean dynamic
corresponding to F and ρ is

(M) ẋp
i =

∑
j∈Sp

xp
jρ

p
ji(F

p(x), xp) − xp
i

∑
j∈Sp

ρp
ij(F

p(x), xp).
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4.1.3 Target Protocols and Target Dynamics

To conclude this section, we introduce a condition on revision protocols that is satisfied
in many interesting examples, and that generates mean dynamics that are easy to describe
in geometric terms.

We say that ρ is a target protocol if conditional switch rates under ρ do not depend on
agents’ current strategies: in other words, ρp

ij may depend on the candidate strategy j, but
not on the incumbent strategy i. We can represent target protocols using maps of the form
τp : Rnp

× Xp
→ Rnp

+ , where ρp
ij ≡ τ

p
j for all i ∈ Sp. This restriction yields mean dynamics of

the form

(4.3) ẋp
i = mpτp

i (Fp(x), xp) − xp
i

∑
j∈Sp

τp
j (F

p(x), xp),

which we call target dynamics.
What is the geometric interpretation of these dynamics? If τp(πp, xp) ∈ Rnp

+ is not the
zero vector, we can define

λp(πp, xp) =
∑
i∈S

τp
i (πp, xp) and σp

i (πp, xp) =
τp

i (πp, xp)
λp(πp, xp)

.

Then σp(πp, xp) ∈ ∆p is a probability vector, and we can rewrite equation (4.3) as

(4.4) ẋp =

λ
p(Fp(x), xp)

(
mpσp(Fp(x), xp) − xp

)
if τp(Fp(x), xp) , 0,

0 otherwise.

The first case of equation (4.4) tells us that the population state xp
∈ Xp moves in the

direction of the target state mpσp
∈ Xp, the representative of the probability vector σp

∈ ∆p

in the state space Xp = mp∆p; moreover, motion toward the target state proceeds at rate λp.
Figure 4.1.1(i) illustrates this idea in the single population case; since here the population’s
mass is 1, the target state is just the probability vector σp

∈ Xp = ∆p.
Now suppose that protocol τ is an exact target protocol: a target protocol that is exact

with clock rate R = 1 (see equation (4.1) and the subsequent discussion). In this case,
we call the resulting mean dynamic an exact target dynamic. Since exactness implies that
λp
≡ 1, we often denote exact target protocols by σ rather than τ, emphasizing that the

values of σp : Rnp
× Xp

→ ∆np are probability vectors. Exact target dynamics take the
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Figure 4.1.1: Target dynamics in a single population.

especially simple form

(4.5) ẋp = mpσp(Fp(x), xp) − xp.

The vector of motion in (4.5) can be drawn with its tail at the current state xp and its head
at the target state mpσp, as illustrated in Figure 4.1.1(ii) in the single population case.

4.2 Examples

We now offer a number of examples of revision protocols and their mean dynamics
that we will revisit throughout the remainder of the book. Recall that

Fp(x) = 1
mp

∑
i∈Sp

xp
i Fp

i (x)

represents the average payoff obtained by members of population p. It is useful to define
the excess payoff to strategy i ∈ Sp,

F̂p
i (x) = Fp

i (x) − Fp(x),
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as the difference between strategy i’s payoff and the average payoff in population p. The
excess payoff vector for population p is written as

F̂p(x) = Fp(x) − 1Fp(x).

To conserve on notation, the examples to follow are stated for the single population
setting. When introducing revision protocols, we let π ∈ Rn denote an arbitrary payoff

vector; when the population state x ∈ X is also given, we let π̂ = π − 1x′π denote the
resulting excess payoff vector.

Example 4.2.1. Pairwise proportional imitation. Revision protocols of the form

(4.6) ρi j(π, x) = x jri j(π)

are called imitative protocols. The natural interpretation of these protocols differs somewhat
from the one presented in Section 4.1.1. Here, an agent who receives a revision opportunity
chooses an opponent at random and observes her strategy. If our agent is playing strategy
i and the opponent strategy j, the agent switches from i to j with probability proportional
to ri j. Note that the value of x j need not be observed; instead, this term in equation (4.6)
reflects the agent’s observation of a randomly chosen opponent.

Suppose that after selecting an opponent, the agent imitates the opponent only if the
opponent’s payoff is higher than his own, doing so in with probability proportional to the
payoff difference:

ρi j(π, x) = x j[π j − πi]+.

The mean dynamic generated by this revision protocol is

ẋi =
∑
j∈S

x jρ ji(F(x), x) − xi

∑
j∈S

ρi j(F(x), x)

=
∑
j∈S

x jxi[Fi(x) − F j(x)]+ − xi

∑
j∈S

x j[F j(x) − Fi(x)]+

= xi

∑
j∈S

x j(Fi(x) − F j(x))

= xi

(
Fi(x) − F(x)

)
.

This equation, which we can rewrite as

(R) ẋi = xiF̂i(x).
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defines the replicator dynamic, the best known dynamic in evolutionary game theory. Under
this dynamic, the percentage growth rate ẋi/xi of each strategy currently in use is equal to
that strategy’s current excess payoff; unused strategies always remain so. §

Example 4.2.2. Pure imitation driven by dissatisfaction. Suppose that when a strategy i
player receives a revision opportunity, he opts to switch strategies with a probability that
is linearly decreasing in his current payoff. (For example, agents might revise when their
payoffs do not meet a uniformly distributed random aspiration level.) In the event that
the agent decides to switch, he imitates a randomly selected opponent. This leads to the
revision protocol

ρi j(π, x) = (K − πi)x j,

where the constant K is sufficiently large that conditional switch rates are always positive.
The mean dynamic generated by this revision protocol is

ẋi =
∑
j∈S

x jρ ji(F(x), x) − xi

∑
j∈S

ρi j(F(x), x)

=
∑
j∈S

x j(K − F j(x))xi − xi(K − Fi(x))

= xi

K −
∑
j∈S

x jF j(x) − K + Fi(x)


= xiF̂i(x).

Thus, this protocol’s mean dynamic is the replicator dynamic as well. §

Exercise 4.2.3. Imitation of success. Consider the revision protocol

ρi j(π, x) = τ j(π, x) = x j(π j − K),

where the constant K is smaller than any feasible payoff.
(i) Offer an interpretation of this protocol.
(ii) Show that this protocol generates the replicator dynamic as its mean dynamic.
(iii) Part (ii) implies that the replicator dynamic is a target dynamic. Compute the rate

λ(F(x), x) and target state σ(F(x), x) corresponding to population state x. Describe
how these vary as one changes the value of K.

Exercise 4.2.4. In the single population setting, we call a mean dynamic an anti-target
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dynamic if it can be expressed as

ẋ = λ̃(F(x), x)
(
x − σ̃(F(x), x)

)
,

where λ̃(π, x) ∈ R+ and σ̃(π, x) ∈ ∆.
(i) Give a geometric interpretation of anti-target dynamics.
(ii) Show that the replicator dynamic is an anti-target dynamic.

Unlike the imitative protocols introduced above, the protocols to follow have agents
directly evaluate the payoffs of candidate strategies.

Example 4.2.5. Logit choice. Suppose that choices are made according to the logit choice
protocol, the exact target protocol defined by

ρi j(π, x) = σ j(π, x) =
exp(η−1π j)∑

k∈S exp(η−1πk)
.

The parameter η > 0 is called the noise level. If η is large, choice probabilities under the
logit rule are nearly uniform. But if η is near zero, choices are optimal with probability
close to one, at least when the difference between the best and second best payoff is not
too small. By equation (4.5), the exact target dynamic generated by protocol σ is

ẋi = σi(F(x), x) − xi(L)

=
exp(η−1Fi(x))∑

k∈S exp(η−1Fk(x))
− xi.

This is the logit dynamic with noise level η. §

Example 4.2.6. Comparison to the average payoff. Consider the target protocol

ρi j(π, x) = τ j(π, x) = [π̂ j]+.

When an agent’s clock rings, he chooses a strategy at random. If that strategy’s payoff is
above average, the agent switches to it with probability proportional to its excess payoff.
By equation (4.3), the induced target dynamic is

ẋi = τi(F(x), x) − xi

∑
j∈S

τ j(F(x), x)(BNN)

= [F̂i(x)]+ − xi

∑
k∈S

[F̂k(x)]+.
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This is the Brown-von Neumann-Nash (BNN) dynamic. §

Example 4.2.7. Pairwise comparisons. Suppose that

ρi j(π, x) = [π j − πi]+.

When an agent’s clock rings, he selects a strategy at random. If the new strategy’s
payoff is higher than his current strategy’s payoff, he switches strategies with probability
proportional to the difference between the two payoffs. The resulting mean dynamic,

ẋi =
∑
j∈S

x jρ ji(F(x), x) − xi

∑
j∈S

ρi j(F(x), x)(S)

=
∑
j∈S

x j[Fi(x) − F j(x)]+ − xi

∑
j∈S

[F j(x) − Fi(x)]+,

is called the Smith dynamic. §

4.3 Evolutionary Dynamics

With this background established, we now provide a formal definition of evolutionary
dynamics. Let P = {1, . . . , p} be a set of populations with masses mp and strategy sets Sp.
Let X be the corresponding set of social states:

X = {x ∈ Rn
+ : x = (x1, . . ., xp), where

∑
i∈Sp xp

i = mp
}.

Define the sets F and T as follows:

F = {F : X→ Rn : F is Lipschitz continuous};

T = {x : [0,∞)→ X : x is continuous}

F is the set of population games with Lipschitz continuous payoffs; T is the set of
continuous forward-time trajectories through the state space X.

Definition. An evolutionary dynamic is a set-valued map D : F ⇒ T . It assigns each
population game F ∈ F a set of trajectories D(F) ⊂ T satisfying

Existence and forward invariance: For each ξ ∈ X, there is a {xt}t≥0 ∈ D(F) with x0 = ξ.

Thus, for each game F and each initial condition ξ ∈ X, an evolutionary dynamic must
specify at least one solution trajectory that begins at ξ and then remains in X at all positive
times.
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This definition of an evolutionary dynamic is rather general, in that it does not impose
a uniqueness requirement (i.e., since it allows multiple trajectories in D(F) to emanate
from a single initial condition). This generality allows us to handle dynamics defined by
discontinuous differential equations and by differential inclusions—see Chapter 6. But for
dynamics defined by Lipschitz continuous differential equations, this level of generality
is unnecessary: in this case, standard results allow us to ensure not only existence of
solutions, but also:

Uniqueness: For each ξ ∈ X, there is exactly one {xt}t≥0 ∈ D(F) with x0 = ξ.
Lipschitz continuity: For each t, xt = xt(ξ) is a Lipschitz continuous function of ξ.

The basic results on existence and uniqueness of solutions to ordinary differential
equations concern equations defined on open sets. To contend with the fact that our
mean dynamics are defined on the compact, convex set X, we need conditions ensuring
that solution trajectories do not leave this set. The required conditions are provided by
Theorem 4.3.1: if the vector field VF : X → Rn is Lipschitz continuous, and if at each
state x ∈ X, the growth rate vector VF(x) is contained in the tangent cone TX(x), the set
of directions of motion from x that do not point out of X, then all of our desiderata for
solution trajectories are satisfied.

Theorem 4.3.1. Suppose VF : X → Rn is Lipschitz continuous, and let S(VF) ⊂ T be the set
of solutions {xt}t≥0 to ẋ = VF(x). If VF(x) ∈ TX(x) for all x ∈ X, then S(VF) satisfies existence,
forward invariance, uniqueness, and Lipschitz continuity.

Theorem 4.3.1 follows directly from Theorems 4.A.2, 4.A.6, and 4.A.8 in Appendix 4.A.
Its implications for evolutionary dynamics are as follows.

Corollary 4.3.2. Let the map F 7→ VF assign each population game F ∈ F a Lipschitz continuous
vector field VF : X→ Rn that satisfies VF(x) ∈ TX(x) for all x ∈ X. Define D : F ⇒ T by

D(F) = {{xt} ∈ T : {xt} solves ẋ = VF(x)}.

Then D is an evolutionary dynamic. Indeed, for each F ∈ F , the set D(F) ⊂ T satisfies not only
existence and forward invariance, but also uniqueness and Lipschitz continuity.

In light of Corollary 4.3.2, we can identify an evolutionary dynamic D with a map F 7→ VF

that assigns population games to vector fields on X. We sometimes use the notation V(·)

to refer to an evolutionary dynamic as a map in this sense.
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To link these results with revision protocols and mean dynamics, we characterize the
tangent cone requirement explicitly: for VF(x) to lie in TX(x), the growth rates of each
population’s strategies must sum to zero, so that population masses stay constant over
time, and the growth rates of unused strategies must be nonnegative.

Proposition 4.3.3. V(x) ∈ TX(x) if and only if these two conditions hold:
(i)

∑
i∈Sp Vp

i (x) = 0 for all p ∈ P .
(ii) For all i ∈ Sp and p ∈ P , xp

i = 0 implies that Vp
i (x) ≥ 0.

Thus, if V : X → Rn is the mean dynamic generated by a game F and a revision protocol ρ, then
V(x) ∈ TX(x) for all x ∈ X.

Exercise 4.3.4. Verify these claims.

Appendix

4.A Ordinary Differential Equations

4.A.1 Basic Definitions

Every continuous vector field V : Rn
→ Rn defines an ordinary differential equation

(ODE) on Rn, namely

d
dtxt = V(xt).

Often we write ẋt for d
dtxt; we also express the previous equation as

(D) ẋ = V(x).

Equation (D) describes the evolution of a state variable xt over time. When the current
state is xt, the current velocity of state—in other words, the speed and direction of the
change in the state—is V(xt). The trajectory {xt}t∈I is a solution to (D) if ẋt = V(xt) at all
times t in the interval I, so that at each moment, the time derivative of the trajectory is
described by the vector field V (see Figure 4.A.1).

In many applications, one is interested in solving an initial value problem: that is, in
characterizing the behavior of solution(s) to (D) that start at a given initial condition
ξ ∈ Rn.

Example 4.A.1. Exponential growth and decay. The simplest differential equation is the linear
equation ẋ = ax on the real line. What are the solutions to this equation starting from
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Figure 4.A.1: A solution of an ordinary differential equation.

initial condition ξ ∈ R? It is easy to verify that xt = ξ exp(at) is a solution to this equation
on the full time interval (−∞,∞), since

d
dtxt = d

dt (ξ exp(at)) = a(ξ exp(at)) = axt,

as required. This solution describes a process of exponential growth or decay according
to whether a is positive or negative.

In fact, xt = ξ exp(at) is the only solution to ẋ = ax from initial condition ξ. If {yt} is a
solution to ẋ = ax from any initial condition, then

d
dt

(
yt exp(−at)

)
= ẏt exp(−at) − ayt exp(−at) = 0.

Hence, yt exp(−at) is constant, and so yt = ψ exp(at) for some ψ ∈ R. Since y0 = ξ, it must
be that ψ = ξ. §

4.A.2 Existence, Uniqueness, and Continuity of Solutions

Except in cases where the state variable x is one dimensional or the vector field V is
linear, explicit solutions to ODEs are usually impossible to obtain. To investigate dynamics
for which explicit solutions are unavailable, one begins by verifying that a solution exists
and is unique, and then uses various indirect methods to determine its properties.

The main tool for ensuring existence and uniqueness of solutions to ODEs is the
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Picard-Lindelöf Theorem. To state this result, fix an open set O ⊆ Rn. We call the function
f : O→ Rm Lipschitz continuous if there exists a scalar K such that∣∣∣ f (x) − f (y)

∣∣∣ ≤ K
∣∣∣x − y

∣∣∣ for all x, y ∈ O.

More generally, we say that f is locally Lipschitz continuous if for all x ∈ O, there exists an
open neighborhood Ox ⊆ O containing x such that the restriction of f to Ox is Lipschitz
continuous. It is easy to verify that every C1 function is locally Lipschitz.

Theorem 4.A.2 (The Picard-Lindelöf Theorem). Let V : O→ Rn be locally Lipschitz contin-
uous. Then for each ξ ∈ O, there exists a scalar T > 0 and a unique trajectory x : (−T,T) → O
such that {xt} is a solution to (D) with x0 = ξ.

The Picard-Lindelöf Theorem is proved using the method of successive approxima-
tions. Given an approximate solution xk : (−T,T) → O with xk

0 = ξ, one constructs a new
trajectory xk+1 : (−T,T)→ O using the map C that is defined as follows:

xk+1
t = C (xk)t ≡ ξ +

∫ t

0
V(xk

s) ds.

It is easy to see the trajectories {xt} that are fixed points of C are the solutions to (D) with
x0 = ξ. Thus, if C has a unique fixed point, the theorem is proved. But it is possible
to show that if T is sufficiently small, then C is a contraction in the supremum norm;
therefore, the desired conclusion follows from the Banach (or Contraction Mapping) Fixed
Point Theorem.

If V is continuous but not Lipschitz, Peano’s Theorem tells us that solutions to (D) exist,
but in this case solutions need not be unique. The following example shows that when
V does not satisfy a Lipschitz condition, so that small changes in x can lead to arbitrarily
large changes in V(x), it is possible for solution trajectories to escape from states at which
the velocity under V is zero.

Example 4.A.3. Consider the ODE ẋ = 3
2x1/3 on R. The right hand side of this equation is

continuous, but it fails to be Lipschitz at x = 0. One solution to this equation from initial
condition ξ = 0 is the stationary solution xt ≡ 0. Another solution is given by xt = t3/2. In
fact, for each t0 ∈ [0,∞), the trajectory that equals 0 until time t0 and satisfies xt = (t− t0)3/2

thereafter is also a solution; so is the trajectory that satisfies xt = −(t− t0)3/2 after time t0. §

The Picard-Lindelöf Theorem guarantees the existence of a solution to (D) over some
open interval of times. This open interval need not be the full time interval (−∞,∞), as
the following example illustrates.
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Example 4.A.4. Consider the C1 ODE ẋ = x2 on R. The unique solution with initial
condition ξ = 1 is xt = 1

1−t . This solution exists for all negative times, but it “explodes” in
forward time at t = 1. §

When V is locally Lipschitz, one can always find a maximal open time interval over
which the solution to (D) from initial condition ξ exists in the domain O. If V is defined
throughout Rn and is bounded, then the speed of all solution trajectories is bounded as
well, which implies that solutions exist for all time.

Theorem 4.A.5. If V : Rn
→ Rn is locally Lipschitz continuous and bounded, then for each

ξ ∈ Rn, then {xt}, the unique solution to (D) with x0 = ξ, exists for all t ∈ (−∞,∞).

We will often find it convenient to discuss solutions to (D) from more than one initial
condition at the same time. To accomplish this most easily, we introduce the flow of
differential equation (D).

Suppose that V : Rn
→ Rn is Lipschitz continuous, and let A ⊂ Rn be an invariant set

under (D): that is, solutions to (D) with initial conditions in A exist and remain in A at
all times t ∈ (−∞,∞). Then the flow φ : (−∞,∞) × A → A generated by (D) is defined by
φt(ξ) = xt, where {xt}t∈(−∞,∞) is the solution to (D) with initial condition x0 = ξ. If we fix
ξ ∈ A and vary t, then {φt(ξ)}t∈(−∞,∞) is the solution orbit of (D) through initial condition ξ;
note also that φ satisfies the group property φt(φs(ξ)) = φs+t(ξ). If we instead fix t and vary
ξ, then {φt(ξ)}ξ∈A′ describes the positions at time t of solutions to (D) with initial conditions
in A′ ⊆ A.

Using this last notational device, we can describe the continuous variation of solutions
to (D) in their initial conditions.

Theorem 4.A.6. Suppose that V : Rn
→ Rn is Lipschitz continuous with Lipschitz constant

K, and that A ⊂ Rn is invariant under (D). Let φ be the flow of (D), and fix t ∈ (−∞,∞).
Then φt(·) is Lipschitz continuous with Lipschitz constant eK|t| : for all ξ, χ ∈ A, we have that∣∣∣φt(ξ) − φt(χ)

∣∣∣ ≤ |ξ − χ| eK|t|.

The assumption that A is invariant is only made for notational convenience; the theorem
is valid as long as solutions to (D) from ξ and χ exist throughout the time interval from 0
to t.

The proof of Theorem 4.A.6 is a direct consequence of the following inequality, which
is of importance in its own right.

Lemma 4.A.7 (Grönwall’s Inequality). Let zt : [0,T]→ R+ be continuous. Suppose C ≥ 0 and
K ≥ 0 are such that zt ≤ C +

∫ t

0
Kzs ds for all t ∈ [0,T]. Then zt ≤ CeKt for all t ∈ [0,T].
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If we set zt =
∣∣∣φt(ξ) − φt(χ)

∣∣∣, then the antecedent inequality in the lemma is satisfied when
C = |ξ − χ| and K is the Lipschitz constant for V, so Theorem 4.A.6 immediately follows.
Also note that setting ξ = χ establishes the uniqueness of solutions to (D) from each initial
condition.

4.A.3 Ordinary Differential Equations on Compact Convex Sets

The Picard-Lindelöf Theorem concerns ODEs defined on open subsets of Rn. In con-
trast, evolutionary dynamics for population games are defined on the set of population
states X, which is compact and convex. Fortunately, existence and uniqueness of forward
time solutions can still be established in this setting.

To begin, we introduce the notion of forward invariance. The set C ⊆ Rn is forward
invariant under the Lipschitz ODE (D) if every solution to (D) that starts in C at time 0
remains in C at all positive times: if {xt} is the solution to (D) from ξ ∈ C, then xt exists and
lies in C at all t ∈ [0,∞).

When C is forward invariant but not necessarily invariant under (D), we can speak
of the semiflow φ : [0,∞) × A → A generated by (D). While semiflows are not defined
for negative times, they resemble flows in many other respects: by definition, φt(ξ) = xt,
where {xt}t≥0 is the solution to (D) with initial condition x0 = ξ; also, φ is continuous in t
and ξ, and φ satisfies the group property φt(φs(ξ)) = φs+t(ξ).

Now suppose that the domain of the vector field V is a compact, convex set C. Intuition
suggests that as long as V never points outward from C, solutions to (D) should be well
defined and remain in C for all positive times.

Theorem 4.A.8 tells us that if we are given a Lipschitz continuous vector field V that
is defined on a compact convex set C and that never points outward from the boundary
of C, then the ODE ẋ = V(x) leaves C forward invariant. If in addition the negation of
V never points outward from the boundary of C, then C is both forward and backward
invariant under the ODE.

Theorem 4.A.8. Let C ⊂ Rn be a compact convex set, and let V : C→ Rn be Lipschitz continuous.
(i) Suppose that V(x̂) ∈ TC(x̂) for all x̂ ∈ C. Then for each ξ ∈ C, there exists a unique

x : [0,∞)→ C with x0 = ξ that solves (D).
(ii) Suppose that V(x̂) ∈ TC(x̂) ∩ (−TC(x̂)) for all x̂ ∈ C. Then for each ξ ∈ C, there exists a

unique x : (−∞,∞)→ C with x0 = ξ that solves (D).

Proof. (i) Let V : Rn
→ Rn be the extension of V : C→ Rn defined by V(y) = V(ΠC(y)),

where ΠC : Rn
→ C is the closest point projection onto C (see Section 2.B). Then V is
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Lipschitz continuous and bounded. Thus, Theorem 4.A.5 tells us that the ODE

(4.7) ẏ = V(y)

admits unique solutions from all initial conditions in Rn, and that these solutions exist for
all (forward and backward) time. Now let ξ ∈ C, let {xt}t∈(−∞,∞) be the unique solution to
(4.7) with x0 ∈ C, and suppose that xt ∈ C for all positive t; then since V and V agree on C,
{xt}t≥0 must be the unique forward solution to (D) with x0 = ξ. Thus, to prove our result,
it is enough to show that the set C is forward invariant under the dynamic (4.7).

Define the squared distance function δC : Rn
→ R by

δC(y) = min
x∈C
|y − x|2.

One can verify that δC is differentiable with gradient

∇δC(y) = 2(y −ΠC(y)).

Hence, if {yt} is a solution to (4.7), then the chain rule tells us that

(4.8) d
dtδC(yt) = ∇δC(yt)′ ẏt = 2(yt −ΠC(yt))′V(yt) = 2(yt −ΠC(yt))′V(ΠC(yt)).

Suppose we could show that this quantity is bounded above by zero (i.e., that when
yt − ΠC(yt) and V(ΠC(yt)) are nonzero, the angle between them is weakly obtuse.) This
would imply that the distance between yt and C is nonincreasing over time—in other
words, that δC is a Lyapunov function for the set C under the dynamic (4.7)—which would
in turn imply that C is forward invariant under (4.7).

We divide the analysis into two cases. If yt ∈ C, then yt = ΠC(yt), so expression (4.8)
evaluates to zero. On the other hand, if yt < C, then the difference yt − ΠC(yt) is in the
normal cone NC(ΠC(yt)) (see Figure 4.A.2). Since V(ΠC(yt)) ∈ TC(ΠC(yt)), it follows that
(yt −ΠC(yt))′V(ΠC(yt)) ≤ 0, so the proof is complete.

(ii) If V(x̂) ∈ TC(x̂)∩(−TC(x̂)), then a slight modification of the argument above shows
that d

dtδC(yt) = 2(yt − ΠC(yt))′V(ΠC(yt)) = 0, and so that the distance between yt and C is
constant over time under the dynamic (4.7). Therefore, C is both forward and backward
invariant under (4.7), and hence under (D) as well. �
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Figure 4.A.2: The proof of Theorem 4.A.8.

4.N Notes

Section 4.1: Björnerstedt and Weibull (1996) introduce a version of the revision protocol
model and derive the mean dynamics associated with certain imitative decision rules; see
Weibull (1995, Sections 4.4 and 5.3) for a summary. The model studied here builds on
Benaı̈m and Weibull (2003) and Sandholm (2003, 2008d). Versions of target dynamics are
considered in Sandholm (2005a) and Hofbauer and Sandholm (2008).

Section 4.2: The replicator dynamic was introduced by Taylor and Jonker (1978), but is
closely related to a number of older models from mathematical biology—see Schuster and
Sigmund (1983). The latter authors coined the term “replicator dynamic”, borrowing the
term “replicator” from Dawkins (1976, 1982). Example 4.2.1, Example 4.2.2, and Exercise
4.2.3 are due to Schlag (1998), Björnerstedt and Weibull (1996), and Hofbauer (1995a),
respectively.

The logit dynamic is studied by Fudenberg and Levine (1998) and Hofbauer and
Sandholm (2002, 2007). The BNN dynamic was introduced in the context of symmetric
zero sum games by Brown and von Neumann (1950). Nash (1951) uses a discrete version
of this dynamic to devise a proof of existence of Nash equilibrium in normal form games
based on Brouwer’s fixed point theorem. The Smith dynamic, also known as the pairwise
difference dynamic, was introduced by Smith (1984) to study the dynamics of traffic
flow. Generalizations of all of the dynamics from this section are studied in the next two
chapters, where additional references can be found.
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Appendix 4.A: Hirsch and Smale (1974) and Robinson (1995) are fine introductions to
ordinary differential equations at the undergraduate and graduate levels, respectively.
Theorem 4.A.8 is adapted from Smirnov (2002, Theorem 5.7).
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CHAPTER

FIVE

Deterministic Dynamics: Families and Properties

5.0 Introduction

In the model of evolution introduced in Chapter 4, a large society of agents recurrently
play a population game F by applying a revision protocol ρ. Through an informal appeal
to the law of large numbers, we argued that aggregate behavior in the society can be
described by a differential equation

(M) ẋ = VF(x)

on the state space X. Alternatively, by fixing the revision protocol ρ, we can define a map
from population games F to differential equations (M), a map that we call an evolutionary
dynamic.

In this chapter and the next, we introduce families of evolutionary dynamics, where
the dynamics within each family are defined by qualitatively similar revision protocols.
We investigate the properties of the dynamics in each family. One of our goals in doing
so is to provide an evolutionary justification of the prediction of Nash equilibrium play
(see Section 4.0).

The first part of this chapter sets the stage for this analysis. We begin in Section 5.1
by stating general principles for evolutionary modeling in game theory. While some of
these principles are implicit in our formulation of evolutionary dynamics, others must be
imposed directly on our revision protocols.

We do so by introducing two desiderata for revision protocols in Section 5.2. Continuity
(C) asks that revision protocols depend continuously on their inputs. Scarcity of data (SD)
demands that the conditional switch rate from strategy i to strategy j only depend on the
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payoffs of these two strategies. Protocols that respect these two properties do not make
unrealistic demands on the amount of information that agents in an evolutionary model
must possess.

Section 5.2 also offers two conditions that relate aggregate behavior under evolutionary
dynamics to incentives in the underlying games. Nash stationarity (NS) asks that the
rest points of the mean dynamic be precisely the Nash equilibria of the game being
played. Positive correlation (PC) requires that out of equilibrium, strategies’ growth rates
be positively correlated with their payoffs. Evolutionary dynamics satisfying these two
properties respect payoffs in the underlying strategic interaction, and so agree with the
traditional, rationalistic approach to game theory in some primitive way. Section 5.3
previews the performance of each of our families of dynamics under the four desiderata,
and uses examples to highlight the properties of each.

Our study of the families themselves begins in Section 5.4, which introduces imitative
dynamics. These dynamics, whose prototype is the replicator dynamic, are the most
thoroughly studied in the evolutionary literature. While imitative dynamics have many
appealing properties, they admit rest points that are not Nash equilibria; thus, they fail
Nash stationarity (NS), and so fail to provide a full justification of the Nash prediction.

We continue to work toward this justification in Section 5.5, where we introduce excess
payoff dynamics. These dynamics satisfy Nash stationarity, but as they require agents to
know the average payoffs obtained by members of their population, they fail scarcity of
data (SD), and so do not provide the justification we seek.

We come to this justification at last in Section 5.6, where we define pairwise comparison
dynamics. These dynamics, whose revision protocols only require agents to compare the
payoffs of the pair of strategies at issue, satisfy all four of our desiderata, and so provide
our justification of the Nash prediction. This justification is developed further in Section
5.7, which shows that any dynamic that combines imitation and pairwise comparison
satisfies all of our desiderata as well.

Of course, a more compelling justification of the Nash prediction would not only link
Nash equilibrium with stationary states of an evolutionary dynamic, but would also show
that evolution leads to Nash equilibrium from disequilibrium states. This key issue will
be the focus of Part III of the book.

5.1 Principles for Evolutionary Modeling

We begin our discussion by proposing five principles for evolutionary modeling:

(i) Large populations
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(ii) Inertia
(iii) Myopia
(iv) Limited information
(v) Insensitivity to modeling details

The first principle, that populations are large, is not only part of the definition of a
population games; it is also a key component of the deterministic approximation theorem.

This principle buttresses the next two: inertia, that players only occasionally consider
switching strategies; and myopia, that agents condition choices on current behavior and
payoffs, and do not attempt to incorporate beliefs about the future course of play into their
decisions. Both of these principles are built into the definition of a revision protocol: agents
wait a random amount of time before revising, using procedures that only condition on
current payoffs and the current social state. All of the first three principles are mutually
reinforcing: myopic behavior is most sensible when opponents’ behavior adjusts slowly,
and when populations are large enough that individual members become anonymous,
inhibiting repeated game effects.

The fourth principle holds that agents possess limited information about opponents’
behavior. This principle fits in easily with the previous three. When the number of agents
in an interaction is large, exact information about their aggregate behavior typically is
difficult to obtain. If agents make costly efforts to gather such information, it would be
incongruous to then assume that they act upon it in a shortsighted fashion. The principle
of limited information is expressed in our model through restrictions on allowable revision
protocols, as we discuss below.

The fifth principle for evolutionary modeling, insensitivity to modeling details, is of a
different nature than the others. According to this principle, one should be most satisfied
with properties of evolutionary dynamics that are not sensitive to the exact specification of
the revision protocol. If a property holds for all revision protocols with a certain “family
resemblance”, then one can argue that the property is not a consequence of particular
choices of functional forms, but of more fundamental assumptions about how individuals
make decisions. It is because of this principle that our analyses to come focus on families
of evolutionary dynamics, and on establishing properties of dynamics that hold for all
family members.

The principle of insensitivity to modeling details provides a defense against a well
known critique of evolutionary analysis of games: that it is inherently arbitrary. According
to this critique, modelers who depart from the assumption of perfect rationality are
left with an overwhelming array of alternative assumptions; since the choice among
these assumptions is ultimately made in an ad hoc fashion, the predictions of boundedly
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rational models must be viewed with suspicion. Heeding the fifth principle enables us to
dispel this critique: if all qualitatively similar models generate the same predictions, then
arbitrariness is no longer an issue.

5.2 Desiderata for Revision Protocols and Evolutionary Dynamics

We now turn from general principles for evolutionary modeling to specific desirable
properties for revision protocols and their mean dynamics.

5.2.1 Limited Information

Since revision protocols can be essentially arbitrary functions of the payoff vector Fp(x)
and the population state xp, they allow substantial freedom to specify how agents respond
to current strategic conditions. But as we argued in the introduction, it is most in keeping
with the evolutionary paradigm to specify models of choice in which agents only possess
limited information about their strategic environment. Our first two desiderata capture
this idea.

(C) Continuity: ρ is Lipschitz continuous.
(SD) Scarcity of data: For all i, j ∈ Sp and p ∈ P , ρp

ij only depends on πp
i , π

p
j , and xp

j .

It is contrary to the evolutionary paradigm to posit revision protocols that are extremely
sensitive to the exact values of payoffs or of the population state. When the population
size is large, exact information about these quantities can be difficult to obtain; myopic
agents are unlikely to make the necessary efforts. These concerns are reflected in condition
(C), which requires that agents’ revision protocols be Lipschitz continuous functions of
payoffs and the state. Put differently, condition (C) asks that small changes in aggregate
behavior not lead to large changes in players’ responses.

The information that agents in an evolutionary model possess depends on the appli-
cation at hand: in some settings—for instance, if information is provided by a central
planner—agents might have every bit of information that could conceivably be of use.
But in others agents might know very little about their strategic environment.

Condition (SD), scarcity of data, imposes a stringent restriction on the nature of agents’
information, allowing agents to know only those facts that are most germane to the
decision at hand. Under this condition, an agent who receives a revision opportunity
chooses a candidate strategy j either by observing the strategy of a randomly chosen
opponent or by selecting a strategy at random from the set Sp. Then, the agent’s decision
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about whether to switch is based only on the payoffs of the current strategy i and the
candidate strategy j.

Some of the protocols we consider require agents to know the payoffs of all strategies
in Sp. While such protocols fail condition (SD), one can imagine environments where
this payoff information might be within the agents’ grasp. We therefore also propose this
weaker scarcity of data condition:

(SD∗) For all i, j ∈ Sp and p ∈ P , ρp
ij only depends on πp

1, π
p
2, . . ., π

p
np , and xp

j .

To illustrate the use of these conditions, we recall some examples of revision protocols
from Chapter 4. As all of these examples satisfy continuity (C), we focus our attention on
scarcity of data.

Example 5.2.1. The following three revision protocols generate the replicator dynamic as
their mean dynamics:

ρp
ij(π

p, xp) =
xp

j

mp [πp
j − π

p
i ]+,(5.1)

ρp
ij(π

p, xp) = (Kp
− πp

i )
xp

j

mp ,(5.2)

ρp
ij(π

p, xp) =
xp

j

mp (πp
j − Kp).(5.3)

(In equations (5.2) and (5.3), we assume the constant Kp is chosen so that ρp
ij(π

p, xp) ≥ 0.)
Protocol (5.1) is pairwise proportional imitation, protocol (5.2) is pure imitation driven by
dissatisfaction, and protocol (5.3) is imitation of success. All three of these protocols satisfy
condition (SD). §

Example 5.2.2. The logit dynamic is derived from the exact target protocol

ρp
ij(π

p, xp) = σp
j (π

p, xp) =
exp(η−1πp

j )∑
k∈Sp exp(η−1πp

k)
.

This protocol fails condition (SD), but it satisfies condition (SD∗). §

Example 5.2.3. The target protocol

ρp
ij(π

p, xp) = τp
j (π

p, xp) = [π̂p
j ]+

induces the BNN dynamic as its mean dynamic. This protocol conditions on strategy j’s
excess payoff π̂p

j = πp
j −

1
mp (xp)′πp, and hence on the population average payoff 1

mp (xp)′πp.
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Since computing this average payoff requires knowledge of the payoffs and utilization
levels of all strategies, this protocol fails both condition (SD) and condition (SD∗). §

5.2.2 Incentives and Aggregate Behavior

Our two remaining desiderata impose restrictions on mean dynamics, linking the
evolution of aggregate behavior to the incentives in the underlying game. The first of the
two constrains equilibrium behavior, the second disequilibrium dynamics.

(NS) Nash stationarity: VF(x) = 0 if and only if x ∈ NE(F).
(PC) Positive correlation: Vp

F(x) , 0 implies that Vp
F(x)′Fp(x) > 0.

Nash stationarity (NS) requires that the Nash equilibria of the game F and the rest points
of the dynamic VF coincide. It can be split into two distinct restrictions. First, (NS) asks
that every Nash equilibrium of F be a rest point of VF. If state x is a Nash equilibrium,
then no agent benefits from switching strategies; (NS) demands that in this situation, the
state be at rest under VF. This does not mean that the agents never switch strategies at
this state; instead, it requires that the expected aggregate impact of switches is nil.

Second, condition (NS) asks that every rest point of VF be a Nash equilibrium of F. If
the current population state is not a Nash equilibrium, then by definition there are agents
who would benefit from switching strategies. Condition (NS) requires that some of these
agents eventually avail themselves of this opportunity.

Positive correlation (PC) is a mild payoff monotonicity condition that has force whenever
a population is not at rest. To understand its name, view the strategy set Sp = {1, . . .,np

}

as a probability space endowed with the uniform probability measure. Then the vectors
Vp

F(x) ∈ Rnp and Fp(x) ∈ Rnp can be interpreted as random variables on Sp, making it
meaningful to ask about their covariance.

To evaluate this quantity, we make a simple observation: if Y and Z are random
variables and the expectation of Y is zero, then the covariance of Y and Z is just the
expectation of their product:

Cov(Y,Z) = E(YZ) − E(Y)E(Z) = E(YZ).

Since the dynamic VF keeps population masses constant (in other words, since Vp
F(x) ∈

TXp), we know that the components of Vp
F(x) sum to zero. Thus

E(Vp(x)) =
∑
k∈Sp

1
np Vp

k (x) = 0, and so
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Cov(Vp(x),Fp(x)) = E(Vp(x) Fp(x)) =
∑
k∈Sp

1
np Vp

k (x) Fp
k(x) = 1

np Vp(x)′Fp(x).

We can therefore restate condition (PC) as follows: if Vp
F(x) , 0, then Cov(Vp

F(x),Fp(x)) > 0.
One can visualize condition (PC) through its geometric interpretation: whenever the

growth rate vector Vp
F(x) is nonzero, it forms a strictly acute angle with the vector of

payoffs Fp(x) (see Examples 5.2.5 and 5.2.7 below). In rough terms, this means that the
direction of motion does not overly distort the direction of the payoff vector.

In this connection, it is worth emphasizing that while the payoff vector Fp(x) can be any
vector in Rnp , forward invariance requires the growth rate vector Vp

F(x) to be an element
of the tangent cone TXp(xp): its components must sum to zero, and it must not assign
negative growth rates to unused strategies (Proposition 4.3.3). This means that in most
games, evolutionary dynamics must distort payoff vectors in order to remain feasible.
The dynamic that minimizes this distortion, the projection dynamic, is studied in Chapter
6.

There is an important link between our two conditions: the out-of-equilibrium condi-
tion (PC) implies half of the equilibrium condition (NS). In particular, if positive correlation
holds, then every Nash equilibrium of F is a rest point under VF.

This is easiest to see in the single population setting. If x is a Nash equilibrium of F,
then F(x) is in the normal cone of X at x. Since VF(x) is a feasible direction of motion from
x, it is in the tangent cone of X at x; thus, the angle between F(x) and VF(x) cannot be acute.
Positive correlation therefore implies that x is a rest point of VF.

More generally, we have the following result.

Proposition 5.2.4. If VF satisfies (PC), then x ∈ NE(F) implies that VF(x) = 0.

Proof. Suppose that VF satisfies (PC) and that x ∈ NE(F). Recall that

x ∈ NE(F) ⇔ F(x) ∈ NX(x) ⇔ [v′F(x) ≤ 0 for all v ∈ TX(x)] .

Now fix p ∈ P , and define the vector v ∈ Rn by vp = Vp
F(x) and vq = 0 for q , p. Then

v ∈ TX(x) by construction, and so Vp
F(x)′Fp(x) = v′F(x) ≤ 0. Condition (PC) then implies

that Vp
F(x) = 0. Since p was arbitrary, we conclude that VF(x) = 0. �

Example 5.2.5. Consider the two-strategy coordination game

F(x) =

F1(x)
F2(x)

 =

1 0
0 2

 x1

x2

 =

 x1

2x2

 ,
133



x1

x2

Figure 5.2.1: Condition (PC) in 12 Coordination.

and the replicator dynamic for this game,

V(x) =

V1(x)
V2(x)

 =

x1F̂1(x)
x2F̂2(x)

 =

 x1
(
x1 −

(
(x1)2 + 2(x2)2))

x2
(
2x2 −

(
(x1)2 + 2(x2)2))

 ,
both of which are graphed in Figure 5.2.1. At each state that is not a rest point, the angle
between F(x) and V(x) is acute. At each Nash equilibrium, no vector that forms an acute
angle with the payoff vector is a feasible direction of motion; thus, all Nash equilibria
must be rest points under V. §

Exercise 5.2.6. Suppose that F is a two-strategy game, and let VF and V̂F be Lipschitz
continuous dynamics that satisfy condition (PC). Show that if neither dynamic is at rest
at state x ∈ X, then V̂F(x) is a positive multiple of VF(x). Conclude that if VF and V̂F also
satisfy condition (NS), then V̂F(x) = k(x)VF(x) for some positive function k : X→ (0,∞). In
this case, the phase diagrams of VF and V̂F are identical, and solutions to VF and V̂F differ
only by a change in speed (cf Exercise 5.4.10 below). §

Example 5.2.7. Consider the three-strategy coordination game

F(x) =


F1(x)
F2(x)
F2(x)

 =


1 0 0
0 2 0
0 0 3



x1

x2

x2

 =


x1

2x2

3x2

 .
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Since payoffs are now vectors in R3, they can no longer be drawn in a two-dimensional
picture, so we draw the projected payoff vectors

ΦF(x) =
(
I − 1

311′
)

F(x) =


x1 −

1
3 (x1 + 2x2 + 3x3)

2x2 −
1
3 (x1 + 2x2 + 3x3)

3x3 −
1
3 (x1 + 2x2 + 3x3)


instead. Since dynamic VF also takes values in TX, drawing the growth rate vectors VF(x)
and the projected payoff vectors ΦF(x) is enough to evaluate property (PC) (cf Exercise
5.2.8). In Figure 5.2.2(i), we plot the projected payoffs ΦF and the replicator dynamic; in
Figure 5.2.2(ii) we plot the projected payoffs ΦF and the BNN dynamic. In both cases,
except when VF(x) = 0, the angles between VF(x) and ΦF(x) are always acute. At each
Nash equilibrium x, all directions of motion from x that form an acute angle with ΦF(x)
are infeasible, and so both dynamics are at rest. §

Exercise 5.2.8. Let VF be an evolutionary dynamic for the single population game F. Show
that sgn(VF(x)′F(x)) = sgn(VF(x)′ΦF(x)). Thus, to check that (PC) holds, it is enough to
verify that it holds with respect to projected payoffs.

5.3 Families of Evolutionary Dynamics

In the remainder of this chapter and in Chapter 6, we introduce various families and
examples of evolutionary dynamics, and we evaluate them in terms of our four desiderata:
continuity (C), scarcity of data (SD), Nash stationarity (NS), and positive correlation (PC).
Table 5.1 summarizes the results. Let us briefly mention a few of the main ideas from the
analyses to come.

• Imitative dynamics, including the replicator dynamic, satisfy all of the desiderata
except for Nash stationarity (NS): these dynamics admit rest points that are not Nash
equilibria.

• Excess payoff dynamics, including the BNN dynamic, satisfy all of our desiderata
except scarcity of data (SD): the revision protocols that generate these dynamics
involve comparisons between the individual strategies’ payoffs and the population’s
average payoff.

• By introducing revision protocols that only require pairwise comparisons of payoffs,
we obtain a family of evolutionary dynamics that satisfy all four desiderata.
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1

2 3

(i) The replicator dynamic

1

2 3

(ii) The BNN dynamic

Figure 5.2.2: Condition (PC) in 123 Coordination.
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Family Leading example (C) (SD) (NS) (PC)

imitation replicator yes yes no yes
excess payoff BNN yes no yes yes

pairwise comparison Smith yes yes yes yes
best response no yesa yesb yesb

perturbed best response logit yes yesa no no
projection no no yes yes

aThese dynamics fail condition (SD), but satisfy the weaker requirement (SD*).
bThe best response dynamics satisfy versions of conditions (NS) and (PC) defined for differential inclusions.

Table 5.1: Families of evolutionary dynamics and their properties.

• The best response dynamic satisfies versions of all of the desiderata except continu-
ity: its revision protocol depends discontinuously on payoffs.

• We can eliminate the discontinuity of the best response dynamic by introducing
perturbations, but at the cost of violating the incentive conditions. In fact, choosing
the level of perturbations involves a tradeoff between condition (C) and conditions
(NS) and (PC): smaller perturbations reduce the degree of smoothing, while larger
perturbations make the failures of the incentive conditions more severe.

• The projection dynamic minimizes the discrepancy at each state between the vector
of payoffs and the vector representing the directions of motion. It satisfies both of
incentive conditions, but neither of the limited information conditions. There are
a variety of close connections between the projection dynamic and the replicator
dynamic.

Figure 5.3.1 presents phase diagrams for the six basic dynamics in the standard Rock-
Paper-Scissors game

F(x) =


FR(x)
FP(x)
FS(x)

 =


0 −1 1
1 0 −1
−1 1 0



xR

xP

xS

 =


xS − xP

xR − xS

xP − xR

 .
The unique Nash equilibrium of RPS places equal mass on each strategy: x∗ = ( 1

3 ,
1
3 ,

1
3 ).

In the phase diagrams, colors represent speed of motion: within each diagram, motion
is fastest in the red regions and slowest in the blue ones. In this example, the maximum
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(i) replicator (ii) projection

(iii) Brown-von Neumann-Nash (iv) Smith

(v) best response (vi) logit(.08)

Figure 5.3.1: Six basic dynamics in the Rock-Paper-Scissors game.
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speed under the replicator dynamic is
√

2
4 ≈ .3536, while the maximum speed under the

other five dynamics is
√

2 ≈ 1.4142. Some remarks on the phase diagrams:

• The replicator and projection dynamics exhibit closed orbits around the Nash equi-
librium. Under the other four dynamics, the Nash equilibrium is globally asymp-
totically stable.

• The replicator dynamic has rest points at the Nash equilibrium and at each of the
pure states. Under the other dynamics, the only rest point is the Nash equilibrium.

• The phase diagram for the BNN dynamic can be divided into six regions. In the
“odd” regions, exactly one strategy has above average payoffs, so the dynamic
moves directly toward a pure state, just as under the best response dynamic. In
the “even” regions, two strategies have above average payoffs; as these regions are
traversed, the “target point” of the dynamic passes from one pure state to the next.

• Compared to those of the BNN dynamic, solutions of the Smith dynamic approach
the Nash equilibrium at closer angles and at higher speeds.

• Under the best response dynamic, solution trajectories always aim directly toward
the state representing the current best response. The trajectories are kinked whenever
best responses change.

• Unlike those of the best response dynamic, solutions trajectories of the logit dynamic
are smooth. The directions of motion under the two dynamics are similar, except at
states near the boundaries of the best response regions.

• Under the replicator dynamic, the boundary consists of three rest points and three
heteroclinic orbits that connect distinct rest points. All told, the boundary forms what
is known as a heteroclinic cycle.

• Under the projection dynamic, there is a unique forward solution from each initial
condition, but backward solutions are not unique. For example, the outermost
closed orbit (the inscribed circle) is reached in finite time by every solution trajectory
that starts outside of it. In addition, there are solution trajectories that start in the
interior of the state space and reach the boundary in finite time—an impossibility
under any of the other dynamics

We develop these and many other observations in the sections to come.
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5.4 Imitative Dynamics

5.4.1 Definition

Imitative dynamics are based on revision protocols of the form

(5.4) ρp
ij(π

p, xp) = x̂p
j r

p
ij(π

p, xp),

where x̂p
j = xp

j/m
p is the proportion of population p members playing strategy j ∈ Sp. We

can interpret these protocols as follows: When an agent’s clock rings, he randomly chooses
an opponent from his population. If the agent is playing strategy i ∈ Sp and the opponent
strategy j ∈ Sp, then the agent imitates the opponent with probability proportional to the
conditional imitation rate rp

ij.
The revision protocol (5.4) generates a mean dynamic of the form

ẋp
i =

∑
k∈Sp

xp
kρ

p
ki(F

p(x), xp) − xp
i

∑
k∈Sp

ρp
ik(F

p(x), xp)(5.5)

=
∑
k∈Sp

xp
k x̂p

i rp
ki(F

p(x), xp) − xp
i

∑
k∈Sp

x̂p
krp

ik(F
p(x), xp)

= xp
i

∑
k∈Sp

x̂p
k

(
rp

ki(F
p(x), xp) − rp

ik(F
p(x), xp)

)
.

If the revision protocol satisfies the requirements below, the differential equation above
defines an imitative dynamic.

Definition. Suppose that the conditional imitation rates rp
ij are Lipschitz continuous, and that

net conditional imitation rates are monotone:

(5.6) πp
j ≥ π

p
i ⇔ rp

kj(π
p, xp)− rp

jk(π
p, xp) ≥ rp

ki(π
p, xp)− rp

ik(π
p, xp) for all i, j, k ∈ Sp and p ∈ P .

Then the map from population games F ∈ F to differential equations (5.5) is called an imitative
dynamic.

Condition (5.6) says that whenever strategy j ∈ Sp has a higher payoff than strategy
i ∈ Sp, then the net rate of imitation from any strategy k ∈ Sp to j exceeds the net rate of
imitation from k to i. We illustrate this condition in the next subsection using a variety of
examples; the condition’s implications for aggregate behavior are developed thereafter.

Example 5.4.1. The replicator dynamic. The fundamental example of an imitative dynamic
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is the replicator dynamic, defined by

(R) ẋp
i = xp

i F̂p
i (x).

Under the replicator dynamic, the percentage growth rate of each strategy i ∈ Sp currently
in use equals its excess payoff F̂p

i (x) = Fp
i (x) − Fp(x); unused strategies remain so. We

provide a variety of derivations of the replicator dynamic below. §

5.4.2 Examples

The examples to follow are expressed in the setting of a single, unit mass population,
so that x̂i = xi. They are easily recast for multipopulation settings.

Example 5.4.2. Imitation via pairwise comparisons. Suppose that ρi j(π, x) = x j φ(π j − πi),
where φ : R → R+ equals 0 on (−∞, 0] and is strictly increasing on [0,∞). In this case,
an agent only imitates his randomly chosen opponent when the opponent’s payoff is
higher than the agent’s own. Protocols of this form satisfy condition (5.6). If we write
ψ(d) = φ(d) − φ(−d), then we can express the corresponding mean dynamic as

ẋi = xi

∑
k∈S

xk

(
φ(Fi(x) − Fk(x)) − φ(Fk(x) − Fi(x))

)
= xi

∑
k∈S

xk ψ(Fi(x) − Fk(x)).

Setting φ(d) = [d]+ gives us the pairwise proportional imitation protocol from Example 4.2.1.
In this case ψ(d) = d, and the mean dynamic is the replicator dynamic (R). §

Exercise 5.4.3. Suppose we generalize the Example 5.4.2 by letting ρi j(π, x) = x jφi j(π j −πi),
where each function φi j equals 0 on (−∞, 0] and is strictly increasing on [0,∞). Explain
why the resulting mean dynamic need not satisfy condition (5.6), and so need not be an
imitative dynamic. (For an interesting contrast, see Section 5.6.)

Example 5.4.4. Pure imitation driven by dissatisfaction. Suppose that ρi j(π, x) = a(πi) x j. Then
when the clock of an i player rings, he abandons his current strategy with probability
proportional to the abandonment rate a(πi); in such instances, he imitates a randomly chosen
opponent. In this case, condition (5.6) requires that a : R→ R+ be strictly decreasing, and
the mean dynamic becomes

(5.7) ẋi = xi

∑
k∈S

xk

(
a(Fk(x)) − a(Fi(x))

)
= xi

∑
k∈S

xk a(Fk(x)) − a(Fi(x))

 .
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If abandonment rates take the linear form a(πi) = K − πi (where K is large enough), then
(5.7) is again the replicator dynamic (R). §

Example 5.4.5. Imitation of success. Suppose ρi j(π, x) = x j c(π j). Then when an agent’s clock
rings, he picks an opponent at random; if the opponent is playing strategy j, the player
imitates him with probability proportional to the copying rate c(π j). In this case, condition
(5.6) requires that c : R→ R+ be strictly increasing, and the mean dynamic becomes

(5.8) ẋi = xi

∑
k∈S

xk

(
c(Fi(x)) − c(Fk(x))

)
= xi

c(Fi(x)) −
∑
k∈S

xk c(Fk(x))

 .
Since ρ is a target protocol (i.e., since ρi j ≡ τ j), the mean dynamic (5.8) is actually a target
dynamic:

ẋi =


∑
k∈S

xk c(Fk(x))
(

xi c(Fi(x))∑
k∈S xk c(Fk(x))

− xi

)
if x j c(F j(x)) , 0 for some j ∈ S,

0 otherwise.

If copying rates are of the linear form c(π j) = π j + K (for K large enough), then (5.8) is
once again the replicator dynamic (R). If in addition payoffs are nonnegative and average
payoffs are positive, we can choose c(π j) = π j, so that (5.8) becomes

(5.9) ẋi = F(x)
(

xiFi(x)

F(x)
− xi

)
.

Here, the target state is proportional to the vector of popularity-weighted payoffs xi Fi(x),
with the rate of motion toward this state governed by average payoffs F(x). §

Exercise 5.4.6. Why is the restriction on payoffs needed to obtain equation (5.9)?

Example 5.4.7. Imitation of success with repeated sampling. Suppose that

(5.10) ρi j(π, x) =
x j w(π j)∑

k∈S xk w(πk)
,

where
∑

k∈S xk w(πk) > 0. Here, when an agent’s clock rings he chooses an opponent at
random. If the opponent is playing strategy j, the agent imitates him with probability
proportional to the copying weight w(π j). If the agent does not imitate this opponent, he
draws a new opponent at random and repeats the procedure. In this case, condition (5.6)
requires that w : R → R+ be strictly increasing. Since ρ is an exact target protocol (i.e.,
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(i) The replicator dynamic (ii) The Maynard Smith replicator dynamic

Figure 5.4.1: Two imitative dynamics in 123 Coordination.

since ρi j ≡ σ j and
∑

j∈S σ j ≡ 1), it induces the exact target dynamic

(5.11) ẋi =
xi w(Fi(x))∑

k∈S xk w(Fk(x))
− xi. §

We conclude with two important instances of repeated sampling.

Example 5.4.8. The Maynard Smith replicator dynamic. If payoffs are nonnegative and av-
erage payoffs are positive, we can let copying weights equal payoffs: w(π j) = π j. The
resulting exact target dynamic,

(5.12) ẋi =
xi Fi(x)

F(x)
− xi =

xi F̂i(x)

F(x)
,

is known as the Maynard Smith replicator dynamic.
Example 5.4.5 showed that under the same assumptions on payoffs, the replicator

dynamic takes the form (5.9). The Maynard Smith replicator dynamic (5.12) differs from
(5.9) only in that the target state is approached at a unit rate rather than at a rate determined
by average payoffs; thus, motion under (5.9) is relatively fast when average payoffs are
relatively high. Comparing the protocol here to the one from Example 5.4.5 reveals the
source of the difference in speeds: under repeated sampling, the overall payoff level has
little influence on the probability that a revising agent winds up switching strategies.

In the single population setting, the phase diagrams of (5.9) and (5.12) are identical, and
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(i) The replicator dynamic

H
H

T

T

(ii) The Maynard Smith replicator dynamic

Figure 5.4.2: Two imitative dynamics in Matching Pennies.

the dynamics only differ in terms of the speed at which solution trajectories are traversed
(cf Exercise 5.4.10). We illustrate this in Figure 5.4.1, which presents phase diagrams for
the two dynamics in 123 Coordination.

When there are multiple populations, the fact that average payoffs differ across pop-
ulations implies that the phase diagrams of (5.9) and (5.12) no longer coincide. This is
illustrated in Figure 5.4.2, which presents phase diagrams for this Matching Pennies game:

h t
H 2, 1 1, 2
T 1, 2 2, 1

While interior solutions of (5.9) form closed orbits around the unique Nash equilibrium
x∗ = (( 1

2 ,
1
2 ), (1

2 ,
1
2 )), interior solutions of (5.12) converge to x∗. §

In the biology literature, the stochastic evolutionary process generated by the revision
protocol in the previous example is known as a frequency-dependent Moran process—see the
Notes for further discussion.

Example 5.4.9. The i-logit dynamic. If the copying weights w(π j) = exp(η−1π j) are exponen-
tial functions of payoffs, the exact target dynamic (5.11) becomes the i-logit dynamic with
noise level η > 0.

ẋi =
xi exp(η−1Fi(x))∑

k∈S xk exp(η−1Fk(x))
− xi.
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Here, the ith component of the target state is proportional both to the mass of agents
playing strategy i and to an exponential function of strategy i’s payoff. If η is small, and x
is not too close to the boundary of X or of any best response region, then the target state
is close to eb(x), the vertex of X corresponding to the current best response. Therefore, in
most games, the i-logit dynamic with small η approximates the best response dynamic
ẋ ∈ B(x) − x on much of int(X). We illustrate this in Figure 5.4.3, which presents four
i-logit dynamics (with η = .5, .1, .05, and .01) and the best response dynamic for the
anticoordination game

F(x) = Ax =


−1 0 0
0 −1 0
0 0 −1



x1

x2

x3

 =


−x1

−x2

−x3

 . §
Exercise 5.4.10. Changes of speed and reparameterizations of time. Let V : Rn

→ Rn be a
Lipschitz continuous vector field and let k : Rn

→ (0,∞) be a positive Lipschitz continuous
function. Let {xt} be a solution to ẋ = V(x) with initial condition ξ, and let {yt} be a solution
to ẋ = k(x)V(x), also with initial condition ξ. Show that yt = xI(t), where I(t) =

∫ t

0
k(ys) ds.

5.4.3 Biological Derivations of the Replicator Dynamic

While we have derived the replicator dynamic from models of imitation, its origins lie
in mathematical biology, where it arises from models of intra- and inter-species competi-
tion. The next two exercises, which are set in a single population, consider the replicator
dynamic from this point of view.

Exercise 5.4.11. In the basic game theoretic model of natural selection within a single animal
species, each strategy i ∈ S represents a behavioral type. The value of Fi(x) represents
the (reproductive) fitness of type i when the current proportions of types are described by
x ∈ int(X). In particular, if we let yi ∈ (0,∞) represent the (absolute) number animals of
type i in the population, then the evolution of the population is described by

(5.13) ẏi = yiFi(x), where xi =
yi∑

j∈S y j
.

Show that under equation (5.13), the vector x describing the proportions of animals of
each of each type evolves according to the replicator equation (R).

Exercise 5.4.12. The Lotka-Volterra equation. The Lotka-Volterra equation is a fundamental
model of biological competition among members of multiple species. When there are
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(i) The i-logit(.5) dynamic (ii) The i-logit(.1) dynamic

(iii) The i-logit(.05) dynamic (iv) The i-logit(.01) dynamic

(v) The best response dynamic

Figure 5.4.3: i-logit and best response dynamics in Anticoordination.
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n − 1 species, the equation takes the form

(5.14) ẏk = yk
(
bk + (My)k

)
, k ∈ {1, . . . ,n − 1},

where bk is the baseline growth rate for species k, and the interaction matrix M ∈ R(n−1)×(n−1)

governs cross-species effects. Show that after the change of variable

xi =
yi

1 +
∑n−1

l=1 yl

and xn =
1

1 +
∑n−1

l=1 yl

,

the n− 1 dimensional Lotka-Volterra equation (5.14) is equivalent up to a change of speed
(cf Exercise 5.4.10) to the n strategy replicator dynamic

ẋi = xi((Ax)i − x′Ax), i ∈ {1, . . . ,n},

where the payoff matrix A ∈ Rn×n is related to M ∈ R(n−1)×(n−1) and b ∈ Rn−1 by the R(n−1)×n

matrix equation(
M b

)
=

(
I (−1)

)
A.

If M and b are given, this equation determines A up to an additive constant in each column.
Thus, A can always be chosen so that either the elements of its last row or the elements of
its diagonal are all 0.

5.4.4 Extinction and Invariance

We now derive properties shared by all imitative dynamics. First of all, it follows
immediately from equation (5.5) that all imitative dynamics satisfy extinction: if a strategy
is unused, its growth rate is zero.

(5.15) If xp
i = 0, then Vp

i (x) = 0.

Extinction implies that the growth rate vectors V(x) are always tangent to the boundaries of
X: formally, V(x) is not only in TX(x), but also in −TX(x) (cf Proposition 4.3.3). Thus, since
imitative dynamics are Lipschitz continuous, it follows from Theorem 4.A.8 in Chapter 4
that solutions to imitative dynamics exist for all positive and negative times.

Proposition 5.4.13 (Forward and backward invariance). Let ẋ = VF(x) be an imitative dy-
namic. Then for each initial condition ξ ∈ X, this dynamic admits a unique solution trajectory in
T (−∞,∞) = {x : (−∞,∞)→ X : x is continuous}.
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Extinction also implies a second invariance property: if {xt} is a solution trajectory of
an imitative dynamic, then the support of xt is independent of t. Uniqueness of solution
trajectories, which is implied by the Lipschitz continuity of the dynamic, is an essential
ingredient of the proof of this result.

Theorem 5.4.14 (Support invariance). If {xt} is a solution trajectory of an imitative dynamic,
then the sign of component (xt)

p
i is independent of t ∈ (−∞,∞).

Proof. Let {xt} be a solution to the imitative dynamic ẋ = V(x), and suppose that x0 = ξ.
Suppose that ξp

i = 0; we want to show that (xt)
p
i = 0 for all t ∈ (−∞,∞). To accomplish

this, we define a new vector field V̂ : X→ Rn as follows:

V̂q
j (x) =

0 if j = i and q = p,

Vq
j (x) otherwise.

If {x̂t} ⊂ X is the unique solution to ẋ = V̂(x) with x̂0 = ξ, then (x̂t)
p
i = 0 for all t. But V

and V̂ are identical whenever xp
i = 0 by extinction (5.15); therefore, {x̂t} is also a solution

to ẋ = V(x). Since solutions to ẋ = V(x) are unique, it must be that {x̂t} = {xt}, and hence
that (xt)

p
i = 0 for all t.

Now suppose that ξp
i > 0. If xt = χ satisfied χp

i = 0, then the preceding analysis would
imply that there are two distinct solutions to ẋ = V(x) with xt = χ, one that is contained in
the boundary of X and one that is not. As this would contradict uniqueness of solutions,
we conclude (xt)

p
i > 0 at all times t. �

All of the phase diagrams presented in this section illustrate the face invariance prop-
erty. The next example points out one of its more subtle consequences.

Example 5.4.15. Figure 5.4.4 presents the phase diagram of the replicator dynamic for a
game with a strictly dominant strategy: for all x ∈ X, F1(x) = 1 and F2(x) = F3(x) = 0.
There are two connected components of rest points: one consisting solely of the unique
Nash equilibrium e1, and the other containing those states at which strategy 1 is unused.
Clearly, the latter component is unstable, as all nearby solution trajectories lead away from
it and toward the Nash equilibrium. But as the coloring of the figure indicates, the speed
of motion away from the unstable component is very slow: if a small behavior disturbance
pushes the state off of the component, it may take a long time before the stable equilibrium
is reached. §
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Figure 5.4.4: The replicator dynamic in a game with a strictly dominant strategy.

5.4.5 Monotone Percentage Growth Rates and Positive Correlation

We now turn to monotonicity properties of imitative dynamics. All dynamics of form
(5.5) can be expressed as

(5.16) ẋp
i = Vp

i (x) = xp
i Gp

i (x), where Gp
i (x) =

∑
k∈Sp

x̂p
k

(
rp

ki(F
p(x), xp) − rp

ik(F
p(x), xp)

)
.

If strategy i ∈ Sp is in use, then Gp
i (x) = Vp

i (x)/xp
i represents the percentage growth rate of the

number of agents using this strategy.
Observation 5.4.16 notes that under every imitative dynamic (as defined in Section

5.4.1), strategies’ percentage growth rates are ordered by their payoffs.

Observation 5.4.16. All imitative dynamics exhibit monotone percentage growth rates:

(5.17) Gp
i (x) ≥ Gp

j (x) if and only if Fp
i (x) ≥ Fp

j (x).

This observation is immediate from condition (5.6), which defines imitative dynamics.
Condition (5.17) is a strong restriction on strategies’ percentage growth rates. We now

show that it implies our basic payoff monotonicity condition, which imposes a weak
restriction on strategies’ absolute growth rates.
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Theorem 5.4.17. All imitative dynamics satisfy positive correlation (PC).

Proof. Let x be a social state at which Vp(x) , 0; we need to show that Vp(x)′Fp(x) > 0.
To do so, we define

Sp
+(x) = {i ∈ Sp : Vp

i (x) > 0} and Sp
−
(x) = { j ∈ Sp : Vp

j (x) < 0}

to be the sets of population p strategies with positive and negative absolute growth rates,
respectively. By extinction (5.15), these sets are contained in the support of xp. It follows
that

Sp
+(x) = {i ∈ Sp : xp

i > 0 and
Vp

i (x)

xp
i

> 0} and Sp
−
(x) = { j ∈ Sp : xp

j > 0 and
Vp

j (x)

xp
j

< 0}.

Since V(x) ∈ TX, we know from Proposition 4.3.3 that∑
k∈Sp

+(x)

Vp
k (x) = −

∑
k∈Sp

−
(x)

Vp
k (x),

and since Vp(x) , 0, these expressions are positive. Therefore, condition (5.17) enables us
to conclude that

Vp(x)′Fp(x) =
∑

k∈Sp
+(x)

Vp
k (x) Fp

k(x) +
∑

k∈Sp
−

(x)

Vp
k (x) Fp

k(x)

≥ min
i∈Sp

+(x)
Fp

i (x)
∑

k∈Sp
+(x)

Vp
k (x) + max

j∈Sp
−

(x)
Fp

j (x)
∑

k∈Sp
−

(x)

Vp
k (x)

=

(
min
i∈Sp

+(x)
Fp

i (x) − max
j∈Sp
−

(x)
Fp

j (x)
) ∑

k∈Sp
+(x)

Vp
k (x) > 0. �

We conclude this section by considering two other monotonicity conditions that appear
in the literature.

Exercise 5.4.18. In the single population setting, an imitative dynamic (5.16) has aggregate
monotone percentage growth rates if

(5.18) ŷ′G(x) ≥ y′G(x) if and only if ŷ′F(x) ≥ y′F(x)

for all population states x ∈ X and mixed strategies ŷ, y ∈ ∆.
(i) Show that any imitative dynamic satisfying condition (5.18) is equivalent to the

replicator dynamic up to a reparameterization of time (see Exercise 5.4.10). (Hint:
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Use Proposition 3.B.6 to show that condition (5.18) implies that ΦG(x) = c(x) ΦF(x)
for some c(x) > 0. Then use the fact that G(x)′x = 0 (why?) to conclude that
ẋi = k(x) xi F̂i(x).)

(ii) If a multipopulation imitative dynamic satisfies the natural analogue of condition
(5.18), what can we conclude about the dynamic?

Exercise 5.4.19. An dynamic of form (5.16) has sign-preserving percentage growth rates if

(5.19) sgn(Gp
i (x)) = sgn(F̂p

i (x)).

Show that any such dynamic satisfies positive correlation (PC). (Note that dynamics
satisfying condition (5.19) need not satisfy condition (5.6), and so need not be imitative
dynamics as we have defined them here. We do not know of an intuitive restriction on
revision protocols that leads to condition (5.19).)

5.4.6 Rest Points and Restricted Equilibria

Since all imitative dynamics satisfy positive correlation (PC), Proposition 5.2.4 tells us
that their rest points include all Nash equilibria of the underlying game F. On the other
hand, face invariance tells us that non-Nash rest points can exist—for instance, while pure
states in X are not always Nash equilibria of F, they are necessarily rest points of VF.

To characterize the set of rest points, we first recall the definition of Nash equilibrium:

NE(F) = {x ∈ X : xp
i > 0⇒ Fp

i (x) = max
j∈Sp

Fp
j (x)}.

Bearing this definition in mind, we define the set of restricted equilibria of F by

RE(F) = {x ∈ X : xp
i > 0⇒ Fp

i (x) = max
j∈Sp:x j>0

Fp
j (x)}.

In words, x is a restricted equilibrium of F if it is a Nash equilibrium of a restricted version
of F in which only strategies in the support of x can be played.

Exercise 5.4.20. Alternate definitions of restricted equilibrium.

(i) Show that x ∈ RE(F) if and only if within each population p, all strategies in the
support of xp achieve the same payoff: RE(F) = {x ∈ X : xp

i > 0⇒ Fp
i (x) = πp

}.
(ii) We can also offer a geometric definition of restricted equilibrium. Let X[x̂] be the

set of social states whose supports are contained in the support of x̂ : X[x̂] = {x ∈
X : x̂p

i = 0 ⇒ xp
i = 0}. Show that x ∈ RE(F) if and only if the payoff vector F(x) is

contained in the normal cone of X[x] at x : RE(F) = {x ∈ X : F(x) ∈ NX[x](x)}.
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Because imitative dynamics exhibit face invariance, strategies that are initially unused
are never subsequently chosen. This suggests a link between rest points of imitative
dynamics and the restricted equilibria of the underlying game that is established in the
following theorem.

Theorem 5.4.21. If ẋ = VF(x) is an imitative dynamic, then RP(VF) = RE(F).

Proof. x ∈ RP(V)⇔ Vp
i (x) = 0 for all i ∈ Sp, p ∈ P

⇔
Vp

i (x)

xp
i

= 0 whenever xp
i > 0, p ∈ P (by (5.15))

⇔ Fp
i (x) = πp whenever xp

i > 0, p ∈ P (by (5.17))

⇔ x ∈ RE(F). �

While there are rest points of imitative dynamics that are not Nash equilibria, we will
see that non-Nash rest points are locally unstable—see Chapter 8. On the other hand, as
Example 5.4.15 illustrates, the speed of motion away from these unstable rest points is
initially rather slow.

Exercise 5.4.22. (i) Suppose that the payoffs of one population game are the negation
of the payoffs of another. What is the relationship between the replicator dynamics
of the two games?

(ii) Give an example of a three-strategy game whose Nash equilibrium is unique and
whose replicator dynamic admits seven rest points.

5.5 Excess Payoff Dynamics

In the next two subsections we consider revision protocols that are not based on imita-
tion of successful opponents, but rather on the direct evaluation of alternative strategies.
Under such protocols, good unused strategies will be discovered and chosen, raising the
possibility that the dynamics satisfy Nash stationarity (NS).

5.5.1 Definition and Interpretation

In some settings, particularly those in which information about population aggregates
is provided by a central planner, agents may know their population’s current average
payoff. (Of course, this violates of scarcity of data (SD).) Suppose that each agent’s
choices are based on comparisons between the various strategies’ current payoffs and the
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population’s average payoff, and that these choices do not condition on the agent’s current
strategy. Then the agents’ choice procedure can be described using a target protocol of
the form

ρp
ij(π

p, xp) = τp
j (π̂

p),

where π̂p
i = πp

i (x)− 1
mp (xp)′πp represents the excess payoff to strategy i ∈ Sp. Such a protocol

generates the target dynamic

ẋp
i = mpτp

i (F̂p(x)) − xp
i

∑
j∈Sp

τp
j (F̂

p(x))(5.20)

=


∑

j∈S τ
p
j (F̂

p(x))

mp
τp

i (F̂p(x))∑
j∈S
τp

j (F̂
p(x))

− xp

 if τp(F̂p(x)) , 0,

0 otherwise.

To obtain our new class of dynamics, we introduce a monotonicity condition for the
protocol τ. To do so, let us first observe that the excess payoff vector F̂p(x) cannot lie in the
interior of the negative orthant Rnp

−
: for this to happen, every strategy would have to earn

a below average payoff. Bearing this in mind, we can let the domain of the function τp be
the set Rnp

∗ = Rnp
− int(Rnp

−
). Note that int(Rnp

∗ ) = Rnp
−Rnp

−
is the set of excess payoff vectors

under which at least one strategy earns an above average payoff, while bd(Rnp

∗ ) = bd(Rnp

−
)

is the set of excess payoff vectors under which no strategy earns an above average payoff.
With this notation in hand, we can define our family of dynamics.

Definition. Suppose the protocols τp : Rnp

∗ → Rnp

+ are Lipschitz continuous and satisfy acuteness:

(5.21) If π̂p
∈ int(Rnp

∗ ), then τp(π̂p)′π̂p > 0.

Then the map from population games F ∈ F to differential equations (5.20) is called an excess
payoff dynamic.

How should one interpret condition (5.21)? If the excess payoff vector π̂p has a positive
component, this condition implies that

σp(π̂p) =
1∑

i∈S
τp

i (π̂p)
τp(π̂p) ∈ ∆p,

the probability vector that defines the target state, is well defined. Acuteness requires
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that if we pick a component of the excess payoff vector π̂p at random according to this
probability vector, then the expected value of this randomly chosen component is strictly
positive. Put differently, acuteness asks that on average, revising agents switch to strategies
with above average payoffs.

Example 5.5.1. The BNN dynamic. Suppose that conditional switch rate to strategy i ∈ Sp

is given by the positive part of strategy i’s excess payoffs: τp
i (π̂p) = [π̂p

i ]+. The resulting
mean dynamic,

(BNN) ẋp
i = mp[F̂p

i (x)]+ − xp
i

∑
j∈Sp

[F̂p
j (x)]+,

is called the Brown-von Neumann-Nash (BNN) dynamic. §

Exercise 5.5.2. k-BNN dynamics. The k-BNN dynamic is generated by the revision protocol
τp

i (π̂p) = [π̂p
i ]k

+, where k ≥ 1. Argue informally that if k is large, then at “typical” states,
the direction of motion under the k-BNN dynamic is close to that under the best response
dynamic, ẋp

∈ mpBp(x) − xp (see Chapter 6), but that the speed of motion is not.

5.5.2 Incentives and Aggregate Behavior

Our goal in this section is to show that every excess payoff dynamic satisfies our two
incentive properties.

Theorem 5.5.3. Every excess payoff dynamic ẋ = VF(x) satisfies Nash stationarity (NS) and
positive correlation (PC).

We prove this result under the assumption that τp satisfies sign preservation:

(5.22) sgn(τp
i (π̂p)) = sgn([π̂p

i ]+).

A proof using only acuteness is outlined in Exercise 5.5.8 below. We also focus on the
single population case; the proof of the multipopulation case is a simple extension of the
argument below.

The proof follows immediately from the following three lemmas.

Lemma 5.5.4. F̂(x) ∈ bd(Rn
∗) if and only if x ∈ NE(F).

Proof. F̂(x) ∈ bd(Rn
∗)⇔ Fi(x) ≤

∑
k∈S

xkFk(x) for all i ∈ S

⇔ there exists a c ∈ R such that Fi(x) ≤ c for all i ∈ S,

154



with F j(x) = c whenever x j > 0

⇔ F j(x) = max
k∈S

Fk(x) whenever x j > 0

⇔ x ∈ NE(F). �

Lemma 5.5.5. If F̂(x) ∈ bd(Rn
∗), then VF(x) = 0.

Proof. Immediate from sign preservation (5.22). �

Lemma 5.5.6. If F̂(x) ∈ int(Rn
∗), then VF(x)′F(x) > 0.

Proof. Recall that F̂(x) = F(x) − 1F(x) and that VF(x) = τ(F̂(x)) − 1′τ(F̂(x)) x. The first
definition implies that x and F̂(x) are always orthogonal:

x′F̂(x) = x′
(
F(x) − 1F(x)

)
= x′F(x) − F(x) = 0.

Combining this with the second definition, we see that if F̂(x) ∈ int(Rn
∗), then

VF(x)′F(x) = VF(x)′(F̂(x) + 1F(x))

= VF(x)′F̂(x) since VF(x) ∈ TX

= (τ(F̂(x)) − 1′τ(F̂(x))x)′F̂(x)

= τ(F̂(x))′F̂(x) since x′F̂(x) = 0

> 0 by acuteness (5.21). �

Exercise 5.5.7. Suppose that revision protocol τp is Lipschitz continuous, acute, and sepa-
rable:

τp
i (πp) ≡ τp

i (πp
i ).

Show that τp also satisfies sign preservation (5.22).

Exercise 5.5.8. This exercise shows how to establish properties (NS) and (PC) using only
continuity and acuteness (5.21)—that is, without requiring sign preservation (5.22). The
proofs of Lemmas 5.5.4 and 5.5.6 go through unchanged, but Lemma 5.5.5 requires addi-
tional work. Using acuteness and continuity, show that

(i) If π̂ ∈ bd(Rn
∗) and π̂i < 0, then τi(π̂) = 0. (Hint: Consider π̂ε = π̂+εe j, where π̂ j = 0.)

(ii) If π̂ ∈ bd(Rn
∗) and π̂i = π̂ j = 0, then τ(π̂) = 0. (Hint: To show that τi(π̂) = 0, consider

π̂ε = π̂ − εei + ε2e j.)
Then use these two facts to prove Lemma 5.5.5.

155



Exercise 5.5.9. This exercise demonstrates that in general, one cannot “normalize” a target
dynamic in order to create an exact target dynamic. This highlights a nontrivial sense in
which the former class of dynamics is more general than the latter.

Recall that in the single population setting, the BNN dynamic is defined by the target
protocol τi(π̂) = [π̂i]+.

(i) It is tempting to try to define an exact target protocol by normalizing τ in an
appropriate way. Explain why such a protocol would not be well-defined.

(ii) To attempt to circumvent this problem, one can construct a dynamic that is derived
from the normalized protocol whenever the latter is well-defined. Show that such
a dynamic must be discontinuous in some games. (Hint: It is enough to consider
two-strategy games.)

5.6 Pairwise Comparison Dynamics

Excess payoff dynamics satisfy Nash stationarity (NS), positive correlation (PC), and
continuity (C), but they fail scarcity of data (SD). The revision protocols that underlie these
dynamics require agents to compare their current payoff with the average payoff obtained
in their population. Without the assistance of a central planner, the latter information is
unlikely to be known to the agents.

A natural way to reduce these informational demands is to replace the population’s
average payoff with another reference payoff, one whose value agents can directly access.
We accomplish this by considering revision protocols based on pairwise payoff compar-
isons, which satisfy scarcity of data (SD). In the remainder of this section, we show that
the resulting evolutionary dynamics can be made to satisfy our other desiderata as well.

5.6.1 Definition

Suppose that the revision protocol ρp only directly conditions on payoffs, not the
population state. The induced mean dynamic is then of the form

(5.23) ẋp
i =

∑
j∈Sp

xp
jρ

p
ji(F

p(x)) − xp
i

∑
j∈Sp

ρp
ij(F

p(x)),

This equation and a mild monotonicity condition on ρ defines our next class of dynamics.

Definition. Suppose that the revision protocol ρ is Lipschitz continuous and sign preserving:

(5.24) sgn(ρp
ij(π

p)) = sgn([πp
j − π

p
i ]+) for all i, j ∈ Sp and p ∈ P .
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Then the map from population games F ∈ F to differential equations (5.23) is called a pairwise
comparison dynamic.

Sign preservation (5.24) is a particularly natural property: it says that the conditional
switch rate from i ∈ Sp to j ∈ Sp is positive if and only if the payoff to j exceeds the payoff

to i.

Example 5.6.1. The Smith dynamic. The simplest sign preserving revision protocol,

ρp
ij(π

p) = [πp
j − π

p
i ]+.

generates the Smith dynamic:

(S) ẋp
i =

∑
j∈Sp

xp
j [F

p
i (x) − Fp

j (x)]+ − xp
i

∑
j∈Sp

[Fp
j (x) − Fp

i (x)]+. §

Exercise 5.6.2. The k-Smith dynamic. Consider instead the protocol ρp
ij(π

p) = [πp
j − π

p
i ]k

+,
where k ≥ 1. Argue informally that in the single population case, when k is large, the
direction of motion from most states x is approximately parallel to an edge of the simplex.
How is this edge determined from the payoff vector F(x)?

5.6.2 Incentives and Aggregate Behavior

Our main result in this section is

Theorem 5.6.3. Every pairwise comparison dynamic satisfies Nash stationarity (NS) and positive
correlation (PC).

The proof of this theorem relies on three equivalences between properties of Nash
equilibria and evolutionary dynamics on the one hand, and requirements that sums of
terms of the form ρp

ij, [F
p
j − Fp

i ]+, or ρp
ij [Fp

j − Fp
i ]+ equal zero on the other. Sign preservation

ensures that sums of the three types are identical, allowing us to establish the result.
In what follows, ẋ = V(x) is the pairwise comparison dynamic generated by the

population game F and revision protocol ρ.

Lemma 5.6.4. x ∈ NE(F)⇔ For all i ∈ Sp and p ∈ P , xp
i = 0 or

∑
j∈Sp

[Fp
j (x) − Fp

i (x)]+ = 0.

Proof. Both statements say that each strategy in use at x is optimal. �

Lemma 5.6.5. Vp(x) = 0⇔ For all i ∈ Sp, xp
i = 0 or

∑
j∈Sp
ρp

ij(F
p(x)) = 0.

157



Proof. (⇐) Immediate.
(⇒) Fix a population p ∈ P , and suppose that Vp(x) = 0. If j is an optimal strategy for

population p at x, then sign preservation implies that ρp
jk(F

p(x)) = 0 for all k ∈ Sp, and so
that there is no “outflow” from strategy j:

xp
j

∑
i∈Sp

ρp
ji(F

p(x)) = 0.

Since Vp
j (x) = 0, there can be no “inflow” into strategy j either:∑

i∈Sp

xp
i ρ

p
ij(F

p(x)) = 0.

We can express this condition equivalently as

For all i ∈ Sp, either xp
i = 0 or ρp

ij(F
p(x)) = 0.

If all strategies in Sp earn the same payoff at state x, the proof is complete. Otherwise,
let i be a “second best” strategy—that is, a strategy whose payoff Fp

i (x) is second highest
among the payoffs available from strategies in Sp at x. The last observation in the previous
paragraph and sign preservation tell us that there is no outflow from i. But since Vp

i (x) =

0, there is also no inflow into i:

For all k ∈ Sp, either xp
k = 0 or ρp

ki(F
p(x)) = 0.

Iterating this argument for strategies with lower payoffs establishes the result. �

Lemma 5.6.6. Fix a population p ∈ P . Then
(i) Vp(x)′Fp(x) ≥ 0.
(ii) Vp(x)′Fp(x) = 0⇔ For all i ∈ Sp, xp

i = 0 or
∑
j∈Sp
ρp

ij(F
p(x))[Fp

j (x) − Fp
i (x)]+ = 0.

Proof. We compute the inner product as follows:

Vp(x)′Fp(x) =
∑
j∈Sp

∑
i∈Sp

xp
i ρ

p
ij(F

p(x)) − xp
j

∑
i∈Sp

ρp
ji(F

p(x))

 Fp
j (x)

=
∑
j∈Sp

∑
i∈Sp

(
xp

i ρ
p
ij(F

p(x))Fp
j (x) − xp

jρ
p
ji(F

p(x))Fp
j (x)

)
=

∑
j∈Sp

∑
i∈Sp

xp
i ρ

p
ij(F

p(x))
(
Fp

j (x) − Fp
i (x)

)
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=
∑
i∈Sp

xp
i

∑
j∈Sp

ρp
ij(F

p(x))[Fp
j (x) − Fp

i (x)]+

,
where the last equality follows from sign-preservation. Both claims directly follow. �

Theorem 5.6.3 follows immediately from these three lemmas and sign preservation
(5.24).

5.6.3 Desiderata Revisited

Pairwise comparison dynamics satisfy all four of the desiderata proposed at the be-
ginning of the chapter: continuity (C), scarcity of data (SD), Nash stationarity (NS), and
positive correlation (PC). To provide some insight into this result, we compare revision
protocols that generate the three key dynamics from this chapter:

replicator: ρp
ij(π

p, xp) = x̂p
j [πp

j − π
p
i ]+;

BNN: ρp
ij(π

p, xp) = [πp
j − π

p]+;

Smith: ρp
ij(π

p, xp) = [πp
j − π

p
i ]+.

From the point of view of our desiderata, the protocol that generates the Smith dynamic
combines the best features of the other two. Like the protocol for the BNN dynamic, the
Smith protocol is based on direct evaluations of payoffs rather than imitation, allowing it
to satisfy Nash stationarity (NS). Like the protocol for the replicator dynamic, the Smith
protocol is based on comparisons of individual strategies’ payoffs rather than comparisons
involving aggregate statistics, and so satisfies scarcity of data (SD). Thus, while the BNN
and replicator dynamics each satisfy three of our desiderata, the Smith dynamic satisfies
all four.

5.7 Multiple Revision Protocols and Combined Dynamics

The results above might seem to suggest that dynamics satisfying all four desiderata
are rather special, in that they must be derived from a very specific sort of revision protocol.
We now argue to the contrary that these desiderata are satisfied rather broadly.

To make this point, let us consider what happens if an agent uses multiple revision
protocols at possibly different intensities. If an agent uses the revision protocol ρV at
intensity a and the revision protocol ρW at intensity b, then his behavior is described by
the new revision protocol ρC = aρV + bρW. Moreover, since mean dynamics are linear
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in conditional switch rates, the mean dynamic for the combined protocol is a linear
combination of the two original mean dynamics: CF = aVF + bWF.

Theorem 5.7.1 links the properties of the original and combined dynamics.

Theorem 5.7.1. Suppose that the dynamic VF satisfies (PC), that the dynamic WF satisfies (NS)
and (PC), and that a, b > 0. Then the combined dynamic CF = aVF + bWF also satisfies (NS) and
(PC).

Proof. To show that CF satisfies (PC), suppose that Cp
F(x) , 0. Then either Vp

F(x),Wp
F(x),

or both are not 0. Since VF and WF satisfy (PC), it follows that Vp
F(x)′Fp(x) ≥ 0, that

Wp
F(x)′Fp(x) ≥ 0, and that at least one of these inequalities is strict. Consequently,

Cp
F(x)′Fp(x) > 0, and so CF satisfies (PC).

Our proof that CF satisfies (NS) is divided into three cases. First, if x is a Nash
equilibrium of F, then it is a rest point of both VF and WF, and hence a rest point of CF as
well. Second, if x is a non-Nash rest point of VF, then it is not a rest point of WF. Since
VF(x) = 0 and WF(x) , 0, it follows that CF(x) = bWF(x) , 0, so x is not a rest point of
CF. Finally, suppose that x is not a rest point of VF. Then by Proposition 5.2.4, x is not
a Nash equilibrium, and so x is not a rest point of WF either. Since VF and WF satisfy
condition (PC), we know that VF(x)′F(x) =

∑
p∈P Vp

F(x)′Fp(x) > 0 and that WF(x)′F(x) > 0.
Consequently, CF(x)′F(x) > 0, implying that x is not a rest point of CF. Thus, CF satisfies
(NS). �

A key implication of Theorem 5.7.1 is that imitation and Nash stationarity are not
incompatible. If agents usually rely on imitative protocols but occasionally follow proto-
cols that directly evaluate strategies’ payoffs, then the rest points of the resulting mean
dynamics are precisely the Nash equilibria of the underlying game. Indeed, if we combine
an imitative dynamic VF with any small amount of a pairwise comparison dynamic WF,
we obtain a combined dynamic CF that satisfies all four of our desiderata.

Example 5.7.2. Figure 5.7.1 presents a phase diagram for the 9
10 replicator + 1

10 Smith
dynamic in standard Rock-Paper-Scissors. Comparing this diagram to those for the repli-
cator and Smith dynamics alone (Figure 5.3.1), we see that the diagram for the combined
dynamic more closely resembles the Smith phase diagram than the replicator phase dia-
gram, and in more than one respect: the combined dynamic has exactly one rest point,
the unique Nash equilibrium x∗ = ( 1

3 ,
1
3 ,

1
3 ), and all solutions to the combined dynamic

converge to this state. We will revisit this fragility of imitative dynamics in Chapter 9,
where it will appear in a much starker form. §

160



Figure 5.7.1: The 9
10 replicator + 1

10 Smith dynamic in RPS.

5.N Notes

Section 5.2: This section follows Sandholm (2008d).
A wide variety of payoff monotonicity conditions have been considered in the liter-

ature; for examples, see Nachbar (1990), Friedman (1991), Samuelson and Zhang (1992),
Swinkels (1993), Ritzberger and Weibull (1995), Hofbauer and Weibull (1996), and Sand-
holm (2001). Positive correlation is essentially the weakest condition that has been pro-
posed. Most existing conditions are strictly stronger (see the notes to Section 4.4 below).
Friedman’s (1991) weak compatibility is positive correlation plus the additional restriction
that unused strategies are never subsequently chosen. Swinkels (1993) calls a dynamic a
myopic adjustment dynamic if it satisfies positive correlation, but he allows Fp(x)′Vp(x) = 0
even when Vp(x) , 0.

Section 5.4: The approach to imitative revision protocols and dynamics in this section
builds on the work of Björnerstedt and Weibull (1996), Weibull (1995), and Hofbauer
(1995a).

Taylor and Jonker (1978) introduce the replicator dynamic to provide a dynamic ana-
logue of Maynard Smith and Price’s (1973) equilibrium (ESS) model of animal conflict.
Exercise 5.4.12, which shows that the replicator dynamic is equivalent after a nonlinear
(barycentric) change of variable to the Lotka-Volterra equation (Lotka (1920), Volterra
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(1931)), is due to Hofbauer (1981). Schuster and Sigmund (1983) further observe that
fundamental models of population genetics (e.g., Crow and Kimura (1970)) and of bio-
chemical evolution (e.g., Eigen and Schuster (1979)) can be viewed as special cases of the
replicator dynamic; they are also the first to refer to the dynamic by this name. For more
on these biological models, see Hofbauer and Sigmund (2003). For a detailed analysis of
the replicator dynamic from an economic point of view, see Weibull (1995, Chapter 3). The
derivations of the replicator dynamic in Examples 5.4.2, 5.4.4, and 5.4.5 are due to Schlag
(1998), Björnerstedt and Weibull (1996), and Hofbauer (1995a), respectively.

The Maynard Smith replicator dynamic can be found in Maynard Smith (1982, Ap-
pendices D and J). For a contrast between the standard and Maynard Smith replicator
dynamics from a biological point of view, see Hofbauer and Sigmund (1988, Section 27.1).
The i-logit dynamic is due to Björnerstedt and Weibull (1996) and Weibull (1995).

In the biology literature, the stochastic evolutionary process generated by the revision
protocol in Example 5.4.8 (i.e., protocol (5.10) with w(π) = π) is called a frequency-dependent
Moran process, after Moran (1962). In this context, each animal is programmed to play a
particular pure strategy; one interprets the arrival of a revision opportunity as the death
of one of the animals in the population, and the revision protocol (5.10) as determining
which animal will reproduce asexually to fill the vacancy. This process is usually stud-
ied in finite populations, often after the addition of mutations, in order to focus on its
stochastic aspects. See Nowak (2006) and the Notes to Chapter 11 for further references
and discussion.

Most early work by economists on deterministic evolutionary dynamics focuses on
generalizations of the replicator dynamic expressed in terms of percentage growth rates,
as in equation (5.16). The condition we call monotone percentage growth rates (5.17)
has appeared in many places under a variety of names: relative monotonicity (Nachbar
(1990)), order compatibility of predynamics (Friedman (1991)), monotonicity (Samuelson and
Zhang (1992), and payoff monotonicity (Weibull (1995)). Aggregate monotone percentage
growth rates (5.18) and Exercise 5.4.18 are introduced by Samuelson and Zhang (1992).
Sign-preserving percentage growth rates (5.19) is a condition due to Nachbar (1990); see
also Ritzberger and Weibull (1995), who call this condition payoff positivity. For surveys
of the literature referenced here, see Weibull (1995, Chapters 4 and 5) and Fudenberg and
Levine (1998, Chapter 3).

Sections 5.5, 5.6, and 5.7: These sections follow Sandholm (2005a, 2008d).
The Brown-von Neumann-Nash dynamic was introduced in the context of symmetric

zero-sum games by Brown and von Neumann (1950). Nash (1951) uses a discrete time
analogue of this dynamic as the basis for his simple proof of existence of equilibrium
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based on Brouwer’s Theorem. More recently, the BNN dynamic was reintroduced by
Skyrms (1990), Swinkels (1993), and Weibull (1996), and by Hofbauer (2000), who gave
the dynamic its name. The Smith dynamic was introduced in the transportation science
literature by Smith (1984).
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CHAPTER

SIX

Best Response and Projection Dynamics

6.0 Introduction

This chapter continues the parade of evolutionary dynamics commenced in Chapter
5. In the first two sections, the step from payoff vector fields to evolutionary dynamics
is traversed through a traditional game-theoretic approach, by employing best response
correspondences and perturbed versions thereof. The third section follows a geometric
approach, defining an evolutionary dynamic via closest point projections of payoff vectors.

The best response dynamic embodies the assumption that revising agents always switch
to their current best response. Because the best response correspondence is discontinu-
ous and multivalued, the basic properties of solution trajectories under the best response
dynamic are quite different from those of our earlier dynamics: multiple solution trajec-
tories can sprout from a single initial condition, and solution trajectories can cycle in and
out of Nash equilibria. Despite these difficulties, we will see that analogues of incentive
properties (NS) and (PC) still hold true.

While the discontinuity of the best response protocol stands in violation of a basic
desideratum from Chapter 5, one can obtain a continuous protocol by working with per-
turbed payoffs. The resulting perturbed best response dynamics are continuous (and even
differentiable), and so have well-behaved solution trajectories. While the payoff perturba-
tions prevent our incentive conditions from holding exactly, we show that appropriately
perturbed versions of these conditions, defined in terms of so-called “virtual payoffs”, can
be proved.

Our final evolutionary dynamic, the projection dynamic, is motivated by geometric
considerations: we define the growth rate vector under the projection dynamic to be
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the closest approximation of the payoff vector by a feasible vector of motion. While the
resulting dynamic is discontinuous, its solutions still exist, are unique, and are continuous
in their initial conditions; moreover, both of our incentive conditions are easily verified.
We show that the projection dynamic can be derived from protocols that reflect “revision
driven by insecurity”. These protocols also reveal surprising connections between the
projection dynamic and the replicator dynamic, connections that we develop further
when studying the global behavior of evolutionary dynamics in Chapter 7.

The dynamics studied in this chapter require us to introduce new mathematical tech-
niques. Determining the basic properties of the best response dynamic and the projection
dynamic requires ideas from the theory of differential inclusions (i.e., of set valued differ-
ential equations), which we develop in Appendix 6.A. A key tool for analyzing perturbed
best response dynamics is the Legendre transform, whose basic properties are explained
in Appendix 6.B. These properties are central to our analysis of perturbed maximization,
which is offered in Appendix 6.C.

6.1 The Best Response Dynamic

6.1.1 Definition and Examples

Traditional game theoretic analysis is based on the assumption of equilibrium play.
This assumption can be split into two distinct parts: that agents have correct beliefs about
their opponents’ behavior, and that they choose their strategies optimally given those
beliefs. When all agents simultaneously have correct beliefs and play optimal responses,
their joint behavior constitutes a Nash equilibrium.

It is natural to introduce an evolutionary dynamic based on similar principles. To
accomplish this, we suppose that each agent’s revision opportunities arrive at a fixed rate,
and that when an agent receives such an opportunity, he chooses a best response to the
current population state. Thus, we assume that each agent responds optimally to correct
beliefs whenever he is revising, but not necessarily at other points in time.

Before introducing the best response dynamics, let us review the notions of exact target
protocols and dynamics introduced in Section 4.1.3. Under an exact target protocol, con-
ditional switch rates ρp

ij(π
p, xp) ≡ σp

j (π
p, xp) are independent of an agent’s current strategy.

These rates also satisfy
∑

j∈S σ
p
j (π

p, xp) ≡ 1, so that σp(πp, xp) ∈ ∆p is a mixed strategy. Such
a protocol induces the exact target dynamic

(6.1) ẋp = mpσp(Fp(x)) − xp.
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Under (6.1), the vector of motion ẋp for population p has its tail at the current state xp

and its head at mpσp, the representative of the mixed strategy σp
∈ ∆p in the state space

Xp = mp∆p.
The best response protocol is given by the multivalued map

(6.2) σp(πp, xp) = Mp(πp) ≡ argmax
yp∈∆p

(yp)′πp.

Mp : Rnp
⇒ ∆p is the maximizer correspondence for population p: the set Mp(πp) consists

of those mixed strategies that only place mass on pure strategies optimal under payoff

vector πp. Inserting this protocol into equation (6.1) yields the best response dynamic:

(BR) ẋp
∈ mpMp(Fp(x)) − xp.

We can also write (BR) as

ẋp
∈ mpBp(x) − xp.

where Bp = Mp
◦ Fp is the best response correspondence for population p.

Definition. The best response dynamic assigns each population game F ∈ F the set of solutions
to the differential inclusion (BR).

All of our dynamics from Chapter 5 are Lipschitz continuous, so the existence and
uniqueness of their solutions is ensured by the Picard-Lindelöf Theorem. Since the best
response dynamic (BR) is a discontinuous differential inclusion, that theorem does not
apply here. But while the map Mp is not a Lipschitz continuous function, it does exhibit
other regularity properties: in particular, it is a convex-valued, upper hemicontinuous cor-
respondence. These properties impose enough structure on the dynamic (BR) to establish
an existence result.

To state this result, we say that the Lipschitz continuous trajectory {xt}t≥0 is a Carathéodory
solution to the differential inclusion ẋ ∈ V(x) if it satisfies ẋt ∈ V(xt) at all but a measure
zero set of times in [0,∞).

Theorem 6.1.1. Fix a continuous population game F. Then for each ξ ∈ X, there exists a trajectory
{xt}t≥0 with x0 = ξ that is a Carathéodory solution to the differential inclusion (BR).

It is important to note that while solutions to the best response dynamic exist, they need
not be unique: as the examples to follow will illustrate, multiple solution trajectories can
emanate from a single initial condition. For a brief introduction to the theory of differential
inclusions, see Appendix 6.A.1.
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In Chapter 4, we justified our focus on the deterministic dynamic generated by a
revision protocol through an appeal to a finite horizon approximation theorem. This
result, which we present in Chapter 10, tells us that under certain regularity conditions,
the stochastic evolutionary process {XN

t } generated by a game F and revision protocol
ρ is well approximated by a solution to the mean dynamic (M) over any finite time
horizon, so long as the population size is large enough. But because the revision protocol
that generates the best response dynamic is discontinuous and multivalued, the finite
horizon approximation theorem from Chapter 10 does not apply here: indeed, since σ is
multivalued, the Markov process {XN

t } is not even uniquely defined! Nevertheless, we
conjecture that it is possible to prove a version of the finite horizon approximation theorem
that applies in the present setting (see the Notes).

6.1.2 Construction and Properties of Solution Trajectories

Because solutions to the best response dynamic need not be unique, they can be dis-
tinctly more complicated than solutions to Lipschitz continuous dynamics, as we demon-
strate in a series of examples below. But before doing this, we show another sense in
which solutions to the best response dynamic are rather simple.

Let {xt} be a solution to (BR), and suppose that at all times t ∈ [0,T], population p’s
unique best response to state xt is the pure strategy i ∈ Sp. Then during this time interval,
evolution in population p is described by the affine differential equation

ẋp = mpep
i − xp.

In other words, the population state xp moves directly towards vertex vp
i = mpep

i of the set
Xp, proceeding more slowly as time passes. It follows that throughout the interval [0,T],
the state (xt)p lies on the line segment connecting (x0)p and vp

i ; indeed, we can solve the
previous equation to obtain an explicit formula for (xt)p:

(xt)p = (1 − e−t) vp
i + e−t (x0)p for all t ∈ [0,T].

Matters are more complicated at states that admit multiple best responses, since at such
states more than one future course of evolution is possible. Still, not every element of
Bp(x) need define a feasible direction of motion for population p: if {(xt)p

} is to head toward
state x̂p during a time interval of positive length, all pure strategies in the support of x̂p

must remain optimal throughout the interval.

Example 6.1.2. Standard Rock-Paper-Scissors. Suppose a population of agents is randomly
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Figure 6.1.1: The best response dynamic in RPS.

matched to play standard Rock-Paper-Scissors:

A =


0 −l w
w 0 −l
−l w 0


with w = l. The phase diagram for the best response dynamic in F(x) = Ax is presented in
Figure 6.1.1. The upper, lower left, and lower right regions of the figure contain the states
at which Paper, Scissors, and Rock are the unique best responses; in each of these regions,
all solution trajectories head directly toward the appropriate vertex. When the boundary
of a best response region is reached, multiple directions of motion are possible, at least
in principle. But at all states other than the unique Nash equilibrium x∗ = (1

3 ,
1
3 ,

1
3 ), the

only direction of motion that can persist for a positive amount of time is the one heading
toward the new best response, and starting from x∗, the only feasible solution trajectory
is the stationary one. Putting this all together, we conclude that in standard RPS, the
solution to the best response dynamic from each initial condition is unique.

Figure 6.1.1 appears to show that every solution trajectory converges to the unique
Nash equilibrium x∗. To verify this, we prove that along every solution trajectory {xt},
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whenever the best response to xt is unique, we have that

(6.3)
d
dt

(
max

k∈S
Fk(xt)

)
= −max

k∈S
Fk(xt).

Since the best response is unique at almost all times t, integrating equation (6.3) shows
that

(6.4) max
k∈S

Fk(xt) = e−t max
k∈S

Fk(x0).

Now in standard RPS, the maximum payoff function maxk∈S Fk is nonnegative, equalling
zero only at the Nash equilibrium x∗. This fact and equation (6.4) imply that the maximal
payoff falls over time, converging as t approaches infinity to its minimum value of 0; over
this same time horizon, the state xt converges to the Nash equilibrium x∗.

To prove equality (6.3), fix a state xt at which there is a unique optimal strategy—say,
Paper. At this state, ẋt = eP − xt. Since FP(x) = w(xR − xS), we can compute that

d
dtFP(xt) = ∇FP(xt)′ẋt

= w(eR − eS)′(eP − xt)

= −w(eR − eS)′xt

= −FP(xt). §

Example 6.1.3. Two-strategy coordination. Suppose that agents are randomly matched to
play the two strategy game with strategy set S = {U,D} and payoff matrix

A =

1 0
0 2

 .
The resulting random matching game F(x) = Ax has three Nash equilibria, the two pure
equilibria eU and eD, and the mixed equilibrium (x∗U, x

∗
D) = (2

3 ,
1
3 ).

To reduce the amount of notation, we let d = xD represent the proportion of players
choosing strategy D, so that the mixed Nash equilibrium becomes d∗ = 1

3 . The best
response dynamic for this game is described in terms of the state d as follows:

ḋ =


{−d} if d < d∗,

[− 1
3 ,

2
3 ] if d = d∗,

{1 − d} if d > d∗.
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From every initial condition other than d∗, the dynamic admits a unique solution trajectory
that converges to a pure equilibrium:

d0 < d∗ ⇒ dt = e−td0,(6.5)

d0 > d∗ ⇒ dt = e−td0 + (1 − e−t) = 1 − e−t(1 − d0).(6.6)

But there are many solution trajectories starting from d∗: one solution is stationary;
another proceeds to d = 0 according to equation (6.5), a third proceeds to d = 1 according
to equation (6.6), and yet others follows the trajectories in (6.5) and (6.6) after some initial
delay.

Notice that solutions (6.5) and (6.6) quickly leave the vicinity of d∗. This is unlike
the behavior of Lipschitz continuous dynamics, under which solutions from all initial
conditions are unique, and solutions that start near a stationary point move very slowly.
§

Exercise 6.1.4. Two-strategy anti-coordination. Suppose players are randomly matched to
play the anticoordination game

A =

−1 0
0 −1

 .
Show that there is a unique solution to this dynamic from each initial condition d0. Also,
show that each solution reaches the unique Nash equilibrium d∗ = 1

2 in finite time, and
express this time as a function of the initial condition d0. This is unlike the behavior of
Lipschitz continuous dynamics, under which solutions can only reach rest points in the
limit as the time t approaches infinity.

Example 6.1.5. Three-strategy coordination. Figure 6.1.2 presents the phase diagram for the
best response dynamic generated by random matching in the pure coordination game

A =


1 0 0
0 1 0
0 0 1

 .
The speed of motion is fastest near the mixed Nash equilibrium x∗ = ( 1

3 ,
1
3 ,

1
3 ). As in

Example 6.1.3, solution trajectories are not unique: this time, whenever the state is on the
Y-shaped set of boundaries between best response regions, it can leave this set and head
into any adjoining basin of attraction. §
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Figure 6.1.2: The best response dynamic in Pure Coordination.

Exercise 6.1.6. Good and bad RPS. (i) Using a similar argument to that provided in Ex-
ample 6.1.2, show that in any good RPS game, the unique Nash equilibrium
x∗ = (1

3 ,
1
3 ,

1
3 ) is globally stable, and that it is reached in finite time from every

initial condition.
(ii) Show that in any bad RPS game, solutions starting from almost all initial conditions

converge to a limit cycle in the interior of the state space. In addition, argue
that there are multiple solutions starting from the Nash equilibrium x∗: one is
stationary, while others spiral outward toward the limit cycle. The latter solutions
are not differentiable at t = 0. It is therefore possible for a solution to escape a Nash
equilibrium without the solution beginning its motion in a well-defined direction.
(Hint: Consider backward solution trajectories from initial conditions in the region
bounded by the cycle.)

Example 6.1.7. Zeeman’s game. Consider the population game F(x) = Ax generated by
random matching in the symmetric normal form game

A =


0 6 −4
−3 0 5
−1 3 0
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Figure 6.1.3: The best response dynamic in Zeeman’s game.

with strategy set S = {U,M,D}. The Nash equilibria of F are eU, x∗ = ( 1
3 ,

1
3 ,

1
3 ), and

y∗ = ( 4
5 , 0,

1
5 ). The best response dynamic for F is presented in Figure 6.1.3. Solution

trajectories from a majority of initial conditions are unique and converge to the pure
equilibrium eU. However, some initial conditions generate multiple solutions. Consider,
for example, solutions starting at the interior Nash equilibrium x∗. There is a stationary
solution at x∗, as well as solutions that head toward the vertex eU, possibly after some
delay. Other solutions head toward the Nash equilibrium y∗. Some of these converge to
y∗; others leave segment x∗y∗ before reaching y∗. Of those that leave, some head to eU,
while others head toward eD and then return to x∗. If x∗ is revisited, any of the behaviors
just described can occur again. Therefore, there are solutions to (BR) that arrive at and
depart x∗ in perpetuity. §

6.1.3 Incentive Properties

In the previous chapter, we introduced two properties, Nash stationarity (NS) and
positive correlation (PC), that link growth rates under evolutionary dynamics with payoffs
in the underlying games.

VF(x) = 0 if and only if x ∈ NE(F).(NS)
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Vp
F(x) , 0 implies that Vp

F(x)′Fp(x) > 0 for all p ∈ P .(PC)

Both of these properties are designed for single-valued differential equations. We now
establish that analogues of these two properties are satisfied by the differential inclusion
(BR).

Theorem 6.1.8. The best response dynamic satisfies

0 ∈ VF(x) if and only if x ∈ NE(F).(6.7)

(zp)′Fp(x) = mp max
j∈Sp

F̂p
j (x) for all zp

∈ Vp
F(x).(6.8)

Condition (6.7) requires that the differential inclusion ẋ ∈ VF(x) have a stationary
solution at every Nash equilibrium, but at no other states. As we have seen, this condition
does not rule out the existence of additional solution trajectories that leave Nash equilibria.
Condition (6.8) asks that the correspondence x 7→ Vp

F(x)′Fp(x) be single valued, always
equaling the product of population p’s mass and its maximal excess payoff. It follows that
this map is Lipschitz continuous and nonnegative, equaling zero if and only if all agents in
population p are playing a best response (see Lemma 5.5.4). Summing over populations,
we see that VF(x)′F(x) = {0} if and only if x is a Nash equilibrium of F.

Proof. Property (6.7) is immediate. To prove property (6.8), fix x ∈ X, and let zp
∈ Vp

F(x).
Then zp = mpyp

− xp for some yp
∈Mp(Fp(x)). Therefore,

(zp)′Fp(x) = (mpyp
− xp)′Fp(x) = mp max

j∈Sp
Fp

j (x) −mpFp(x) = mp max
j∈Sp

F̂p
j (x). �

6.2 Perturbed Best Response Dynamics

The best response dynamic is a fundamental model of evolution in games, as it provides
an idealized description of the behavior of agents whose decisions condition on exact
information about the current strategic environment. Of course, the flip side of exact
information is discontinuity, a violation of our desideratum (C) for revision protocols (see
Section 5.2.1).

We now introduce revision protocols under which agents choose best responses to
payoffs that have been subjected to perturbations. While the perturbations can represent
actual payoff noise, they can also represent errors in agents’ perceptions of payoffs, or in
the agents’ implementations of the best response rule. Regardless of their interpretation,
the perturbations lead to revision protocols that are smooth functions of payoffs, and so
to dynamics that can be analyzed using standard techniques.
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The use of perturbed best response functions is not unique to evolutionary game the-
ory. To mention one prominent example, researchers in experimental economics employ
perturbed best response functions when attempting to rationalize experimental data. Con-
sequently, the ideas we develop in this section provide dynamic foundations for solution
concepts in common use in experimental research (see the Notes).

6.2.1 Revision Protocols and Mean Dynamics

Perturbed best response protocols are exact target protocols defined in terms of per-
turbed maximizer functions M̃p : Rnp

→ int(∆p):

(6.9) σp(πp, xp) = M̃p(πp).

Unlike the maximizer correspondence Mp, the function M̃p is single-valued, continuous,
and even differentiable. The mixed strategy M̃p(πp) ∈ int(∆p) places most of its mass on the
optimal pure strategies, but places positive mass on all pure strategies. Precise definitions
of M̃p will be stated below.

Example 6.2.1. Logit choice. When p = 1, the logit choice function with noise level η > 0 is
written as

M̃i(π) =
exp(η−1πi)∑
j∈S exp(η−1π j)

.

For any value of η > 0, each strategy receives positive probability under M̃ regardless of
the payoff vector π. But if πi > π j for all j , i, the probability with which strategy i is
chosen approaches one as η approaches zero. Notice too that adding a constant vector to
the payoff vector π has no effect on choice probabilities.

When there are just two strategies, the logit choice function reduces to

M̃1(π) =
exp(η−1(π1 − π2))

exp(η−1(π1 − π2)) + 1
and M̃1(π) + M̃2(π) = 1.

In Figure 6.2.1, we fix π2 at 0, and graph as a function of π1 the logit(η) choice probabilities
M̃1(π) for η = .25, .1, and .02, as well as the optimal choice probabilities M1(π). Evidently,
M̃1 provides a smooth approximation of the discontinuous map M1. While the function
M̃1 cannot converge uniformly to the correspondence M1 as the noise level η goes to zero,
one can show that the graph of M̃1 converges uniformly (in the Hausdorff metric—see the
Notes) to the graph of M1 as η approaches zero. §
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–1 10 π1

Figure 6.2.1: Logit choice probabilities M̃1(π1, 0) for noise levels η = .25 (red), η = .1 (green), and η = .02
(blue), along with optimal choice probabilities M1(π1, 0) (black).

The protocol (6.9) induces the perturbed best response dynamic

(6.10) ẋp = mpM̃p(Fp(x)) − xp

as its mean dynamic. We can also write (6.10) as

ẋp = mpB̃p(x) − xp,

where the function B̃p = M̃p
◦ Fp, which maps social states to mixed strategies, is the

perturbed best response function for population p; it is a perturbed version of the best
response correspondence Bp = Mp

◦ Fp.

6.2.2 Perturbed Optimization: A Representation Theorem

We now consider two methods of defining perturbed maximizer functions. To avoid
superscripts, we focus here on the single population case.

The traditional method of defining M̃, a method with a long history in the theory of
discrete choice, is based on stochastic perturbations of the payoffs to each pure strategy. In
this construction, an agent chooses the best response to the vector of payoffs π ∈ Rn, but
only after the payoffs to his alternatives have been perturbed by some random vector ε.

(6.11) M̃i(π) = P

i = argmax
j∈S

π j + ε j

 .
We require the random vector ε to be an admissible stochastic perturbation: it must admit
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a positive density on Rn, and this density must be smooth enough that the function M̃ is
continuously differentiable. For example, if the components εi are independent, standard
results on convolutions imply that M̃ is C1 whenever the densities of the components εi

are bounded. In the discrete choice literature, the definition of M̃ via equation (6.11) is
known as the additive random utility model (ARUM).

We can also define M̃ by introducing a deterministic perturbation of the payoffs to each
mixed strategy. Call the function v : int(∆) → R an admissible deterministic perturbation if
it is differentiably strictly convex and steep near bd(∆). That is, v is admissible if the second
derivative at y, D2v(y) ∈ L2

s (Rn
0 ,R), is positive definite for all y ∈ int(∆), and if |∇v(y)|

approaches infinity whenever y approaches bd(∆). (Recall that Rn
0 is an alternate notation

for T∆, the tangent space of the simplex.) With an admissible v in hand, we define the
function M̃ by

(6.12) M̃(π) = argmax
y∈int(∆)

(
y′π − v(y)

)
.

One interpretation of the function v is that it represents a “control cost” that becomes
large whenever an agent puts too little probability on any particular pure strategy. Because
the base payoffs to each strategy are bounded, the steepness of v near bd(∆) implies that
it is never optimal for an agent to choose probabilities too close to zero.

Note that under either definition, choice probabilities under M̃ are unaffected by
constant shifts in the payoff vector π. The projection of Rn onto Rn

0 , Φ = I − 1
n11′, employs

just such a shift, so we can express this property of M̃ as follows:

M̃(π) = M̃(Φπ) for all π ∈ Rn.

With this motivation, we define M : Rn
0 → int(∆) to be the restriction of M̃ to the subspace

Rn
0 .

As we noted above, the stochastic construction (6.11) is the traditional way of defining
perturbed maximizer functions, and this construction is more intuitively appealing than
the deterministic construction (6.12). But the latter construction is clearly more convenient
for analysis: while under (6.11) choice probabilities must expressed as cumbersome mul-
tiple integrals, under (6.12) they are obtained as interior maximizers of a strictly concave
function.

Happily, we need not trade off intuitive appeal for convenience: every M̃ defined via
equation (6.11) can be represented in form (6.12).

Theorem 6.2.2. Let M̃ be a perturbed maximizer function defined in terms of an admissible
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stochastic perturbation ε via equation (6.11). Then M̃ satisfies equation (6.12) for some admissible
deterministic perturbation v. In fact, M = M̃|Rn

0
and ∇v are invertible, and M = (∇v)−1.

Taking as given the initial statements in the theorem, it is easy to verify the last one.
Indeed, suppose that M̃ (and hence M) can be derived from the admissible deterministic
perturbation v, that the gradient ∇v : int(∆)→ Rn

0 is invertible, and that the payoff vector
π is in Rn

0 . Then y∗ ≡M(π) satisfies

y∗ = argmax
y∈int(∆)

(
y′π − v(y)

)
.

This is a strictly concave maximization problem with an interior solution. Taking the first
order condition with respect to directions in Rn

0 yields

Φ(π − ∇v(y∗)) = 0.

Since π and ∇v(y∗) are already in Rn
0 , the projection Φ does nothing, so rearranging allows

us to conclude that

M(π) = y∗ = (∇v)−1(π).

In light of this argument, the main task in proving Theorem 6.2.2 is to show that a
function v with the desired properties exists. Accomplishing this requires the use of the
Legendre transform, a classical tool from convex analysis. We explain the basic properties
of the Legendre transform in Appendix 6.B. This device is used to prove the representation
theorem in Appendix 6.C , where some auxiliary results can also be found.

One such result is worth mentioning now. Theorem 6.2.2 tells us that every M̃ de-
fined in terms of stochastic perturbations can be represented in terms of deterministic
perturbations. Exercise 6.2.3 shows that the converse statement is false, and thus that the
deterministic definition of M̃ is strictly more general than the stochastic one.

Exercise 6.2.3. Show that when n ≥ 4, there is no stochastic perturbation of payoffs which
yields the same choice probabilities as the admissible deterministic perturbation v(y) =

−
∑

j∈S log y j. (Hint: Use Theorem 6.C.6 in the Appendix.)
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6.2.3 Logit Choice and the Logit Dynamic

In Example 6.2.1, we introduced the best known example of a perturbed maximizer
function: the logit choice function with noise level η > 0.

(6.13) M̃i(π) =
exp(η−1πi)∑
j∈S exp(η−1π j)

.

This function generates as its mean dynamic the logit dynamic with noise level η:

(L) ẋp
i = mp

exp(η−1Fp
i (x))∑

j∈Sp exp(η−1Fp
j (x))

− xp
i .

Rest points of logit dynamics are called logit equilibria.

Example 6.2.4. In Figure 6.2.2, we present phase diagrams for the 123 Coordination game

F(x) = Ax =


1 0 0
0 2 0
0 0 3



x1

x2

x3

 =


x1

2x2

3x3


under logit dynamics with a range of noise levels. As η passes from .01 to 1, the dynamics
pass through four distinct regimes. At the lowest noise levels, the dynamics admit seven
rest points, three stable and four unstable, corresponding to the seven Nash equilibria of F.
When η reaches ≈ .22, two of the unstable rest points annihilate one another, leaving five
rest points in total. At η ≈ .28, the stable rest point corresponding to Nash equilibrium e1

and an unstable rest point eliminate one another, so that three rest points remain. Finally,
when η ≈ .68, the stable rest point corresponding to Nash equilibrium e2 and an unstable
rest point annihilate each other, leaving just a single, stable rest point. If we continue to
increase η, the last rest point ultimately converges to the central state (1

3 ,
1
3 ,

1
3 ).

This example provides an illustration of a deep topological result called the Poincaré-
Hopf Theorem. In the present two-dimensional context, this theorem ensures that generi-
cally, the number of sinks plus the number of sources equals the number of saddles plus
one. §

Example 6.2.5. Stochastic derivation of logit choice. We can derive the logit choice function
from stochastic perturbations that are i.i.d. with the double exponential distribution: P(εi ≤

c) = exp(− exp(−η−1c − γ)), where γ = limn→∞(
∑n

k=1
1
k − log n) ≈ 0.5772 is Euler’s constant.

For intuition, we mention without proof that Eεi = 0 and Var(εi) =
η2π2

6 , so that SD(εi) ≈
1.2826η.
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(i) η = .001 (ii) η = .1

(iii) η = .2 (iv) η = .22

(v) η = .27 (vi) η = .28

Figure 6.2.2: Logit dynamics in 123 Coordination.
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(vii) η = .4 (viii) η = .6

(ix) η = .68 (x) η = .85

(xi) η = 1.2 (xii) η = 3

Figure 6.2.2: Logit dynamics in 123 Coordination.
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To see that these perturbations generate logit choice, note that the density of εi is
f (x) = η−1 exp(−η−1x−γ) exp(− exp(−η−1x−γ)). Using the substitutions y = exp(−η−1x−γ)
and m j = exp(η−1π j), we compute as follows:

P
(
i = argmax j∈S π j + ε j

)
=

∫
∞

0
f (x)

∏
j,i

F(πi + x − π j) dx

= −

∫
∞

0
η−1y exp(−y)

∏
j,i

exp
(
−y

m j

mi

) η
y

dy

= −

∫
∞

0
exp

(
−y

∑
j∈S

m j

mi

)
dy

=
mi∑
j∈S m j

=
exp(η−1πi)∑
j∈S exp(η−1π j)

. §

Exercise 6.2.6. Deterministic derivation of logit choice. According to the representation the-
orem, it must also be possible to derive the logit choice function from an admissible
deterministic perturbation. Show that this is accomplished using the (negated) entropy
function v(y) = η

∑
j∈S y j log y j.

The next exercise gives explicit formulas for various functions from the proof of the
representation theorem in the case of logit choice. Included is the derivative matrix DM̃(π),
a useful item in analyses of local stability (see Chapter 8.) The exercise also shows how
the entropy function v can be derived from the function M̃.

Exercise 6.2.7. Additional results on logit choice.
(i) Show that µ̃(π) = η log(

∑
j∈S exp(η−1π j)) is a potential function for M̃. (For the

interpretation of this function, see Observation 6.C.3 and Theorem 6.C.4 in the
Appendix.)

(ii) Let µ̄ be the restriction of µ̃ to Rn
0 , so that ∇µ̄(π) = ΦM̃(π) = M̃(π)− 1

n1 = M(π)− 1
n1.

For y ∈ int(∆), let ŷ ≡ y − 1
n1. Show that

(∇µ̄)−1(ŷ) = M−1(y) = η


log y1 −

1
n

∑
j∈S log y j

...

log yn −
1
n

∑
j∈S log y j

 .
(iii) Let (C∗, µ̄∗) be the Legendre transform of (Rn

0 , µ̄), and define v : int(∆) → R by
v(y) = µ̄∗(ŷ). Show by direct computation that v(y) = η

∑
j∈S y j log y j.

(iv) Show that ∇v(y) = M−1(y). (Hint: Let ṽ be the natural extension of v to Rn
+, and use
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the fact ∇v(y) = Φ∇ṽ(y).)
(v) Show that ∇2v(y) = ηΦ diag([y−1]) Φ, where [y−1] j = y−1

j for all j ∈ S.
(vi) Show that if π ∈ Rn

0 , then

DM̃(π) = ∇2µ̃(π) = η−1
(
diag(M(π)) −M(π)M(π)′

)
= ∇2µ̄(π) = DM(π).

(vii) Show that ∇2v(M(π)) = (∇2µ̄(π))−1 when these matrices are viewed as linear maps
from Rn

0 to Rn
0 . (Hint: Since both of these maps are of full rank on Rn

0 , it is enough
to show that ∇2µ̄(π)∇2v(M(π)) = Φ, the orthogonal projection onto Rn

0 .)

Exercise 6.2.8. Suppose that M̃ is a perturbed maximizer function derived from an admis-
sible deterministic perturbation as in equation (6.12) (or from an admissible stochastic
perturbation as in equation (6.11)). Show that if M̃ can be expressed as

(6.14) M̃i(π) =
α(πi)∑
j∈S α(π j)

for some increasing differentiable function α : R → (0,∞), then M̃ is a logit choice
function with some noise level η > 0. (Hint: Combine equation (6.14) with the fact that
the derivative matrix DM̃(π) must be symmetric (see Corollary 6.C.5 and Theorem 6.C.6
in the Appendix).)

Exercise 6.2.9. The variable-rate logit dynamic. The variable-rate logit dynamic with noise level
η > 0 is defined by

(6.15) ẋp
i = mpexp(η−1Fp

i (x)) − xp
i

∑
j∈Sp

exp(η−1Fp
j (x)).

The previous exercise shows that the logit dynamic is the only perturbed best response
dynamic that admits a modification of this sort.

(i) Describe a simple revision protocol that generates this dynamic, and provide an
interpretation.

(ii) Show that if p = 1, then (6.15) is equivalent to the logit dynamic (L) up to a change
in the speed at which solution trajectories are traversed. Explain why this is not
the case when p ≥ 2.

(iii) Compare this dynamic with the excess payoff dynamics from Chapter 5. Explain
why those dynamics cannot be modified so as to resemble the logit dynamic (L).
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6.2.4 Perturbed Incentive Properties via Virtual Payoffs

Because they incorporate payoff disturbances, perturbed best response dynamics can-
not satisfy positive correlation (PC) or Nash stationarity (NS). We now show that these
dynamics do satisfy suitably perturbed versions of the two incentive properties. In light
of the representation theorem, there is no loss of generality in focusing on dynamics
generated by admissible deterministic perturbations v = (v1, . . . , vp).

We can describe the set of Nash equilibria of F in terms of the best response correspon-
dences Bp:

NE(F) = {x ∈ X : xp
∈ mpBp(x) for all p ∈ P }.

In similar fashion, we define the set of perturbed equilibria of the pair (F, v) in terms of the
perturbed best response functions B̃p:

PE(F, v) = {x ∈ X : xp = mpB̃p(x) for all p ∈ P }.

By definition, the rest points of the perturbed best response dynamic (6.10) are the per-
turbed equilibria of (F, v).

Observation 6.2.10. All perturbed best response dynamics satisfy perturbed stationarity:

(6.16) V(x) = 0 if and only if x ∈ PE(F, v).

We can derive an alternate characterization of perturbed equilibrium using the notion
of virtual payoffs. Define the virtual payoffs F̃ : int(X)→ Rn for the pair (F, v) by

F̃p(x) = Fp(x) − ∇vp( 1
mp xp).

Thus, the virtual payoff function for population p is the difference between the population’s
true payoff function and gradient of its deterministic perturbation.

For intuition, let us consider the single population case. When x is far from the
boundary of the simplex X, the perturbation v is relatively flat, so the virtual payoffs F̃(x)
are close to the true payoffs F(x). But near the boundary of X, true and virtual payoffs are
quite different. For example, when xi is the only component of x that is close to zero, then
for each alternate strategy j , i, moving “inward” in direction ei− e j sharply decreases the
value of v; thus, the directional derivative ∂v

∂(ei−e j)
(x) is large in absolute value and negative.

It follows that the difference F̃i(x) − F̃ j(x) between these strategies’ virtual payoffs is large
and positive. In other words, rare strategies are quite desirable in the “virtual game” F̃.
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Individual agents do not use virtual payoffs to decide how to act: to obtain the
maximized function in definition (6.12) from the virtual payoff function, we must replace
the normalized population state 1

mp xp with the vector of choice probabilities yp. But at
perturbed equilibria, 1

mp xp and yp agree. Therefore, perturbed equilibria of (F, v) correspond
to “Nash equilibria” of the “virtual game” F̃.

Theorem 6.2.11. Let x ∈ X be a social state. Then x ∈ PE(F, v) if and only if ΦF̃p(x) = 0 for all
p ∈ P .

The equality ΦF̃p(x) = 0 means that F̃p(x) is a constant vector. Since uncommon strategies
are quite desirable in the “virtual game” F̃, no state that includes an unused strategy can
be a “Nash equilibrium” of F̃; thus, equality of all virtual payoffs in each population is the
right definition of “Nash equilibrium” in F̃.

Theorem 6.2.11 follows immediately from perturbed stationarity (6.16) and Lemma
6.2.12 below.

Lemma 6.2.12. Let x ∈ X be a social state. Then Vp(x) = 0 if and only if ΦF̃p(x) = 0.

Proof. Using the facts that M̃p(πp) = Mp(Φπp), that Mp = (∇vp)−1, and that the range of
∇vp is Rnp

0 (so that ∇vp = Φ ◦ ∇vp), we argue as follows:

Vp(x) = 0⇔ mpM̃p(Fp(x)) = xp

⇔Mp(ΦFp(x)) = 1
mp xp

⇔ ΦFp(x) = ∇vp( 1
mp xp)

⇔ ΦF̃p(x) = 0. �

Turning now to disequilibrium behavior, recall that positive correlation is defined in
terms of inner products of growth rate vectors and payoff vectors:

(PC) Vp
F(x) , 0 implies that Vp

F(x)′Fp(x) > 0 for all p ∈ P .

In light of the discussion above, the natural analogue of property (PC) for perturbed best
response dynamics replaces the true payoffs Fp(x) with virtual payoffs F̃p(x). Doing so
yields virtual positive correlation:

(6.17) Vp(x) , 0 implies that Vp(x)′F̃p(x) > 0 for all p ∈ P .

To conclude this section, we verify that all perturbed best response dynamics heed this
property.
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Theorem 6.2.13. All perturbed best response dynamics satisfy virtual positive correlation (6.17).

Proof. Let x ∈ X be a social state at which Vp(x) , 0. Then by definition,

(6.18) yp
≡ M̃p(Fp(x)) = Mp(ΦFp(x)) , 1

mp xp.

Since ∇vp = (Mp)−1, we can rewrite the equality in expression (6.18) as ∇vp(yp) = ΦFp(x).
Therefore, since Vp(x) ∈ TXp, we find that

Vp(x)′F̃p(x) =
(
mpM̃p(Fp(x)) − xp

)′
ΦF̃p(x)

=
(
mpMp(ΦFp(x)) − xp

)′ (
ΦFp(x) − ∇vp( 1

mp xp)
)

= mp
(
yp
−

1
mp xp

)′ (
∇vp(yp) − ∇vp( 1

mp xp)
)
> 0,

where the final inequality follows from the fact that yp , 1
mp xp and from the strict convexity

of vp. �

6.3 The Projection Dynamic

6.3.1 Definition

Our main payoff monotonicity condition for evolutionary dynamics is positive corre-
lation (PC). In geometric terms, (PC) requires that at each state where population p is not
at rest, the growth rate vector Vp(x) must form an acute angle with the payoff vector Fp(x).
Put differently, (PC) demands that growth rate vectors not distort payoff vectors to too
great a degree. Is there an evolutionary dynamic that minimizes this distortion?

If the vector field V is to define an evolutionary dynamic, each growth rate vector V(x)
must represent a feasible direction of motion, in the sense of lying in the tangent cone
TX(x). Thus, the most direct approach to our question is to always take V(x) to be the
closest point in TX(x) to the payoff vector F(x).

Definition. The projection dynamic associates each population game F ∈ F with a differential
equation

(P) ẋ = ΠTX(x)(F(x)),

where ΠTX(x) is the closest point projection of Rn onto the tangent cone TX(x).
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It is easy to provide an explicit formula for (P) at social states in the interior of X. Since
at such states TX(x) = TX, the closest point projection ΠTX(x) is simplyΦ, the orthogonal
projection onto the subspace TX. In fact, whenever xp

∈ int(Xp), we have that

ẋp
i = (ΦFp(x))i = Fp

i −
1
n

∑
k∈S

Fp
k(x).

Thus, when xp is an interior population state, the growth rate of strategy i ∈ Sp is the
difference between its payoff and the unweighted average of the payoffs to population p’s
strategies.

When x is a boundary state, then the projection ΠTX(x) does not reduce to an orthogonal
projection, so providing an explicit formula for (P) becomes more complicated. Exercise
6.3.1 describes the possibilities in a three-strategy game, while Exercise 6.3.2 provides an
explicit formula for the general case.

Exercise 6.3.1. Let F be a three-strategy game. Give an explicit formula for V(x) = ΠTX(x)F(x)
when

(i) x ∈ int(X);
(ii) x1 = 0 but x2, x3 > 0;
(iii) x1 = 1.

Exercise 6.3.2. Let F be an arbitrary single population game. Show that the projection
ΠTX(x)(v) can be expressed as follows:

(ΠTX(x)(v))i =

vi −
1

#S (v,x)

∑
j∈S (v,x) v j if i ∈ S (v, x).

0 otherwise;

Here, the set S (v, x) ⊆ S contains all strategies in support(x), along with any subset of
S − support(x) that maximizes the average 1

#S (v,x)

∑
j∈S (v,x) v j.

6.3.2 Solution Trajectories

The dynamic (P) is clearly discontinuous at the boundary of X, so the existence and
uniqueness results for Lipschitz continuous differential equations do not apply. We nev-
ertheless have the following result, which is an immediate consequence of Theorem 6.A.4
in the Appendix.

Theorem 6.3.3. Fix a Lipschitz continuous population game F. Then for each ξ ∈ X, there exists
a unique Carathéodory solution {xt}t≥0 to the projection dynamic (P) with x0 = ξ. Moreover,
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solutions to (P) are Lipschitz continuous in their initial conditions: if {xt}t≥0 and {yt}t≥0 are
solutions to (P), then |yt − xt| ≤ |y0 − x0| eKt for all t ≥ 0, where K is the Lipschitz coefficient for F.

Theorem 6.3.3 shows that the discontinuous differential equation (P) enjoys many of
the properties of Lipschitz continuous differential equations. But there are important
differences between the two types of dynamics. One difference is easy to spot: solutions
to (P) are solutions in the Carathéodory sense, and so can have kinks at a measure zero set
of times. Other differences are more subtle. For instance, while the theorem ensures the
uniqueness of the forward solution trajectory from each state ξ ∈ X, backward solutions
need not be unique. It is therefore possible for distinct solution trajectories of the projection
dynamic to merge with one another.

Example 6.3.4. Figure 6.3.1 presents phase diagrams for the projection dynamic in good
RPS (w = 2, l = 1), standard RPS (w = l = 1), and bad RPS (w = 1, l = 2). In all three games,
most solutions spiral around the Nash equilibrium x∗ = ( 1

3 ,
1
3 ,

1
3 ) in a counterclockwise

direction.
In good RPS (Figure 6.3.1(i)), all solutions converge to the Nash equilibrium. Solutions

that begin close to a vertex hit and then travel along an edge of the simplex before heading
into the interior of the simplex forever. Thus, there is a portion of each edge that is
traversed by solutions starting from a positive measure set of initial conditions.

In standard RPS (Figure 6.3.1(ii)), all solutions enter closed orbits at a fixed distance
from x∗. Solutions starting at distance 1

√
6

or greater from x∗ (i.e., all solutions at least as
far from x∗ as the state (0, 1

2 ,
1
2 )) quickly enter the closed orbit at distance 1

√
6

from x∗; other
solutions maintain their initial distance from x∗ forever.

In bad RPS (Figure 6.3.1(iii)), all solutions other than the one starting at x∗ enter the
same closed orbit. This orbit alternates between segments through the interior of X and
segments along the boundaries.

Notice that in all three cases, solution trajectories starting in the interior of the state
space can reach the boundary in finite time. This is impossible under any of our previous
dynamics, including the best response dynamic. §

Exercise 6.3.5. (i) Under what conditions is the dynamic (P) described by ẋ = ΦF(x) at
all states x ∈ X (i.e., not just at interior states)?

(ii) Suppose that F(x) = Ax is generated by random matching in the symmetric normal
form game A. What do the conditions from part (i) reduce to in this case? (Note
that under these conditions, ẋ = ΦAx is a linear differential equation; it is therefore
possible to write down explicit formulas for the solution trajectories (see Chapter
8).)
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(i) good RPS (ii) standard RPS

(iii) bad RPS

Figure 6.3.1: The projection dynamic in three Rock-Paper-Scissors games.
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6.3.3 Incentive Properties

That solutions to the projection dynamic exist, are unique, and are continuous in their
initial conditions is not obvious. But given this fact and the manner in which the dynamic is
defined, it is not surprising that the dynamic satisfies both of our incentive properties. The
proofs of these properties are simple applications of the Moreau Decomposition Theorem:
given any closed convex cone K ⊆ Rn and any vector π ∈ Rn, the projections ΠK(π) and
ΠK◦(π) are the unique vectors satisfying ΠK(π) ∈ K,ΠK◦(π) ∈ K◦, and ΠK(π) + ΠK◦(π) = π

(see Appendix 2.B).

Theorem 6.3.6. The projection dynamic satisfies Nash stationarity (NS) and positive correlation
(PC).

Proof. Using the Moreau Decomposition Theorem and the normal cone characterization
of Nash equilibrium (see Theorem 2.3.2), we find that

ΠTX(x)(F(x)) = 0 ⇔ F(x) ∈ NX(x) ⇔ x ∈ NE(F),

establishing (NS). To prove (PC), we again use the Moreau Decomposition Theorem:

Vp(x)′Fp(x) = ΠTXp(xp)(Fp(x))′
(
ΠTXp(xp)(Fp(x)) + ΠNXp(xp)(Fp(x))

)
= |ΠTXp(xp)(F(xp))|2

≥ 0.

The inequality binds if and only if ΠTXp(xp)(Fp(x)) = Vp(x) = 0. �

6.3.4 Revision Protocols and Connections with the Replicator Dynamic

To this point, we have motivated the projection dynamic entirely through geometric
considerations. Can this dynamic be derived from a model of individual choice? In this
section, we describe revision protocols that generate the projection dynamic as their mean
dynamics, and use these protocols to argue that the projection dynamic models “revision
driven by insecurity”. Our analysis reveals close connections between the projection
dynamic and the replicator dynamic, connections that we will develop further in the next
chapter.

In the remainder of this section, we focus on the single population setting; the extension
to multipopulation settings is straightforward.
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If we focus exclusively on interior states, the connections between the replicator and
projection dynamics are especially strong. In Chapter 4, we introduced three revision
protocols that generate the replicator dynamic as their mean dynamics:

ρi j(π, x) = x j[π j − πi]+;(6.19)

ρi j(π, x) = x j(K − πi);(6.20)

ρi j(π, x) = x j(π j + K).(6.21)

The x j term in each formula reflects the fact that these protocols are driven by imitation. For
instance, to implement the first protocol, an agent whose clock rings picks an opponent
from his population at random; he then imitates this opponent only if the opponents’
payoff is higher, doing so with probability proportional to the payoff difference. The
x j term in these protocols endows their mean dynamic with a special functional form:
the growth rate of each strategy is proportional to its prevalence in the population. For
protocol (6.19), the derivation of the mean dynamic proceeds as follows:

ẋi =
∑
j∈S

x jρ ji(F(x), x) − xi

∑
j∈S

ρi j(F(x), x)

=
∑
j∈S

x jxi[Fi(x) − F j(x)]
+
− xi

∑
j∈S

x j[F j(x) − Fi(x)]
+

= xi

∑
j∈S

x j(Fi(x) − F j(x))

= xi

Fi(x) −
∑

j

x jF j(x)

 .
To derive the projection dynamic on int(X), we use analogues of the revision protocols

above, replacing x j with 1
nxi

:

ρi j(π, x) =
[π j − πi]+

nxi
;(6.22)

ρi j(π, x) =
K − πi

nxi
;(6.23)

ρi j(π, x) =
π j + K

nxi
.(6.24)

Thus, while in each of the imitative protocols, ρi j is proportional to the mass of agents
playing the candidate strategy j, in the protocols just above, ρi j is inversely proportional to the
mass of agents playing the current strategy i. One can therefore designate the projection
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dynamic as capturing “revision driven by insecurity”, as it describes the behavior of
agents who are especially uncomfortable choosing strategies not used by many others.

It is easy to verify that protocols (6.22), (6.23), and (6.24) all induce the projection
dynamic on the interior of the state space. In the case of protocol (6.22), the calculation
proceeds as follows:

ẋi =
∑
j∈S

x jρ ji(F(x), x) − xi

∑
j∈S

ρi j(F(x), x)

=
∑
j∈S

x j
[Fi(x) − F j(x)]

+

nx j
− xi

∑
j∈S

[F j(x) − Fi(x)]
+

nxi

= 1
n

∑
j∈S

(Fi(x) − F j(x))

= Fi(x) − 1
n

∑
j∈S

F j(x).

Because of the 1
xi

term in the revision protocol, the mean dynamic above does not depend
directly on the value of xi, allowing the disappearance rates of rare strategies to stay
bounded away from zero. In other words, it is because unpopular strategies can be
abandoned quite rapidly that solutions to the projection dynamic can travel from the
interior to the boundary of the state space in a finite amount of time.

Except in cases where the projection dynamic is defined by ẋ = ΦF(x) at all states (cf
Exercise 6.3.5), the revision protocols above do not generate the projection dynamic on
the boundary of X. Exercise 6.3.7 presents a revision protocol that achieves this goal, even
while maintaining connections with the replicator dynamic.

Exercise 6.3.7. Consider the following two revision protocols

(6.25) ρi j(π, x) =


[π̂i]− ·

x j [π̂ j]+∑
k∈S xk [π̂k]+

if
∑
k∈S

xk [π̂k]+ > 0,

0 otherwise.

(6.26) ρi j(π, x) =


[π̃S

i ]
−

xi
·

[π̃S
j ]

+∑
k∈S (π,x) [π̃S

k ]
+

if
∑

k∈S (π,x)
xi [π̃S

k ]
+
> 0,

0 otherwise.

The set S (π, x) in equation (6.26) is defined in Exercise 6.3.2, and π̃S
i = πi−

1
#S (π,x)

∑
k∈S (π,x) πk.

(i) Provide an interpretation of protocol (6.25), and show that it generates the replicator
dynamic as its mean dynamic.

(ii) Provide an interpretation of protocol (6.26), and show that it generates the projec-
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tion dynamic as its mean dynamic.

Appendix

6.A Differential Inclusions

6.A.1 Basic Theory

A correspondence (i.e., a set valued map) V : Rn
⇒ Rn defines a differential inclusion

via

(DI) ẋ ∈ V(x).

We call (DI) a good upper hemicontinuous (or good UHC) differential inclusion if V is:

(i) Nonempty: V(x) , ∅ for all x ∈ Rn;
(ii) Convex valued: V(x) is convex for all x ∈ X;
(iii) Bounded: There exists a K ∈ R such that sup{|y| : y ∈ V(x)} ≤ K for all x ∈ Rn;
(iv) Upper hemicontinuous: The graph of V, gr(V) = {(x, y) : y ∈ V(x)}, is closed.

While solutions to good UHC differential inclusions are neither as easily defined nor as
well behaved as those of Lipschitz continuous differential equations, we will see that
analogues of all the main properties of solutions to the latter can be established in the
present setting.

The set of feasible directions of motion under (DI) changes abruptly at discontinuities
of the correspondence V. Our solution notion for (DI) must therefore admit trajectories
with kinks: rather than requiring the relation (DI) to hold at every instant in time, it asks
only that (DI) hold at almost all times. To formalize this notion, recall that the set Z ⊆ R
has measure zero if for every ε > 0, there is a countable collection of open intervals of total
length less than ε that covers Z. A property is said to hold for almost all t ∈ [0,T] if it holds
on subset of [0,T] whose complement has measure zero. Finally, we say that a trajectory
{xt}t∈[0,T] is a (Carathéodory) solution to (DI) if it is Lipschitz continuous and if ẋt ∈ V(xt) at
almost all times t ∈ [0,T]. Since {xt} is Lipschitz continuous, its derivative ẋt exists for
almost all t ∈ [0,T], and the Fundamental Theorem of Calculus holds: xt − xs =

∫ t

s
ẋu du.

Observe that if {xt} is a Carathéodory solution to a continuous ODE ẋ = V(x), it is also
a solution to the ODE in the usual sense: ẋt = V(xt) at all times t ∈ [0,T]. While our new
concept does not introduce new solutions to standard differential equations, it enables us
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to find solutions in settings where solutions of the old sort do not exist. In particular, we
have the following existence result.

Theorem 6.A.1. Let (DI) be a good UHC differential inclusion. Then for each ξ ∈ Rn there exists
a (Carathéodory) solution {xt}t∈[0,T] to (DI) with x0 = ξ.

Our forward invariance result for ODEs extends to the current setting as follows:

Theorem 6.A.2. Let C ⊆ Rn be a closed convex set, and let V : C⇒ Rn satisfy conditions (i)-(iv)
above. Suppose that V(x) ⊆ TC(x) for all x ∈ C. Extend the domain of V to all of Rn by letting
V(y) = V(ΠC(y)) for all y ∈ Rn

− C, and let this extension define the differential inclusion (DI)
on Rn. Then

(i) (DI) is a good UHC differential inclusion.
(ii) (DI) admits a forward solution {xt}t∈[0,T] from each x0 ∈ Rn.
(iii) C is forward invariant under (DI).

Our examples of best response dynamics in Section 6.1 show that differential inclusions
can admit multiple solution trajectories from a single initial condition, and hence that
solutions need not be continuous in their initial conditions. However, the set of solutions
to a differential inclusion still possesses considerable structure. To formalize this claim, let
C[0,T] denote the space of continuous trajectories through Rn over the time interval [0,T],
equipped with the maximum norm:

C[0,T] = {x : [0,T]→ Rn : x is continuous}, and

||x|| = max
t∈[0,T]

|xt| for x ∈ C[0,T].

Now recall two definitions from metric space topology. A set A ⊆ C[0,T] is connected if it
cannot be partitioned into two nonempty sets, each of which is disjoint from the closure
of the other. The set A is compact if every sequence of elements of A admits a subsequence
that converges to an element of A .

Now let S[0,T](V, ξ) be the set of solutions to (DI) with initial condition ξ:

S[0,T](V, ξ) = {x ∈ C[0,T] : x is a solution to (DI) with x0 = ξ}.

Theorem 6.A.3. Let (DI) be a good UHC differential inclusion. Then

(i) For each ξ ∈ Rn,S[0,T](V, ξ) is connected and compact.
(ii) The correspondence S[0,T](V, ·) : Rn

→ C[0,T] is upper hemicontinuous.
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Although an initial condition ξ may be the source of many solution trajectories of
(DI), part (i) of the theorem shows that the set S[0,T](V, ξ) of such trajectories has a simple
structure: it is connected and compact. Given any continuous criterion f : C[0,T] → R
(where continuity is defined with respect to the maximum norm on C[0,T]) and any initial
condition ξ, connectedness implies that the set of values f (S[0,T](V, ξ)) is an interval, while
compactness implies that this set of values is compact; thus, there is a solution which
is optimal according to criterion f among those that start at ξ. Part (ii) of the theorem
provides an analogue of continuity in initial conditions. It tells us that if a sequence of
solution trajectories {xk

}
∞

k=1 to (DI) (with possibly differing initial conditions) converges to
some trajectory x ∈ C[0,T], then x is also a solution to (DI).

6.A.2 Differential Equations Defined by Projections

Let X ⊆ Rn be a compact convex set, and let F : X → Rn be Lipschitz continuous. We
consider the differential equation

(P) ẋ = ΠTX(x)(F(x)),

where ΠTX(x) is the closest point projection onto the tangent cone TX(x). This equation
provides the closest approximation to the equation ẋ = F(x) that is consistent with the
forward invariance of X.

Since the right hand side of (P) changes discontinuously at the boundary of X, the
Picard-Lindelöf Theorem does not apply here. Indeed, solutions to (P) have different
properties than solutions of standard ODEs: for instance, solution trajectories from dif-
ferent initial conditions can merge after a finite amount of time has passed. But like
solutions to standard ODEs, forward solutions to the dynamic (P) exist, are unique, and
are Lipschitz continuous in their initial conditions.

Theorem 6.A.4. Let F be Lipschitz continuous. Then for each ξ ∈ X, there exists a unique
(Carathéodory) solution {xt}t≥0 to (P) with x0 = ξ. Moreover, solutions are Lipschitz continuous
in their initial conditions: |yt − xt| ≤ |y0 − x0| eKt for all t ≥ 0, where K is the Lipschitz coefficient
for F.

We now sketch a proof of this result. Define the multivalued map V : X⇒ Rn by

V(x) =
⋂
ε>0

cl

conv

 ⋃
y∈X:|y−x|≤ε

ΠTX(y)(F(y))


 .
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In words, V(x) is the closed convex hull of all values of ΠTX(y)(F(y)) that obtain at points y
arbitrarily close to x. It is easy to check that V is upper hemicontinuous with closed convex
values. Moreover, V(x) ∩ TX(x), the set of feasible directions of motion from x contained
in V(x), is always equal to {ΠTX(x)(F(x))}, and so in particular is nonempty. Because
V(x) ∩ TX(x) , ∅, an extension of Theorem 6.A.2 called the Viability Theorem implies that
for each ξ ∈ X, a solution {xt}t≥0 to ẋ ∈ V(x) exists. But since V(x) ∩ TX(x) = {ΠTX(x)(F(x))},
this solution must also solve the original equation (P). This establishes the existence of
solutions to (P).

To prove uniqueness and continuity, let {xt} and {yt} be solutions to (P). Using the chain
rule, the Moreau Decomposition Theorem, and the Lipschitz continuity of F, we see that

d
dt

∣∣∣yt − xt

∣∣∣2 = 2(yt − xt)
′(ΠTX(yt)(F(yt)) −ΠTX(xt)(F(xt)))

= 2(yt − xt)
′(F(yt) − F(xt)) − 2(yt − xt)

′(ΠNX(yt)(F(yt)) −ΠNX(xt)(F(xt)))

= 2(yt − xt)
′(F(yt) − F(xt)) + 2(xt − yt)

′ΠNX(yt)(F(yt))

+ 2(yt − xt)
′ΠNX(xt)(F(xt))

≤ 2(yt − xt)
′(F(yt) − F(xt))

≤ 2K
∣∣∣yt − xt

∣∣∣2 ,
and hence that∣∣∣yt − xt

∣∣∣2 ≤ ∣∣∣y0 − x0

∣∣∣2 +

∫ t

0
2K

∣∣∣ys − xs

∣∣∣ ds.

Gronwall’s inequality then implies that∣∣∣yt − xt

∣∣∣2 ≤ ∣∣∣y0 − x0

∣∣∣2 e2Kt.

Taking square roots yields the inequality stated in the theorem.

6.B The Legendre Transform

The classical Legendre transform is the key tool for proving Theorem 6.2.2, the rep-
resentation theorem for the additive random utility model. A generalization of this tool,
the so-called Legendre-Fenchel transform, underlies the large deviations techniques we
will introduce in Chapter 11. In this section, we introduce Legendre transforms of convex
functions defined on open intervals and, more generally, on multidimensional convex
domains.
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6.B.1 Legendre Transforms of Functions on Open Intervals

Let C = (a, b) ⊆ R be an open interval, and let f : C → R be a strictly convex,
continuously differentiable function that becomes steep at the boundaries of C:

lim
x↓a

f ′(x) = −∞ if a > −∞ , and lim
x↑b

f ′(x) = ∞ if b < ∞.

The Legendre transform associates with the strictly convex function f a new strictly convex
function f ∗. Because f : C → R is strictly convex, its derivative f ′ : C → R is strictly
increasing, and thus invertible. We denote its inverse by ( f ′)−1 : C∗ → R, where the open
interval C∗ is the range of f ′. Since ( f ′)−1 is itself strictly increasing, its integral, which we
denote f ∗ : C∗ → R, is strictly convex. With the right choice of the constant of integration
K, the pair (C∗, f ∗) is the Legendre transform of the pair (C, f ). In summary:

f : C→ R is strictly convex f ∗ ≡
∫

( f ′)−1 + K is strictly convexy x
f ′ : C→ C∗ is strictly increasing −−−−→ ( f ′)−1 : C∗ → C is strictly increasing

The cornerstone of the construction above is this observation: the derivative of f ∗ is
the inverse of the derivative of f . That is,

(6.27) ( f ∗)′ = ( f ′)−1.

Or, in other words,

(6.28) f ∗ has slope x at y⇔ f has slope y at x.

Surprisingly enough, we can specify the function f ∗ described above in a simple, direct
way. We define the Legendre transform (C∗, f ∗) of the pair (C, f ) by

C∗ = range( f ′) and f ∗(y) = max
x∈C

xy − f (x).

The first order condition of the program at right is y = f ′(x∗(y)), or, equivalently, ( f ′)−1(y) =

x∗(y). On the other hand, if we differentiate f ∗ with respect to y, the envelope theorem
yields ( f ∗)′(y) = x∗(y). Putting these equations together, we see that ( f ∗)′(y) = ( f ′)−1(y),
which is property (6.27).

Suppose that f ′′ exists and is positive. Then by differentiating both sides of the identity
( f ∗)′(y) = ( f ′)−1(y), we find this simple relationship between the second derivatives of f
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and f ∗:

( f ∗)′′(y) = (( f ′)−1)′(y) =
1

f ′′(x)
, where x = ( f ′)−1(y) = x∗(y).

In words: to find ( f ∗)′′(y), evaluate f ′′ at the point x ∈ C corresponding to y ∈ C∗, and
then take the reciprocal.

Our initial discussion of the Legendre transform suggests that it is a duality relation: in
other words, that one can generate (C, f ) from (C∗, f ∗) using the same procedure through
which (C∗, f ∗) is generated from (C, f ). To prove this, we begin with the simple observa-
tions that C∗ is itself an open interval, and that f ∗ is itself strictly convex and continuously
differentiable. It is also easy to check that |( f ∗)′(y)| diverges whenever y approaches
bd(C∗); in fact, this is just the contrapositive of the corresponding statement about f .

It is easy to verify that (C∗)∗ = C:

(C∗)∗ = range(( f ∗)′) = range(( f ′)−1) = domain( f ′) = C.

To show that ( f ∗)∗ = f , we begin with the definition of ( f ∗)∗:

( f ∗)∗(x) = max
y∈C∗

xy − f ∗(y)

Taking the first order condition yields x = ( f ∗)′(y∗(x)), and hence y∗(x) = (( f ∗)′)−1(x) =

f ′(x). Since ( f ′)−1(y) = x∗(y), y∗ and x∗ are inverse functions. We therefore conclude that

( f ∗)∗(x) = xy∗(x) − f ∗(y∗(x)) = xy∗(x) −
(
x∗(y∗(x)) y∗(x) − f (x∗(y∗(x)))

)
= f (x).

Putting this all together, we obtain our third characterization of the Legendre transform
and of the implied bijection between C and C∗:

(6.29) x maximizes xy − f (x)⇔ y maximizes xy − f ∗(y).

Example 6.B.1. If C = R and f (x) = ex, then the Legendre transform of (C, f ) is (C∗, f ∗),
where C∗ = (0,∞) and f ∗(y) = y log y − y. §

Example 6.B.2. Suppose that c : R→ R is a strictly convex cost function. (For convenience,
we allow negative levels of output; the next example shows that this is without loss of
generality if c′(0) = 0.) If output can be sold at price p ∈ C∗ = range(c′), then maximized
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Figure 6.B.1: A Legendre transform.

profit equals

π(p) = max
x∈R

xp − c(x).

Thus, by definition, (C∗, π) is the Legendre transform of (R, c). The duality relation tells
us that if we started instead with the maximized profit function π : C∗ → R, we could
recover the cost function c via the dual program

c(x) = max
p∈C∗

xp − π(p). §

Example 6.B.3. To obtain the class of examples that are easiest to visualize, let the function
g : R→ R be continuous, strictly increasing, and satisfy

lim
x↓−∞

g(x) = −∞, lim
x↑∞

g(x) = ∞, and g(0) = 0.

If we define f (x) =
∫ x

0
g(s) ds on domain R, then the Legendre transform of (R, f ) is (R, f ∗),

where f ∗(y) =
∫ y

0
g−1(t) dt. Evidently, ( f ∗)′ = g−1 = ( f ′)−1. Indeed, Figure 6.B.1 illustrates

that x maximizes xy − f (x) if and only if y maximizes xy − f ∗(y), and that f ∗ has slope x
at y if and only if f has slope y at x. §
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6.B.2 Legendre Transforms of Functions on Multidimensional Domains

Analogues of all of the previous results can be established in settings with multidi-
mensional domains. Let Z be a linear subspace of Rn. We call (C, f ) a Legendre pair if C ⊆ Z
is (relatively) open and convex, and f is C1 , strictly convex, and steep near bd(C), where
f is steep near bd(C) if |∇ f (x)| → ∞whenever x→ bd(C).

Our goal is to define a pair (C∗, f ∗) that satisfies properties (6.30), (6.31), and (6.32):

∇ f ∗ = (∇ f )−1.(6.30)

f ∗ has slope x at y⇔ f has slope y at x.(6.31)

x maximizes x′y − f (x)⇔ y maximizes x′y − f ∗(y).(6.32)

As before, we can imagine obtaining f ∗ from f by differentiating, inverting, and then
integrating, as we illustrate in the diagram below:

f : C→ R is strictly convex f ∗ ≡
∫

(∇ f )−1 + K is strictly convexy x
∇ f : C→ C∗ is invertible −−−−→ (∇ f )−1 : C∗ → C is invertible

Since the domain of f is C ⊆ Z, the derivative of f , D f , is a map from C into L(Z,R),
the set of linear forms on Z. The gradient of f at x is the unique vector ∇ f (x) ∈ Z that
represents D f (x); thus, ∇ f is a map from C into Z.

We define the Legendre transform (C∗, f ∗) of the pair (C, f ) by

C∗ = range(∇ f ) and f ∗(y) = max
x∈C

x′y − f (x).

Theorem 6.B.4 summarizes the Legendre transform’s basic properties.

Theorem 6.B.4. Suppose that (C, f ) is a Legendre pair. Then:

(i) (C∗, f ∗) is a Legendre pair.
(ii) ∇ f : C→ C∗ is bijective, and (∇ f )−1 = ∇ f ∗.
(iii) f (x) = maxy∈C∗ x′y − f ∗(y).
(iv) The maximizers x∗ and y∗ satisfy x∗(y) = ∇ f ∗(y) = (∇ f )−1(y) and y∗(x) = ∇ f (x) =

(∇ f ∗)−1(x).

As in the one dimensional case, we can relate the second derivatives of f ∗ to the
second derivatives of f . The second derivative D2 f is a map from C to L2

s (Z,R), the set
of symmetric bilinear forms on Z × Z. The Hessian of f at x, ∇2 f (x) ∈ Rn×n, is the unique
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representation of D2 f (x) by a symmetric matrix whose rows and columns are in Z. In fact,
since the map z 7→ ∇2 f (x) z has range Z, we can view the matrix ∇2 f (x) as a linear map
from Z to Z. We rely on this observation in the following result.

Corollary 6.B.5. If D2 f (x) exists and is positive definite for all x ∈ C, then D2 f ∗(y) exists and is
positive definite for all y ∈ C∗. In fact, ∇2 f ∗(y) = (∇2 f (x))−1 as linear maps from Z to Z, where
x = (∇ f )−1(y).

In the one dimensional setting, the derivative f ′ is invertible because it is strictly
increasing. Both of these properties also follow from the stronger assumption that f ′′(x) >
0 for all x ∈ C. In the multidimensional setting, it makes no sense to ask whether ∇ f is
strictly increasing. But there is an analogue of the second derivative condition: namely,
that the Hessian ∇2 f (x) is positive definite on Z × Z for all x ∈ C. According to the Global
Inverse Function Theorem, any function on a convex domain that is proper (i.e., preimages of
compact sets are compact) and whose Jacobian determinant is everywhere nonvanishing
is invertible; thus, the fact that ∇2 f (x) is always positive definite implies that (∇ f )−1 exists.
However, this deep result is not needed to prove Theorem 6.B.4 or Corollary 6.B.5.

6.C Perturbed Optimization

6.C.1 Proof of the Representation Theorem

We now use the results on Legendre transforms from Appendix 6.B to prove Theorem
6.2.2. We defined the perturbed maximizer function M̃ using stochastic perturbations via

(6.11) M̃i(π) = P

i = argmax
j∈S

π j + ε j

 .
Here, the random vector ε is an admissible stochastic perturbation if it has a positive density
on Rn, and if this density is sufficiently smooth that M̃ is C1. We defined M̃ using
deterministic perturbations via

(6.12) M̃(π) = argmax
y∈int(∆)

(y′π − v(y)).

Here, the function v : int(∆) → R is an admissible deterministic perturbation if the Hessian
matrix ∇2v(y) is positive definite on Rn

0 × Rn
0 for all y ∈ int(∆), and if |∇v(y)| approaches

infinity whenever y approaches bd(∆).
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Theorem 6.2.2. Let M̃ be a perturbed maximizer function defined in terms of an admissible
stochastic perturbation ε via equation (6.11). Then M̃ satisfies equation (6.12) for some admissible
deterministic perturbation v. In fact, M = M̃|Rn

0
and ∇v are invertible, and M = (∇v)−1.

Proof. The probability that alternative i is chosen when the payoff vector is π is

M̃i(π) = P(πi + εi ≥ π j + ε j for all j ∈ S)

= P(ε j ≤ πi + εi − π j for all j)

=

∫
∞

−∞

∫ πi+xi−π1

−∞

· · ·

∫ πi+xi−πi−1

−∞

∫ πi+xi−πi+1

−∞

· · ·

∫ πi+xi−πn

−∞

f (x) dxn . . . dxi+1 dxi−1 . . . dx1 dxi ,

where f is the joint density function of the random perturbations ε. The following lemma
lists some properties of the derivative of M̃.

Lemma 6.C.1. For all π ∈ Rn we have
(i) DM̃(π) 1 = 0.
(ii) DM̃(π) is symmetric.
(iii) DM̃(π) has strictly negative off-diagonal elements.
(iv) DM̃(π) is positive definite with respect to Rn

0 × Rn
0 .

Proof. Part (i) follows from differentiating the identity M̃(π) = M̃(Φπ). To establish
parts (ii) and (iii), let i and j > i be two distinct strategies. Then using the change of
variable x̂ j = πi + xi − π j, we find that

∂M̃i

∂π j
(π) = −

∫
∞

−∞

∫ πi+xi−π1

−∞

· · ·

∫ πi+xi−πi−1

−∞

∫ πi+xi−πi+1

−∞

· · ·

∫ πi+xi−π j−1

−∞

∫ πi+xi−π j+1

−∞

· · ·

∫ πi+xi−πn

−∞

f (x1, . . . , x j−1,

πi + xi − π j, x j+1, . . . , xn) dxn . . . dx j+1 dx j−1 . . . dxi+1 dxi−1 . . . dx1 dxi

= −

∫
∞

−∞

∫ π j+x̂ j−π1

−∞

· · ·

∫ π j+x̂ j−πi−1

−∞

∫ π j+x̂ j−πi+1

−∞

· · ·

∫ π j+x̂ j−π j−1

−∞

∫ π j+x̂ j−π j+1

−∞

· · ·

∫ π j+x̂ j−πn

−∞

f (x1, . . . , xi−1,

π j + x̂ j − πi, xi+1, . . . , xn) dxn . . . dx j+1 dx j−1 . . . dxi+1 dxi−1 . . . dx1 dx̂ j

=
∂M̃ j

∂πi
(π),

which implies claims (ii) and (iii). To establish claim (iv), let z ∈ Rn
0 . Then using claims (i),

(ii), and (iii) in succession yields

z′DM̃(π)z =
∑
i∈S

∑
j∈S

∂M̃i

∂π j
(π) ziz j =

∑
i∈S

∑
j,i

∂M̃i

∂π j
(π) ziz j +

∑
i∈S

−∑
j,i

∂M̃i

∂π j
(π)

 z2
i
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=
∑

i

∑
j,i

∂M̃i

∂π j
(π)

(
ziz j − z2

i

)
=

∑
i

∑
j<i

∂M̃i

∂π j
(π)

(
2ziz j − z2

i − z2
j

)
= −

∑
i

∑
j<i

∂M̃i

∂π j
(π)

(
zi − z j

)2
> 0. �

Since the derivative matrix DM̃(π) is symmetric, the vector field M̃ admits a potential
function µ̃ : Rn

→ R (that is, a function satisfying ∇µ̃(π) = M̃(π) for all π ∈ Rn). Let
µ̄ = µ̃|Rn

0
be the restriction of µ̃ to Rn

0 . Then for all π ∈ Rn
0 , ∇µ̄(π) ∈ Rn

0 is given by

∇µ̄(π) = Φ∇µ̃(π) = ΦM̃(π) = M̃(π) − 1
n1 = M(π) − 1

n1 ,

where the third equality uses the fact that M̃(π) ∈ ∆.
Since ∇2µ̄(π) = DM(π) is positive definite with respect to Rn

0 × Rn
0 , µ̄ is strictly convex;

thus, since bd(Rn
0) is empty, (Rn

0 , µ̄) is a Legendre pair. Let the pair (C∗, µ̄∗) be the Legendre
transform of (Rn

0 , µ̄), and define the function v : (C∗ + 1
n1) → R by v(y) = µ̄∗(y − 1

n1).
Theorem 6.2.2 then follows immediately from Lemma 6.C.2.

Lemma 6.C.2. (i) C∗ + 1
n1 = int(∆).

(ii) ∇v : int(∆)→ Rn
0 is the inverse of M : Rn

0 → int(∆).
(iii) v is an admissible deterministic perturbation.
(iv) M̃(π) = argmaxy∈int(∆) y′π − v(y) for all π ∈ Rn.

Proof. (i) The set C∗ = range(∇µ̄) = range(M) − 1
n1 is convex by Theorem 6.B.4(i).

Moreover, if the components π j, j ∈ J ⊂ S stay bounded while the remaining components
approach infinity, then M̃ j(π)→ 0 for all j ∈ J: that is, M̃(π) converges to a subface of the
simplex ∆. Thus, range(M) = range(M̃) ⊆ int(∆) contains points arbitrarily close to each
corner of the simplex. Since range(M) is convex, it must equal int(∆).

(ii) Let y ∈ int(∆). Using Theorem 6.B.4(ii), we find that

∇v(y) = ∇µ̄∗(y − 1
n1) = (∇µ̄)−1(y − 1

n1) = M−1(y).

(iii) (C∗, µ̄∗) is a Legendre pair by Theorem 6.B.4(i); thus, if y→ bd(∆) = bd(C∗) + 1
n1,

then |∇v(y)| =
∣∣∣∇µ̄∗(y − 1

n1)
∣∣∣ diverges. In addition, since ∇2µ̄(π) = DM(π) is positive

definite with respect to Rn
0 × Rn

0 for all π ∈ Rn
0 , Corollary 6.B.5 implies that ∇2v(y) =

∇
2µ̄∗(y − 1

n1) is positive definite with respect to Rn
0 × Rn

0 for all y ∈ int(∆).
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(iv) Since M̃(·) = M̃(Φ(·)), it is enough to consider π ∈ Rn
0 . For such π,

argmax
y∈int(∆)

y′π − v(y) =

 argmax
ŷ∈int(∆)− 1

n 1

ŷ′π − µ̄∗(ŷ)

 + 1
n1

= ∇µ̄(π) + 1
n1

= M̃(π),

where the second equality follows from Theorem 6.B.4(iv). �

This completes the proof of Theorem 6.2.2. �

6.C.2 Additional Results

We conclude this section by stating without proof a few additional results on perturbed
optimization. The first two of these concern the construction of the potential function µ̃
of the perturbed maximizer function M̃. In fact, two constructions are available, one for
each sort of perturbation.

If we define M̃ in terms of an admissible deterministic perturbation v, then one can
verify (using the Envelope Theorem or a direct calculation) that the perturbed maximum
function associated with v is a potential function for M̃.

Observation 6.C.3. The function µ̃ : Rn
→ R defined by

µ̃(π) = max
y∈int(∆)

y′π − v(y)

is a potential function for M̃ as defined in (6.12).

Alternatively, suppose we define M̃ in terms of an admissible stochastic perturbation
ε. In this case, the expectation of the maximal perturbed payoff is a potential function for
M̃.

Theorem 6.C.4. The function µ̃ : Rn
→ R defined by

µ̃(π) = Emax
j∈S

(π j + ε j)

is a potential function for M̃ as defined in (6.11).

The intuition behind this result is simple. If we marginally increase the value of πi, the
value of the maximum function max j π j + ε j goes up at a unit rate at those values of ε
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where strategy i is optimal. The set of ε at which strategy i is optimal also changes, but the
contribution of these points to the value of the maximum function is negligible. Building
on these observations, one can show that

∂µ̃

∂πi
(π) = E 1{i=argmax j π j+ε j} = P

(
i = argmax j π j + ε j

)
= M̃i(π).

Which functions are perturbed maximizer functions? The following characterization
of the perturbed maximizer functions that can be derived from admissible deterministic
perturbations follows easily from the proof of Theorem 6.2.2.

Corollary 6.C.5. A bijective function M̃ : Rn
→ int(∆) can be derived from an admissible

deterministic perturbation if and only if DM̃(π) is symmetric, positive definite on Rn
0 , and satisfies

DM̃(π)1 = 0.

The counterpart of this result for stochastic perturbations is known as the Williams-Daly-
Zachary Theorem.

Theorem 6.C.6. A bijective function M̃ : Rn
→ int(∆) can be derived from an admissible

stochastic perturbation if and only if DM̃(π) is symmetric, positive definite on Rn
0 , and satisfies

DM̃(π)1 = 0, as well as the additional requirement that the partial derivatives of M̃ satisfy

(−1)k ∂kM̃i0

∂πi1 · · · ∂πik
> 0

for each k = 1, . . . ,n − 1 and each set of k + 1 distinct indices {i0, i1, . . . , ik} ⊆ S.

To establish the necessity of the kth order derivative conditions, one repeatedly differenti-
ates the definition of M̃. The first order derivative condition is derived in this way in the
proof of Theorem 6.2.2. These two results show that deterministic perturbations generate
a strictly larger class of perturbed maximizer functions than stochastic perturbations; see
Exercise 6.2.3 for an explicit example.

6.N Notes

Section 6.1: The best response dynamic was introduced by Gilboa and Matsui (1991)
and further studied by Matsui (1992), Hofbauer (1995b), and Gaunersdorfer and Hofbauer
(1995). Hofbauer (1995b) introduced the interpretation of the best response dynamic as a
differential inclusion.
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Example 6.1.7 is introduced by Zeeman (1980), who shows that the interior Nash
equilibrium of this game is not an ESS but is nevertheless asymptotically stable under the
replicator dynamic. The properties of the best response dynamic described in the example
are pointed out by Hofbauer (1995b). A complete analysis of best response dynamics in
Rock-Paper-Scissors games can be found in Gaunersdorfer and Hofbauer (1995).

An approximation theorem for collections of Markov processes whose mean dynamics
are differential inclusions is proved by Benaı̈m et al. (2005). They work in a setting in which
the step size of the increments of the Markov processes shrinks over time; we conjecture
that their result is also true in the present constant step size setting. Such a result would
provide a foundation not just for the best response dynamic, but for the projection dynamic
as well.

Section 6.2: This section is based on Hofbauer and Sandholm (2002, 2007).
The perturbed best response dynamic first appears in the work of Fudenberg and Kreps

(1993) on stochastic fictitious play, while the logit dynamic first appears in Fudenberg and
Levine (1998). For the Hausdorff metric mentioned in Example 6.2.1, see Ok (2007). For
further references on logit models in game theory, see the Notes to Chapter 11.

In the experimental economics literature, perturbed equilibrium goes by the name of
quantal response equilibrium, a term introduced by McKelvey and Palfrey (1995). Some
authors use this term more narrowly to refer to logit equilibrium. For more on the use
of these concepts in the experimental literature, see Camerer (2003) and the references
therein.

The properties of the derivative matrix DM̃(π) have long been known in the discrete
choice literature—see McFadden (1981) or Anderson et al. (1992). The control cost in-
terpretation of deterministic perturbations is suggested by van Damme (1991, Chapter
4). That independent εi with bounded densities generate a continuously differentiable M̃
follows from standard results on convolutions; see Hewitt and Stromberg (1965, Theorem
21.33).

An intuitive discussion of the Poincaré-Hopf Theorem can be found in Hofbauer and
Sigmund (1988, Section 19); see Milnor (1965) for a formal treatment. See Ritzberger
(1994), Demichelis and Germano (2000, 2002), and Demichelis and Ritzberger (2003) for
intriguing uses of topological ideas to study the global properties of evolutionary game
dynamics.

Section 6.3: Nagurney and Zhang (1996, 1997), building on work of Dupuis and Nagur-
ney (1993), introduce the projection dynamic in the context of congestion games. Earlier,
Friedman (1991) introduced an evolutionary dynamic that is equivalent to the projection
dynamic on int(X), but that is different at states in bd(X). The presentation in this section

206



follows Lahkar and Sandholm (2008) and Sandholm et al. (2008).
Appendix 6.A: Smirnov (2002) provides a readable introduction to the theory of differ-

ential inclusions. A more comprehensive but less readable reference is Aubin and Cellina
(1984).

The existence of solutions to differential inclusions defined by projections of multival-
ued maps was proved by Henry (1973); the approach described here follows Aubin and
Cellina (1984, Section 5.6). Restricting attention to differential equations defined by projec-
tions of Lipschitz continuous functions allows one to establish uniqueness and continuity
results, a point noted, e.g., by Dupuis and Nagurney (1993).

Appendix 6.B: Formal treatments of the Legendre transform can be found in Rockafellar
(1970) and Hiriart-Urruty and Lemaréchal (2001). Example 6.B.3 is borrowed from Roberts
and Varberg (1973, Section 15). For the Global Inverse Function Theorem, see Gordon
(1972).

Appendix 6.C : Theorem 6.2.2 is due to Hofbauer and Sandholm (2002). For proofs of
Theorem 6.C.4 and 6.C.6, see McFadden (1981) or Anderson et al. (1992). The latter source
is a good general reference on discrete choice theory.
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Part III

Convergence and Nonconvergence
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CHAPTER

SEVEN

Global Convergence of Evolutionary Dynamics

7.0 Introduction

In the preceding chapters, we introduced a variety of classes of evolutionary dynamics
and exhibited their basic properties. Most conspicuously, we established links between
the rest points of each dynamic and the Nash equilibria of the underlying game, links that
are valid regardless of the nature of the game at hand. This connection is expressed in
its strongest form by dynamics satisfying Nash stationarity (NS), under which rest points
and Nash equilibria coincide.

Still, once one specifies an explicitly dynamic model of behavior, the most natural
approach to prediction is not to focus immediately on equilibrium points, but to determine
where the dynamic leads when set in motion from various initial conditions. If equilibrium
occurs as the limiting state of this adjustment process, we can feel some confidence in
predicting equilibrium play. If instead our dynamics lead to limit cycles or other more
complicated limit sets, then these sets rather than the unstable rest points provide superior
predictions of behavior.

In this chapter, we seek conditions on games and dynamics under which behavior
converges to equilibrium from all or nearly all initial population states. We therefore re-
consider the three classes of population games introduced in Chapter 3—potential games,
stable games, and supermodular games—and derive conditions on evolutionary dynam-
ics that ensure convergence in each class of games. We also establish convergence results
for dominance solvable games, but we shall see in Chapter 9 that these results are not
robust to small changes in the dynamics for which they hold.

The most common method for proving global convergence in a dynamical system is by
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constructing a strict Lyapunov function: a scalar-valued function that the dynamic ascends
whenever it is not at rest. When the underlying game is a potential game, the game’s
potential function provides a natural candidate Lyapunov function for evolutionary dy-
namics. We verify in Section 7.1 that a potential functions serve as Lyapunov functions
under any evolutionary dynamic that satisfies our basic monotonicity condition, positive
correlation (PC). We then use this fact to prove global convergence in potential games
under all of the evolutionary dynamics studied in Chapters 5 and 6.

Unlike potential games, stable games do not come equipped with a scalar-valued
function that is an obvious candidate Lyapunov function for evolutionary dynamics. But
the structure of payoffs in these games—already reflected in the fact that their sets of Nash
equilibria are convex—makes it natural to expect convergence results to hold.

We develop this intuition in Section 7.2, where we develop approaches to construct-
ing Lyapunov functions for stable games. We find that distance-like functions serve as
Lyapunov functions for the replicator and projection dynamics, allowing us to establish
global convergence results for these dynamics in strictly stable games. For target dy-
namics, including excess payoff, best response, and perturbed best response dynamics,
we find that integrability of the revision protocol is the key to establishing convergence
results. We argue in Section 7.2.2 that in the presence of payoff monotonicity, integrability
of the protocol ensures that on average, the vector of motion deviates from the vector of
payoffs in the direction of the equilibrium; given the geometry of equilibrium in stable
games, this is enough to ensure convergence to equilibrium. All told, we prove global
convergence results for all six of our fundamental dynamics.

In Section 7.3, we turn our attention to supermodular games. As these game’s essential
property is the monotonicity of their best response correspondences, it is not surprising
that our convergence results address dynamics that respect this monotone structure. We
begin by considering the best response dynamic, using elementary methods to prove a
convergence result for supermodular games generated by two-player normal form games
that satisfy a “diminishing returns” condition. To obtain convergence results that demand
less structure of the game, we appeal to methods from the theory of cooperative differential
equations: these are smooth differential equations under which increasing the value of one
component of the state variable increases the growth rates of all other components. The
smoothness requirement precludes applying these methods to the best response dynamic,
but we are able to use them to study perturbed best response dynamics. We prove that
after a natural change of coordinates, perturbed best response functions generated by
stochastic perturbations of payoffs are monotone. Ultimately, this allows us to show that
the corresponding perturbed best response dynamics converge to perturbed equilibrium
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from almost all initial conditions.
In Section 7.4, we study evolution in games with strictly dominated strategies. We

find that under the best response dynamic and under imitative dynamics, strictly domi-
nated strategies are eliminated; so are strategies ruled out by iterative removal of strictly
dominated strategies. It follows that in games that are dominance solvable—that is, in
games where this iterative procedure leaves only one strategy for each population—the
best response dynamic and all imitative dynamics converge to the dominance solution.
We should emphasize, however, that these elimination results are not robust: we will
see in Chapter 9 that under many small modifications of the dynamics covered by our
elimination results, strictly dominated strategies can survive.

The definitions and tools from dynamical systems theory needed for our analyses are
treated in the Appendix. Appendix 7.A introduces notions of stability, limit behavior, and
recurrence for deterministic dynamics. Appendix 7.B presents stability and convergence
results for dynamics that admit Lyapunov functions. Finally, Appendix 7.C introduces
the theory of cooperative differential equations and monotone dynamical systems.

7.1 Potential Games

7.1.1 Potential Functions as Lyapunov Functions

In a potential game F : X → Rn, all information about incentives is captured by the
potential function f : X→ R, in that

(7.1) ∇ f (x) =ΦF(x) for all x ∈ X.

In Chapter 3, we characterized Nash equilibria of F as those states that satisfy the Kuhn-
Tucker first order conditions for maximizing f on X. We now take a further step, using
the potential function to describe disequilibrium adjustment. In Lemma 7.1.1, we show
that any evolutionary dynamic that satisfies positive correlation,

(PC) Vp
F(x) , 0 implies that Vp

F(x)′Fp(x) > 0,

must ascend the potential function f .
To state this result, we introduce the notion of a Lyapunov function. The C1 function

L : X → R is an (increasing) strict Lyapunov function for the differential equation ẋ = VF(x)
if L̇(x) ≡ ∇L(x)′VF(x) ≥ 0 for all x ∈ X, with equality only at rest points of VF.
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Lemma 7.1.1. Let F be a potential game with potential function f . Suppose the evolutionary
dynamic ẋ = VF(x) satisfies positive correlation (PC). Then f is a strict Lyapunov function for VF.

Proof. Follows immediately from condition (PC) and the fact that

˙f (x) = ∇ f (x)′ẋ = (ΦF(x))′VF(x) =
∑
p∈P

Fp(x)′Vp
F(x). �

The initial equality in the expression above follows from an application of the chain rule
(Section 3.A.4) to the composition t 7→ xt 7→ f (xt). Versions of this argument will be used
often in the proofs of the results to come.

If a dynamic admits a strict Lyapunov function, all solution trajectories of the dynamic
converge to equilibrium. Combining this fact with Lemma 7.1.1 allows us to prove a
global convergence result for potential games. To state this result, we briefly present
some definitions concerning limit behavior of deterministic trajectories; for more on these
notions and on Lyapunov functions, see Appendices 7.A and 7.B.

The ω-limit of trajectory {xt}t≥0 is the set of all points that the trajectory approaches
arbitrarily closely infinitely often:

ω({xt}) =
{

y ∈ X : there exists {tk}
∞

k=1 with lim
k→∞

tk = ∞ such that lim
k→∞

xtk = y
}
.

For dynamics ẋ = VF(x) that admit a unique solution trajectory from each initial condition,
we write ω(ξ) for the ω-limit set of the trajectory starting from state ξ, and we let

Ω(VF) =
⋃
ξ∈X

ω(ξ)

denote the set of all ω-limit points of all solution trajectories. The set Ω(VF) (or its closure,
when Ω(VF) is not closed) provides a basic notion of recurrence for deterministic dynamics.

Theorem 7.1.2. Let F be a potential game, and let ẋ = VF(x) be an evolutionary dynamic for
F that admits a unique solution from each initial condition and that satisfies positive correlation
(PC). Then Ω(VF) = RP(VF). In particular,

(i) If VF is an imitative dynamic, then Ω(VF) = RE(F), the set of restricted equilibria of F.
(ii) If VF is an excess payoff dynamic, a pairwise comparison dynamic, or the projection dynamic,

then Ω(VF) = NE(F).

Proof. Immediate from Lemma 7.1.1, Theorem 7.B.4, and the characterizations of rest
points from Chapters 5 and 6. �
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Example 7.1.3. 123 Coordination. Figure 7.1.1 presents phase diagrams for the six funda-
mental dynamics in 123 Coordination:

(7.2) F(x) = Ax =


1 0 0
0 2 0
0 0 3



x1

x2

x3

 =


x1

2x2

3x3

 .
In the first five cases, the phase diagram is plotted atop the potential function

(7.3) f (x) = 1
2

(
(x1)2 + 2(x2)2 + 3(x3)2

)
.

Of these, the first four cases (replicator, projection, BNN, Smith) are covered by Theo-
rem 7.1.2; evidently, every solution trajectory in diagrams (i)–(iv) ascends the potential
function, ultimately converging to one of the seven Nash equilibria of F.

It is worth noting that these equilibria are not all locally stable. The interior equilibrium
is a source, with all nearby solution trajectories moving away from the equilibrium. The
three equilibria with two-strategy supports are saddles: for each of these, there is one
solution trajectory that converges to the equilibrium, while all other nearby trajectories
eventually move away from the equilibrium. Only the three remaining equilibria—the
three pure equilibria—are locally stable. We defer further discussion of local stability to
Chapter 8, which is devoted to this topic. §

Our convergence results for best response and perturbed best response dynamics
require additional work. In the case of the best response dynamic

(BR) ẋp
∈ mpMp(Fp(x)) − xp, where Mp(πp) = argmax

i∈Sp
πp

i ,

we must account for the fact that the dynamic is multivalued.

Theorem 7.1.4. Let F be a potential game with potential function f , and let ẋ ∈ VF(x) be the best
response dynamic for F. Then

∂ f
∂z

(x) =
∑
p∈P

mp max
j∈Sp

F̂p
j (x) for all z ∈ VF(x) and x ∈ X.

Therefore, every solution trajectory {xt} of VF satisfies ω({xt}) ⊆ NE(F).

Proof. Recall from Theorem 6.1.8 that the best response dynamic satisfies the following
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1

2 3

(i) replicator

1

2 3

(ii) projection

1

2 3

(iii) BNN

1

2 3

(iv) Smith

1

2 3

(v) best response

1

2 3

(vi) logit(.5)

Figure 7.1.1: Six basic dynamics in 123 Coordination. The contour plots are the potential function in (i)-(v),
and the logit potential function in (vi).
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refinement of condition (PC):

(zp)′Fp(x) = mp max
j∈Sp

F̂p
j (x) for all zp

∈ Vp
F(x).

This condition immediately implies that

∂ f
∂z

(x) ≡ ∇ f (x)′z = (ΦF(x))′z =
∑
p∈P

Fp(x)′zp =
∑
p∈P

mp max
j∈Sp

F̂p
j (x).

Thus, ∂ f
∂z (x) ≥ 0 for all x ∈ X and z ∈ VF(x), and Lemma 5.5.4 implies that equality holds if

and only if x ∈ NE(F). The convergence result now follows from Theorem 7.B.5. �

Example 7.1.5. 123 Coordination revisited. Figure 7.1.1(v) presents the phase diagram of the
best response dynamic in 123 Coordination (7.2), again atop the potential function (7.3).
As in Example 6.1.5, there are multiple solutions starting from each initial condition on
the Y-shaped set of boundaries between the best response regions. It is not hard to verify
that each of these solutions converges to a Nash equilibrium. §

Finally, we turn to perturbed best response dynamics, considering the (more general)
definition of these dynamics via admissible deterministic perturbations vp : int(∆p)→ R.

ẋp = mpM̃p(F(x)) − xp, where M̃p(πp) = argmax
yp∈int(∆p)

(yp)′πp
− vp(yp),

While these dynamics do not satisfy positive correlation (PC), Theorem 6.2.13 showed
that these dynamics do satisfy a perturbed analogue called virtual positive correlation:

Vp(x) , 0 implies that Vp(x)′F̃p(x) > 0 for all p ∈ P ,

where the virtual payoffs F̃ : int(X)→ Rn for the pair (F, v) are defined by

F̃p(x) = Fp(x) − ∇vp( 1
mp xp).

Accordingly, the Lyapunov function for a perturbed best response dynamic is not the
potential function f , but a perturbed version thereof.

Theorem 7.1.6. Let F be a potential game with potential function f , and let ẋ = VF,v(x) be the
perturbed best response dynamic for F generated by the admissible deterministic perturbations
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v = (v1, . . . , vp). Define the perturbed potential function f̃ : int(X)→ R by

(7.4) f̃ (x) = f (x) −
∑
p∈P

mpvp( 1
mp xp).

Then f̃ is a strict Lyapunov function for VF,v, and so Ω(VF,v) = PE(F, v).

Proof. That f̃ is a strict Lyapunov function for VF,v follows immediately from virtual
positive correlation and the fact that

˙̃f (x) ≡ ∇ f̃ (x)′ẋ =
∑
p∈P

(
Fp(x) − ∇vp( 1

mp xp)
)′

Vp
F,v(x) =

∑
p∈P

F̃p(x)′Vp
F,v(x).

Since PE(F, v) ≡ RP(VF,v), that Ω(VF,v) = PE(F, v) follows from Theorem 7.B.4. �

In the case of the logit(η) dynamic, the Lyapunov function from equation (7.4) takes
the form

(7.5) f̃ (x) = f (x) − η
∑
p∈P

∑
i∈S

xp
i log( 1

mp xp
i ),

called the logit potential function. Theorem 7.1.6, combined with our results in Chapter 10,
tells us that the logit potential function captures the finite horizon behavior of agents who
play a potential game using the logit choice protocol. In Chapter 11, the logit potential
function will be used to obtain a precise characterization of infinite horizon behavior in this
setting.

Example 7.1.7. 123 Coordination rerevisited. Figure 7.1.1(vi) presents the phase diagram for
the logit(.5) dynamic in 123 Coordination (7.2). Here the contour plot is the logit potential
function

f̃ (x) = 1
2

(
(x1)2 + 2(x2)2 + (3(x3)2

)
− .5

3∑
i=1

xi log xi.

Because the noise level is rather high, this phase diagram looks very different than the
others—in particular, it includes only three rest points (two stable and one unstable)
rather than seven. Nevertheless, every solution trajectory ascends the relevant Lyapunov
function f̃ , ultimately converging to a perturbed equilibrium. §
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7.1.2 Gradient Systems for Potential Games

Lemma 7.1.1 tells us that in potential games, any dynamic that satisfies condition (PC)
must ascend the potential function f . We now turn to a more refined question: is there an
evolutionary dynamic that ascends f in the fastest possible way?

A first answer to this question is suggested by Figure 7.1.1(ii): in 123 Coordination,
solution trajectories of the projection dynamic,

(P) ẋ = ΠTX(x)(F(x)),

cross the level sets of the potential function orthogonally. In fact, we have

Observation 7.1.8. Let F : X→ Rn be a potential game with potential function f : X→ R. On
int(X), the projection dynamic (P) is the gradient system for f :

(7.6) ẋ = ∇ f (x) on int(X).

Surprisingly, there is an alternative answer to our question: it turns out that the
replicator dynamic,

(R) ẋp
i = xp

i F̂p
i (x),

also defines a gradient system for the potential function f ; however, this is only true
after we apply a clever change of variable. In addition to its inherent interest, this fact
demonstrates a close connection between the replicator and projection dynamics; another
such connection will be made in Section 7.2.1 below.

We restrict our analysis to the single population case. Define the set X = {x ∈ Rn
+ :∑

i∈S x 2
i = 4} to be the portion of the raidus 2 sphere lying in the positive orthant. Our

change of variable is given by the Akin transformation H : int(Rn
+) → int(Rn

+), where
Hi(x) = 2

√
xi. Evidently, H is a diffeomorphism that maps the simplex X onto the set X .

The transformation makes changes in component xi look large when xi itself is small.
Theorem 7.1.9 tells us that the replicator dynamic is a gradient dynamic on int(X)

after a change of variable that makes changes in the use of rare strategies look important
relative to changes in the use of common ones. Intuitively, this reweighting accounts for
the fact that under imitative dynamics, changes in the use of rare strategies are necessarily
slow.

Theorem 7.1.9. Let F : X→ Rn be a potential game with potential function f : X→ R. Suppose
we transport the replicator dynamic for F from int(X) to int(X ) using the Akin transformation
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H. Then the resulting dynamic is the gradient dynamic for the transported potential function
φ = f ◦H−1.

Proof. We prove Theorem 7.1.9 in two steps: first, we derive the transported version of
the replicator dynamic; then we derive the gradient system for the transported version of
the potential function, and show that it is the same dynamic on X . The following notation
will simplify our calculations: when y ∈ Rn

+ and a ∈ R, we let [ya] ∈ Rn be the vector whose
ith component is (yi)a.

We can express the replicator dynamic on X as

ẋ = R(x) = diag(x) (F(x) − 1x′F(x)) =
(
diag (x) − xx′

)
F(x).

The transported version of this dynamic can be computed as

ẋ = R (x ) = DH(H−1(x ))R(H−1(x )).

In words: given a state x ∈ X , we first find the corresponding state x = H−1(x ) ∈ X and
direction of motion R(x). Since R(x) represents a displacement from state x, we transport
it to X by premultiplying it by DH(x), the derivative of H evaluated at x.

Since x = H(x) = 2 [x1/2], the derivative of H at x is given by DH(x) = diag([x−1/2])
Using this fact, we derive a primitive expression for R (x ) in terms of x = H−1(x ) = 1

4 [x 2]:

ẋ = R (x )(7.7)

= DH(x)R(x)

= diag([x−1/2])(diag(x) − xx′)F(x)

=
(
diag([x1/2]) − [x1/2]x′

)
F(x).

Now, we derive the gradient system on X generated byφ = f ◦H−1. To compute∇φ(x ),
we need to define an extension of φ to all of Rn

+, compute its gradient, and then project the
result onto the tangent space of X at x . The easiest way to proceed is to let f̃ : int(Rn

+)→ R
be an arbitrary C1 extension of f , and to define the extension φ̃ : int(Rn

+)→ R by φ̃ = f̃ ◦H−1.
Since X is a portion of a sphere centered at the origin, the tangent space of X at x

is the subspace TX (x ) = {z ∈ Rn : x ′z = 0}. The orthogonal projection onto this set is
represented by the n × n matrix

PTX (x ) = I −
1

x ′x xx ′ = I −
1
4

xx ′ = I − [x1/2][x1/2]′.
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Also, since Φ∇ f̃ (x) = ∇ f (x) = ΦF(x) by construction, it follows that ∇ f̃ (x) = F(x) + c(x)1 for
some scalar-valued function c : X→ R.

Using the chain rule (Section 3.A.4), we compute that

∇φ̃(x ) = D( f̃ ◦H−1)(x )′ = (D f (H−1(x )) DH−1(x ))′ = DH−1(x )′∇ f̃ (x),

while applying the chain rule to the identity H−1(H(x)) ≡ x and then rearranging yields

DH−1(x ) = DH(x)−1.

Marshaling these observations, we find that the gradient system on X generated by φ is

ẋ = ∇φ(x )

= PTX (x )∇φ̃(x )

= PTX (x )DH−1(x )′∇ f̃ (x)

= PTX (x ) (DH(x)−1)′ (F(x) + c(x)1)

=
(
I − [x1/2][x1/2]′

)
diag([x1/2]) (F(x) + c(x)1)

=
(
diag([x1/2]) − [x1/2]x′

)
(F(x) + c(x)1)

=
(
diag([x1/2]) − [x1/2]x′

)
F(x).

This agrees with equation (7.7), completing the proof of the theorem. �

Example 7.1.10. 123 Coordination one last time. Figure 7.1.2 illustrates Theorem 7.1.9 by
presenting phase diagrams of the transported replicator dynamic ẋ = R (x ) for 123 Co-
ordination (cf Example 7.1.3). These phase diagrams on X are drawn atop contour plots
of the transported potential function φ(x ) = ( f ◦ H−1)(x ) = 1

32 ((x1)4 + 2(x2)4 + 3(x3)4). Ac-
cording to Theorem 7.1.9, the solution trajectories of R should cross the level sets of φ
orthogonally.

Looking at Figure 7.1.2, we find that the crossings look orthogonal at the center of the
figure, but not by the boundaries. This is an artifact of our drawing a portion of the sphere
in R3 by projecting it orthogonally onto a sheet of paper. (For exactly the same reason,
latitude and longitude lines in an orthographic projection of the Earth only appear to cross
at right angles in the center of the projection, not on the left and right sides.) To check
whether the crossings near a given state x ∈ X are truly orthogonal, we must minimize
the distortion of angles near x by making x the origin of the projection—that is, the point
where the sphere touches the sheet of paper. In the phase diagrams in Figure 7.1.2, we
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1

2 3

(i) origin = H( 1
3 ,

1
3 ,

1
3 )

1

2

3

(ii) origin = H( 1
7 ,

1
7 ,

5
7 )

Figure 7.1.2: The phase diagram of the transported replicator dynamic ẋ = R (x ) for a coordination game.
The pink dots represent the positions of the projection origins.
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mark the projection origins with pink dots; evidently, the crossings are orthogonal near
these points. §

7.2 Stable Games

Recall that the population game F is stable if it satisfies

(7.8) (y − x)′(F(y) − F(x)) ≤ 0 for all x, y ∈ X.

When F is C1, this condition is equivalent to self-defeating externalities:

(7.9) z′DF(x) z ≤ 0 for all z ∈ TX and x ∈ X.

The set of Nash equilibria of a stable game is convex, and most often a singleton.
In general, uniqueness of equilibrium is not enough to ensure convergence of evo-

lutionary dynamics. As we shall see in Chapter 9, there are many simple examples of
games with a unique Nash equilibrium in which dynamics fail to converge. Nevertheless,
we show in this section that under many evolutionary dynamics, the structure provided
by self-defeating externalities is enough to ensure convergence. While fewer dynamics
converge here than in potential games, convergence does obtain under all six fundamental
dynamics.

Our convergence proofs for stable games again rely on the construction of Lyapunov
functions, but here we will need to construct a distinct Lyapunov function for each dy-
namic we consider. It will be natural to write these Lyapunov functions so that their
values fall over time: thus, we say that a C1 function L is a (decreasing) strict Lyapunov
function for the dynamic ẋ = VF(x) if L̇(x) ≤ 0 for all x ∈ X, with equality only at rest points
of VF. Apart from those for perturbed best response dynamics, the Lyapunov functions
introduced below are also gap functions: they are continuous and nonnegative, with zeros
precisely at the Nash equilibria of the underlying game F.

7.2.1 The Projection and Replicator Dynamics in Strictly Stable Games

To obtain convergence results for the projection and replicator dynamics, we must
restrict attention to strictly stable games: that is, games in which condition (7.8) holds
strictly for all x, y ∈ X. The Lyapunov functions for these dynamics are based on explicit
notions of “distance” from the the game’s unique Nash equilibrium x∗.

Theorem 7.2.1 shows that under the projection dynamic, x∗ is globally asymptotically
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stable: all solution trajectories converge to x∗, and solutions that start near x∗ never move
too far away from x∗ (see Appendix 7.A.2).

Theorem 7.2.1. Let F be a strictly stable game with unique Nash equilibrium x∗, and let ẋ = VF(x)
be the projection dynamic for F. Let the function Ex∗ : X→ R+, defined by

Ex∗(x) =
∣∣∣x − x∗

∣∣∣2 ,
represent squared Euclidean distance from x∗. Then Ex∗ is a strict Lyapunov function for VF, and
so x∗ is globally asymptotically stable under VF.

Proof. Since F is a strictly stable game, its unique Nash equilibrium x∗ is also its unique
GESS:

(x − x∗)′F(x) < 0 for all x ∈ X − {x∗}.

This fact and the Moreau Decomposition Theorem imply that

Ėx∗(x) = ∇Ex∗(x)′ẋ

= 2(x − x∗)′ΠTX(x)(F(x))

= 2(x − x∗)′F(x) + 2(x∗ − x)′ΠNX(x)(F(x))

≤ 2(x∗ − x)′ΠNX(x)(F(x))

≤ 0,

where the penultimate inequality is strict whenever x , x∗. Global asymptotic stability of
NE(F) then follows from Corollary 7.B.7. �

Exercise 7.2.2. Let F be a stable game, and let x∗ be a Nash equilibrium of F.
(i) Show that x∗ is Lyapunov stable under (P).
(ii) Suppose that F is a null stable game (i.e., that (y−x)′(F(y)−F(x)) = 0 for all x, y ∈ X).

Show that if x∗ ∈ int(X), then Ex∗ defines a constant of motion for (P) on int(X): the
value of Ex∗ is constant along interior portions of solution trajectories of (P).

Exercise 7.2.3. Show that if F is a C1 stable game, then the squared speed of motion
L(x) = |ΦF(x)|2 is a Lyapunov function for (P) on int(X). Show that if F is null stable,
then L defines a constant of motion for (P) on int(X). (Notice that unlike that of Ex∗ , the
definition of L does not directly incorporate the Nash equilibrium x∗.)

224



Under the replicator dynamic (R), as under any imitative dynamic, strategies that are
initially unused remain unused for all time. Therefore, if state x places no mass on a
strategy in the support of the Nash equilibrium x∗, the solution to (R) starting from x
cannot converge to x∗. Thus, in stating our convergence result for the replicator dynamic,
we need to be careful to specify the set of states from which convergence to equilibrium
occurs.

With this motivation, let Sp(xp) = {i ∈ Sp : xp
i > 0} denote the support of xp. Then

Xp
yp =

{
xp
∈ Xp : Sp(yp) ⊆ Sp(xp)

}
is the set of states in Xp whose supports contain the support

of yp, and Xy =
∏

p∈P Xp
yp is the set of states in X whose supports contain the support of y.

To construct our Lyapunov function, we introduce the function hp
yp : Xp

yp → R, defined by

hp
yp(xp) =

∑
i∈Sp(yp)

yp
i log

yp
i

xp
i

.

If population p is of unit mass, so that yp and xp are probability distributions, hp
yp(xp) is

known as the relative entropy of yp given xp.

Theorem 7.2.4. Let F be a strictly stable game with unique Nash equilibrium x∗, and let ẋ = VF(x)
be the replicator dynamic for F. Define the function Hx∗ : Xx∗ → R+ by

Hx∗(x) =
∑
p∈P

hp
(x∗)p(xp).

Then H−1
x∗ (0) = {x∗}, and Hx∗(x) approaches infinity whenever x approaches X − Xx∗ Moreover,

Ḣx∗(x) ≤ 0, with equality only when x = x∗. Therefore, x∗ is globally asymptotically stable with
respect to Xx∗ .

Proof. (p = 1) To see that Hx∗ is a gap function, observe that by Jensen’s inequality,

−Hx∗(x) =
∑

i∈S(x∗)

x∗i log
xi

x∗i
≤ log

 ∑
i∈S(x∗)

x∗i ·
xi

x∗i

 = log

 ∑
i∈S(x∗)

xi

 ≤ log 1 = 0,

with equality if and only if x = x∗. The second claim is immediate. For the third claim,
note that since F is strictly stable, x∗ is a GESS, so for all x ∈ Xx∗ we have that

Ḣx∗(x) = ∇Hx∗(x)′ẋ

= −
∑

i∈S(x∗)

x∗i
xi
· xi F̂i(x)
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= −
∑
i∈S

x∗i F̂i(x)

= −(x∗)′ (F(x) − 1 x′F(x))

= −(x∗ − x)′F(x)

≤ 0,

where the inequality binds precisely when x = x∗. The conclusions about stability then
follow from Theorems 7.B.2 and 7.B.4. �

Exercise 7.2.5. Let F be a stable game, and let x∗ be a Nash equilibrium of F.
(i) Show that x∗ is Lyapunov stable under (R).
(ii) Show that if F is a null stable game and x∗ ∈ int(X), then Hx∗ defines a constant of

motion for (R) on int(X).

7.2.2 Integrable Target Dynamics

Of our six fundamental dynamics, three of them—the BNN, best response, and logit
dynamics, can be expressed as target dynamics of the form

τp(πp, xp) = τp(π̂p),

under which conditional switch rates only depend on on the vector of excess payoffs
π̂p = πp

−
1

mp 1(xp)′πp. This is obviously true of the BNN dynamic. For the other two cases,
note that shifting all components of the payoff vector by the same constant has no effect
on either exact or perturbed best responses: in particular, the definitions (6.2) and (6.12)
of the maximizer correspondence Mp : Rnp

⇒ ∆p and the perturbed maximizer function
M̃p : Rnp

→ ∆p satisfy Mp(π̂p) = Mp(πp) and M̃p(π̂p) = M̃p(πp).
In this section, we show that these three dynamics converge to equilibrium in all

stable games, as do all close enough relatives of these dynamics. Unlike in the context of
potential games, monotonicity properties alone are not enough to ensure that a dynamic
converges: in addition, integrability of the revision protocol plays a key role in establishing
convergence results.

To begin, we provide an example to illustrate that monotonicity properties alone do
not ensure convergence of target dynamics in stable games.

Example 7.2.6. Cycling in good RPS. Fix ε > 0, and let gε: R→R be a continuous decreasing
function that equals 1 on (–∞, 0], equals ε2 on [ε, ∞), and is linear on [0, ε]. Then define
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the revision protocol τ for Rock-Paper-Scissors games by

(7.10)


τR(π̂)
τP(π̂)
τS(π̂)

 =


[π̂R]+gε(π̂S)
[π̂P]+gε(π̂R)
[π̂S]+gε(π̂P)

 .
Under this protocol, the weight placed on a strategy is proportional to positive part of the
strategy’s excess payoff, as in the protocol for the BNN dynamic; however, this weight is
only of order ε2 if the strategy it beats in RPS has an excess payoff greater than ε.

It is easy to verify that protocol (7.10) satisfies acuteness (5.21):

τ(π̂)′π̂ = [π̂R]2
+ gε(π̂S) + [π̂P]2

+ gε(π̂R) + [π̂S]2
+ gε(π̂P),

which is positive when π̂ ∈ int(Rn
∗). Thus, the target dynamic induced by τ is an excess

payoff dynamic. In Figure 7.2.1 we presents a phase diagram for this dynamic in the good
RPS game

F(x) = Ax =


0 −2 3
3 0 −2
−2 3 0



xR

xP

xS

 .
Evidently, solutions from many initial conditions lead to a limit cycle. §

To explain why cycling occurs in the example above, we review some ideas about the
geometry of stable games and target dynamics. By Theorem 3.3.16, every Nash equilib-
rium x∗ of a stable game is a GNSS. Geometrically, this means that at every nonequilibrium
state x, the projected payoff vector ΦF(x) forms an acute or right angle with the line seg-
ment from x back to x∗ (Figures 3.3.3, 3.3.5, and 3.3.6). Meanwhile, our monotonicity
condition for dynamics, positive correlation (PC), requires that away from equilibrium,
each vector of motion VF(x) forms an acute angle with the projected payoff vector ΦF(x)
(Figures 5.2.1 and 5.2.2). Combining these observations, we conclude that if the law of
motion ẋ = VF(x) tends to deviate from the projected payoffs ΦF in “outward” directions—
that is, in directions heading away from equilibrium—then cycling will occur (compare
Figure 3.3.6 with Figure 7.2.1). On the other hand, if the deviations of VF from ΦF tend to
be “inward”, then solutions should converge to equilibrium.

By this logic, we should be able to guarantee convergence of target dynamics in stable
games by ensuring that the deviations of VF from ΦF are toward the equilibrium, at least in
some average sense. To accomplish this, we introduce an additional condition for revision
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R

P S

Figure 7.2.1: An excess payoff dynamic in good RPS (w = 3, l = 2).

protocols: integrability.

(7.11) There exists a C1 function γp : Rnp
→ R such that τp

≡ ∇γp.

We call the functions γp introduced in this condition revision potentials.
To give this condition a behavioral interpretation, it is useful to compare it to separability:

(7.12) τp
i (π̂p) is independent of π̂p

−i.

The latter condition is stronger than the former: if τp satisfies (7.12), then it satisfies (7.11)
with

(7.13) γp(π̂p) =
∑
i∈Sp

∫ π̂
p
i

0
τp

i (s) ds.

In Example 7.2.6, the protocol (7.10) that generated cycling has the following note-
worthy feature: the weights agents place on each strategy depend systematically on the
payoffs of the next strategy in the best response cycle. Building on this motivation, one
can obtain a game-theoretic interpretation of integrability. Roughly speaking, integrabil-
ity (7.11) is equivalent to a requirement that in expectation, learning the weight placed
on strategy j does not convey information about other strategies’ excess payoffs. It thus
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generalizes separability (7.12), which requires that learning the weight placed on strategy
j conveys no information at all about other strategies’ excess payoffs (see the Notes).

Before turning to our convergence theorems, we address a missing step in the moti-
vating argument above: how does integrability ensure that the law of motion VF tends to
deviate from the projected payoffs ΦF in the direction of equilibrium? To make this link,
let us recall a characterization of integrablility from Section 3.A.9: the map τ : Rn

→ Rn is
integrable if and only if its line integral over any piecewise smooth closed curve C ⊂ Rn

evaluates to zero:

(7.14)
∮

C
τ(π̂) · dπ̂ = 0.

Example 7.2.7. Let the population game F be generated by random matching in standard
RPS:

F(x) = Ax =


0 −1 1
1 0 −1
−1 1 0



xR

xP

xS

 .
The unique Nash equilibrium of F is the GNSS x∗ = ( 1

3 ,
1
3 ,

1
3 ). Game F has the convenient

property that at each state x ∈ X, the payoff vector F(x), the projected payoff vector ΦF(x),
and the excess payoff vector F̂(x) are all the same, a fact that will simplify the notation in
the argument to follow.

Since F is null stable, we know that at each state x , x∗, the payoff vector F(x) is
orthogonal to the vector x∗−x. In Figure 3.3.6, these payoff vectors point counterclockwise
relative to x∗. Since positive correlation (PC) requires that the direction of motion VF(x)
form an acute angle with F(x), dynamics satisfying (PC) also travel counterclockwise
around the equilibrium.

To address whether the deviations of VF from F tend to be inward or outward, let C ⊂ X
be a circle of radius c ∈ (0, 1

√
6
] centered at the equilibrium x∗. This circle is parameterized

by the function ξ : [0, 2π]→ X, where

(7.15) ξα =
c
√

6


−2 sinα

√
3 cosα + sinα

−
√

3 cosα + sinα

 + x∗.

Here α is the counterclockwise angle between the vector ξα−x∗ and a rightward horizontal
vector (see Figure 7.2.2).

Since state ξα lies on the circle C, the vector x∗ − ξα can be drawn as a radius of C; thus,
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Figure 7.2.2: Integrability and inward motion of target dynamics in standard RPS.

the payoff vector πα ≡ F(ξα), which is orthogonal to x∗ − ξα, must be tangent to C at ξα, as
shown in Figure 7.2.2. This observation is easy to verify analytically:

(7.16) πα = F(ξα) =
c
√

6


−2
√

3 cosα
−3 sinα +

√
3 cosα

3 sinα +
√

3 cosα

 =
√

3 d
dαξα.

If we differentiate both sides of identity (7.16) with respect to the angle α, and note that
d2

(dα)2ξα = −(ξα − x∗), we can link the rate of change of the payoff vector πα = F(ξα) to the
displacement of state ξα from x∗:

(7.17) d
dαπα =

√

3 d2

(dα)2ξα = −
√

3(ξα − x∗).

Now introduce an acute, integrable revision protocol τ. By combining integrability
condition (7.14) with equation (7.17), we obtain

(7.18) 0 =

∮
C
τ(π) · dπ ≡

∫ 2π

0
τ(πα)′

(
d

dαπα
)

dα = −
√

3
∫ 2π

0
τ(πα)′

(
ξα − x∗

)
dα.
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Let us write λ(π) =
∑

i∈S τi(π) and σi(π) = τi(π)
λ(π) to express the dynamic in target form. Then

because ξα − x∗ ∈ TX is orthogonal to x∗ = 1
31, we can conclude from equation (7.18) that

(7.19)
∫ 2π

0
λ(F(ξα))

(
σ(F(ξα)) − x∗

)′ (
ξα − x∗

)
dα = 0.

Equation (7.19) is a form of the requirement described at the start of this section: it
asks that at states on the circle C, the vector of motion under the target dynamic

(7.20) ẋ = VF(x) = λ(F(x))
(
σ(F(x)) − x

)
.

typically deviates from the payoff vector F(x) in an inward direction—that is, in the
direction of the equilibrium x∗.

To reach this interpretation of equation (7.19), note first that if the target state σ(F(ξα))
lies on or even near line L⊥(ξα), then motion from ξα toward σ(F(ξα)) is initially inward,
as shown in Figure 7.2.2. (Of course, target state σ(F(ξα)) lies above L(ξα) by virtue of
positive correlation (PC).) Now, the integrand in (7.19) contains the inner product of the
vectors σ(F(ξα)) − x∗ and ξα − x∗. This inner product is zero precisely when then the two
vectors are orthogonal, or, equivalently, when target state σ(F(ξα)) lies on L⊥(ξα). While
equation (7.19) does not require the two vectors to be orthogonal, it asks that this be true
on average, where the average is taken over states ξα ∈ C, and weighted by the rates
λ(F(ξα)) at which ξα approaches σ(F(ξα)). Thus, in the presence of acuteness, integrability
implies that on average, the dynamic (7.20) tends to point inward, toward the equilibrium
x∗. §

The foregoing arguments suggest that together, monotonicity and integrability are
enough to ensure global convergence of target dynamics in stable games. We now develop
this intuition into formal results by constructing suitable Lyapunov functions.

As a point of comparison, recall from Section 7.1.1 that in the case of dynamics for
potential games, monotonicity conditions alone are sufficient to prove global convergence
results: as the game’s potential function serves as a Lyapunov function for any dynamic
satisfying positive correlation (PC). Unlike potential games, stable games do not come
equipped with candidate Lyapunov functions. But if the revision protocol agents follow
is integrable, then the revision potential of this protocol provides a building block for
constructing a suitable Lyapunov function. Evidently, this Lyapunov function will vary
with the dynamic under study, even when the game under consideration is fixed.

Our first result concerns integrable excess payoff dynamics: that is, target dynamics whose
protocols τp are Lipschitz continuous, acute (5.21), and integrable (7.11). The prototype
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for this class is the BNN dynamic: its protocol τp
i (π̂p) = [π̂p

i ]+ is not only acute and
integrable, but also separable (7.12), and so admits potential function γp(π̂p) = 1

2

∑
i∈Sp[π̂p

i ]2
+

(cf equation (7.13)).

Theorem 7.2.8. Let F be a C1 stable game, and let ẋ = VF(x) be the integrable excess payoff

dynamic for F based on revision protocols τp with revision potentials γp. Define the C1 function
Γ : X→ R by

Γ(x) =
∑
p∈P

mpγp(F̂p(x)).

Then Γ is a strict Lyapunov function for VF, and NE(F) is globally attracting. In addition, if F
admits a unique Nash equilibrium, or if the protocols τp also satisfy separability (7.12), then we can
choose Γ to be nonnegative with Γ−1(0) = NE(F), and so NE(F) is globally asymptotically stable.

For future reference, observe that the value of the Lyapunov function Γ at state x is the
(mp-weighted) sum of the values of the revision potentials γp evaluated at the excess payoff

vectors F̂p(x).
The conditions introduced in the last sentence of the theorem are needed to ensure that

the Lyapunov function Γ is constant on the set NE(F) of Nash equilibria. Were this not
the case, the set NE(F) could be globally attracting without being Lyapunov stable—see
Example 7.B.3.

The proof of Theorem 7.2.8 and those to come make heavy use of multivariate product
and chain rules, which we review in Section 3.A.4.

Proof of Theorem 7.2.8. (p = 1) Recall that the excess payoff vector F̂(x) is equal to
F(x) − 1F̄(x), where F̄(x) = x′F(x) is the population’s average payoff. By the product rule,
the derivative of F̄ is

DF̄(x) = x′DF(x) + F(x)′.

Therefore, the derivative matrix for the excess payoff function F̂(x) = F(x) − 1F̄(x) is

DF̂(x) = D(F(x) − 1 F̄(x))

= DF(x) − 1 DF̄(x)

= DF(x) − 1(x′DF(x) + F(x)′).(7.21)

Using (7.21) and the chain rule, we can compute the time derivative of Γ:

Γ̇(x) = ∇Γ(x)′ẋ
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= ∇γ(F̂(x))′DF̂(x)ẋ

= τ(F̂(x))′
(
DF(x) − 1 (x′DF(x) + F(x)′)

)
ẋ

=
(
τ(F̂(x)) − τ(F̂(x))′1x

)′
DF(x)ẋ − τ(F̂(x))′1 F(x)′ẋ

= ẋ′DF(x)ẋ − (τ(F̂(x))′1)(F(x)′ẋ)

≤ 0,

where the inequality follows from the facts that F is stable and VF satisfies positive corre-
lation (PC).

We now show that this inequality binds precisely on the set NE(F). To begin, note that if
x ∈ RP(VF) (i.e., if ẋ = 0), then Γ̇(x) = 0. On the other hand, if x < RP(VF), then τ(F̂(x))′1 > 0
and F(x)′ẋ > 0 (by condition (PC)), implying that Γ̇(x) < 0. Since NE(F) = RP(VF), the
claim is proved. That NE(F) is globally attracting then follows from Theorem 7.B.4.

If F admits a unique Nash equilibrium x∗, then the foregoing argument implies that x∗

is the unique minimizer of Γ: since the value of Γ is nonincreasing over time, a solution
starting from a state x with Γ(x) < Γ(x∗) could not converge to x∗, contradicting that x∗

is globally attracting. Thus, after normalizing by an additive constant, we find that Γ

is nonnegative with Γ−1(0) = {x∗}, so the global asymptotic stability of x∗ follows from
Corollary 7.B.7.

If instead τ satisfies separability (7.12), we can define the revision potential γ as in
equation (7.13). It then follows from Exercise 5.5.7 that Γ is nonnegative, with Γ(x) = 0 if
and only if F̂(x) ∈ bd(Rn

∗). Thus, Lemma 5.5.4 implies that Γ(x) = 0 if and only if x ∈ NE(F),
and so the global asymptotic stability of NE(F) again follows from Corollary 7.B.7. �

Next we consider the best response dynamic, which we here express by applying the
maximizer correspondence

Mp(π̂p) = argmax
yp∈∆p

(yp)′π̂p

to the vector of excess payoffs, yielding the exact target dynamic

(BR) ẋp
∈ mpMp(F̂p(x)) − xp.

Following the previous logic, we can assess the possibilities for convergence in stable
games by checking monotonicity and integrability. Monotonicity was established in
Theorem 6.1.8, which showed that (BR) satisfies an analogue of positive correlation (PC)
appropriate for differential inclusions. For integrability, one can argue that the protocol
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Mp, despite being multivalued, is integrable in a suitably defined sense, with its “potential
function” being given by the maximum function

µp(πp) = max
yp∈∆p

(yp)′πp = max
i∈Sp

πp
i .

Note that if the payoff vector πp, and hence the excess payoff vector π̂p, have a unique
maximizing component i ∈ Sp, then the gradient of µp at π̂p is the standard basis vector ep

i .
But this vector corresponds to the unique mixed best response to π̂p, and so

∇µp(π̂p) = ep
i = Mp(π̂p).

One can account for multiple optimal components using a broader notion of differentia-
tion: for all π̂p

∈ Rn, Mp(π̂p) is the subdifferential of the convex function µp at π̂p (see the
Notes).

Having verified monotonicity and integrability, we again construct our candidate
Lyapunov function by plugging the excess payoff vectors into the revision potentials µp.
The resulting function G is very simple: it measures the difference between the payoffs
agents could obtain by choosing optimal strategies and their actual aggregate payoffs.

Theorem 7.2.9. Let F be a C1 stable game, and let ẋ ∈ VF(x) be the best response dynamic for F.
Define the Lipschitz continuous function G : X→ R+ by

G(x) = max
y∈X

(y − x)′F(x) = max
i∈S

F̂i(x).

Then G−1(0) = NE(F). Moreover, if {xt}t≥0 is a solution to VF, then for almost all t ≥ 0 we have
that Ġ(xt) ≤ −G(xt), and so NE(F) is globally asymptotically stable under VF.

Proof. (p = 1) That G−1(0) = NE(F) follows from Lemma 5.5.4. To prove the second
claim, let {xt}t≥0 be a solution to VF, and let S∗(t) ⊆ S be the set of pure best responses to state
xt. Since {xt}t≥0 is Lipschitz continuous, the map t 7→ F̂i(xt) is also Lipschitz continuous
for each strategy i ∈ S. Thus, since G(x) = maxy∈X(y − x)′F(x) = maxi∈S F̂i(x), it follows
from Danskin’s Envelope Theorem (see the Notes) that the map t 7→ G(xt) is Lipschitz
continuous, and that at almost all t ∈ [0,∞),

(7.22) Ġ(xt) ≡ d
dt max

i∈S
F̂i(xt) = d

dt F̂i∗(xt) for all i∗ ∈ S∗(t).

Applying equation (7.21), we find that for t satisfying equation (7.22) and at which ẋt
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exists, we have that

Ġ(xt) = d
dt F̂i∗(xt) for all i∗ ∈ S∗(t)

=
(
e′i∗DF(xt) − x′tDF(xt) − F(xt)′

)
ẋt for all i∗ ∈ S∗(t)

= (y∗ − xt)′DF(xt)ẋt − F(xt)′ẋt for all y∗ ∈ argmaxy∈∆ y′F̂(xt)

= ẋ′tDF(xt)ẋt − F(xt)′ẋt

≤ −F(xt)′ẋt

= −max
y∈X

F(xt)′(y − xt)

= −G(xt),

where the inequality follows from the fact that F is a stable game. (Note that the the
equality of the third to last and last expressions is also implied by Theorem 6.1.8.) The
global asymptotic stability of NE(F) then follows from Theorems 7.B.2 and 7.B.6. �

Finally, we consider convergence under perturbed best response dynamics. These are
exact target dynamics of the form

ẋp = mpM̃p(F̂p(x)) − xp;

here, the target protocol is the perturbed maximizer function

M̃p(π̂p) = argmax
yp∈int(∆p)

(yp)′π̂p
− vp(yp),

where vp : int(∆p)→ R is an admissible deterministic perturbation (see Section 6.2.2).
Once again, we verify the two conditions that underlie convergence. Theorem 6.2.13

showed that all perturbed best response dynamics satisfy virtual positive correlation (6.17),
establishing the required monotonicity. As for integrability, Observation 6.C.3 showed
that the protocol M̃p is integrable; its revision potential,

(7.23) µ̃p(πp) = max
yp∈int(∆p)

(yp)′πp
− vp(yp),

is the perturbed maximum function induced by vp. Now, mimicking Theorem 7.2.8, we
construct our Lyapunov function by composing the revision potentials µ̃p with the excess
payoff functions F̂p.

Theorem 7.2.10. Let F be a C1 stable game, and let ẋ = VF,v(x) be the perturbed best response
dynamic for F generated by the admissible deterministic perturbations v. Define the function

235



G̃ : int(X)→ R+ by

G̃(x) =
∑
p∈P

mp
(
µ̃p(F̂p(x)) + vp( 1

mp xp)
)
,

Then G−1(0) = PE(F, v), and this set is a singleton. Moreover, G̃ is a strict Lyapunov function for
VF,v, and so PE(F, v) is globally asymptotically stable under VF,v.

Proof. (p = 1) As in Section 6.2, let F̃(x) = F(x) − ∇v(x) be the virtual payoff function
generated by (F, v). Then

x ∈ PE(F, v)⇔ ΦF̃(x) = 0⇔ x = argmax
y∈int(∆)

(
y′F(x) − v(y)

)
⇔ G̃(x) = 0.

To prove that G̃ is a strict Lyapunov function, recall from Observation 6.C.3 that the
perturbed maximum function µ̃ defined in equation (7.23) is a potential function for the
perturbed maximizer function M̃: that is, ∇µ̃ ≡ M̃. Therefore, since F is stable, virtual
positive correlation (6.17) implies that

˙̃G(x) = d
dt

(
µ̃(F̂(x)) + v(x)

)
= d

dt

(
µ̃(F(x)) − (x′F(x) − v(x))

)
= M̃(F(x))′DF(x) ẋ − (x′DF(x) ẋ + ẋ′F(x) − ẋ′∇v(x))

= (M̃(F(x)) − x)′DF(x) ẋ − ẋ′(F(x) − ∇v(x))

= ẋ′DF(x) ẋ − ẋ′F̃(x)

≤ 0,

with equality if and only if x is a rest point. But RP(VF,v) = PE(F, v) by definition, so
Corollary 7.B.7 implies that PE(F, v) is globally asymptotically stable.

Finally, we prove that PE(F, v) is a singleton. Let

φx,h(t) = h′F̃(x + t h)

for all x ∈ X, h ∈ TX − {0}, and t ∈ R such that x + th ∈ int(X). Since F is stable and
D2v(x + th) is positive definite with respect to TX × TX, we have that

(7.24) φ′x,h(t) = h′DF̃(x + t h) h = h′DF(x + t h) h − h′D2v((x + t h)) h < 0,
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and so φx,h(t) is decreasing in t. Moreover,

(7.25) x ∈ PE(F, v)⇔ F̃(x) is a constant vector⇔ φx,h(0) = 0 for all h ∈ TX − {0}.

Now let x ∈ PE(F, v) and y ∈ X−{x}. Then y = x + tyhy for some ty > 0 and hy ∈ TX−{0}.
Statements (7.24) and (7.25) imply that

φy,hy(0) = h′yF̃(y) = h′yF̃(x + tyhy) = φx,hy(ty) < φx,hy(0) = 0.

Therefore, statement (7.25) implies that y < PE(F, v), and hence that PE(F, v) = {x}. �

7.2.3 Impartial Pairwise Comparison Dynamics

In Section 5.6, we defined pairwise comparison dynamics by considering Lipschitz
continuous revision protocols ρp that only condition on payoffs and that are sign preserv-
ing:

sgn(ρp
ij(π

p)) = sgn([πp
j − π

p
i ]+) for all i, j ∈ Sp and p ∈ P .

To obtain a general convergence result for stable games, we require an additional condition
called impartiality:

(7.26) ρp
ij(π

p) = φp
j (π

p
j − π

p
i ) for some functions φp

j : R→ R+.

Combining this restriction with mean dynamic equation (M), we see that impartial pair-
wise comparison dynamics take the form

ẋp
i =

∑
j∈Sp

xp
jφ

p
i (Fp

i (x) − Fp
j (x)) − xp

i

∑
j∈Sp

φp
j (F

p
j (x) − Fp

i (x)).

Under impartiality (7.26), the function of the payoff differenceπp
j −π

p
i that describes the

conditional switch rate from i to j does not depend on an agent’s current strategy i. This
restriction introduces at least a superficial connection with the target dynamics studied in
Section 7.2.2, as both restrict the dependence of agents’ decisions on their current choices
of strategy.

Theorem 7.2.11 shows that together, sign preservation and impartiality ensure global
convergence to Nash equilibrium in stable games.
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Theorem 7.2.11. Let F be a C1 stable game, and let ẋ = VF(x) be an impartial pairwise comparison
dynamic for F. Define the Lipschitz continuous function Ψ : X→ R+ by

Ψ(x) =
∑
p∈P

∑
i∈Sp

∑
j∈Sp

xp
iψ

p
j (F

p
j (x) − Fp

i (x)), where ψp
k(d) =

∫ d

0
φp

k(s) ds

is the definite integral of φp
k . Then Ψ−1(0) = NE(F). Moreover, Ψ̇(x) ≤ 0 for all x ∈ X, with

equality if and only if x ∈ NE(F), and so NE(F) is globally asymptotically stable.

To understand the role played by impartiality (7.26), recall the general formula for the
mean dynamic:

(M) ẋp
i =

∑
j∈Sp

xp
jρ

p
ji(F

p(x), xp) − xp
i

∑
j∈Sp

ρp
ij(F

p(x), xp).

According to the second term of this expression, the rate of outflow from strategy i is
xp

i

∑
k∈Sp ρ

p
ik; thus, the percentage rate of outflow from i,

∑
k∈Sp ρ

p
ik, varies with i. It follows that

strategies with high payoffs can nevertheless have high percentage outflow rates: even if
πp

i > π
p
j , one can still have ρp

ik > ρ
p
jk for k , i, j. Having good strategies lose players more

quickly than bad strategies is an obvious impediment to convergence to Nash equilibrium.
Impartiality (7.26) places controls on these percentage outflow rates. If the conditional

switch ratesφp
j are monotone in payoffs, then condition (7.26) ensures that better strategies

have lower percentage outflow rates. If the conditional switch rates are not monotone, but
merely sign-preserving, condition (7.26) still implies that the integrated conditional switch
rates ψp

k are ordered by payoffs. According to the analysis below, this control is enough
to ensure convergence of pairwise comparison dynamics to Nash equilibrium in stable
games.

Proof. (p = 1) The first claim is proved as follows:

Ψ(x) = 0⇔ [xi = 0 or ψ j(F j(x) − Fi(x)) = 0] for all i, j ∈ S

⇔ [xi = 0 or Fi(x) ≥ F j(x)] for all i, j ∈ S

⇔ [xi = 0 or Fi(x) ≥ max j∈S F j(x)] for all i, j ∈ S

⇔ x ∈ NE(F).

To begin the proof of the second claim, we compute the partial derivatives of Ψ:

∂Ψ
∂xl

(x) =
∑
i∈S

∑
j∈S

xiρi j

(
∂F j

∂xl
(x) −

∂Fi

∂xl
(x)

)
+

∑
k∈S

ψk (Fk(x) − Fl(x))
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=
∑
i∈S

∑
j∈S

(
xiρi j − x jρ ji

) ∂F j

∂xl
(x) +

∑
k∈S

ψk (Fk(x) − Fl(x))

=
∑
j∈S

ẋ j
∂F j

∂xl
(x) +

∑
k∈S

ψk (Fk(x) − Fl(x)).

Using this expression, we find the rate of change of Ψ over time along solutions to (M):

Ψ̇(x) = ∇Ψ(x)′ẋ

= ẋ′DF(x)ẋ +
∑
i∈S

ẋi

∑
k∈S

ψk (Fk − Fi)

= ẋ′DF(x)ẋ +
∑
i∈S

∑
j∈S

(
x jρ ji − xiρi j

)∑
k∈S

ψk (Fk − Fi)

= ẋ′DF(x)ẋ +
∑
i∈S

∑
j∈S

x jρ ji

∑
k∈S

(
ψk (Fk − Fi) − ψk

(
Fk − F j

)).
To evaluate the summation, first observe that if Fi(x) > F j(x), then ρ ji(F(x)) ≡ φi(Fi(x) −

F j(x)) > 0 and Fk(x) − Fi(x) < Fk(x) − F j(x); since each ψk is nondecreasing, it follows
that ψk(Fk − Fi) − ψk(Fk − F j) ≤ 0. In fact, when k = i, the comparison between payoff

differences becomes 0 < Fi(x) − F j(x); since each ψi is increasing on [0,∞), it follows that
ψi(0) − ψi(Fi − F j) < 0. We therefore conclude that if Fi(x) > F j(x), then ρ ji(F(x)) > 0
and

∑
k∈S

(
ψk (Fk − Fi) − ψk

(
Fk − F j

))
< 0. On the other hand, if F j(x) ≥ Fi(x), we have

immediately that ρ ji(F(x)) = 0. And of course, ẋ′DF(x)ẋ ≤ 0 since F is stable.
Marshaling these facts, we find that Ψ̇(x) ≤ 0, and that

(7.27) Ψ̇(x) = 0 if and only if x jρ ji(F(x)) = 0 for all i, j ∈ S.

Lemma 5.6.5 shows that the second condition in (7.27) defines the set RP(VF), which
is equal to NE(F) by Theorem 5.6.3; this proves the second claim. Finally, the global
asymptotic stability of NE(F) follows from Corollary 7.B.7. �

Exercise 7.2.12. Construct a pairwise comparison dynamic that generates cycling in the
good RPS game from Example 7.2.6.

7.2.4 Summary

In Table 7.1, we summarize the results in this section by presenting the Lyapunov func-
tions for single-population stable games for the six fundamental evolutionary dynamics.
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Dynamic Formula Lyapunov function

projection ẋ = ΠTX(x)(F(x)) Ex∗(x) = |x − x∗|2

replicator ẋi = xi F̂i(x) Hx∗(x) =
∑

i∈S(x∗) x∗i log
x∗i
xi

best response ẋ ∈M(F̂(x)) − x G(x) = µ(F̂(x))

logit ẋ = M̃(F̂(x)) − x G̃(x) = µ̃(F̂(x)) + v(x)

BNN ẋi = [F̂i(x)]+ − xi
∑

j∈S[F̂ j(x)]+ Γ(x) = 1
2

∑
i∈S[F̂i(x)]2

+

Smith ẋi =
∑
j∈S

x j[Fi(x)−F j(x)]+−xi
∑
j∈S

[F j(x)−Fi(x)]+ Ψ(x)= 1
2

∑
i∈S

∑
j∈S

xi[F j(x)−Fi(x)]2
+

Table 7.1: Lyapunov functions for the six fundamental dynamics in stable games.

The Lyapunov functions divide into three classes: those based on an explicit notion of
“distance” from equilibrium, those based on revision potentials for target protocols, and
the Lyapunov function for the Smith dynamic, which stands alone.

Example 7.2.13. Matching Pennies. In Figure 7.2.3, we present phase diagrams of the six
fundamental dynamics in two-population Matching Pennies:

F1
H(x)

F1
T(x)

F2
h(x)

F2
t (x)

 =


0 0 1 −1
0 0 −1 1
−1 1 0 0
1 −1 0 0



x1

H

x1
T

x2
h

x2
t

 =


x2

h − x2
t

x2
t − x2

h

x1
T − x1

H

x1
H − x1

T

 .
Each phase diagram is drawn atop a contour plot of the relevant Lyapunov function.
Since Matching Pennies is a zero-sum game, F is null stable; thus, the Lyapunov functions
for the replicator and projection dynamics define constants of motion for these dynamics,
with solution trajectories cycling along level curves. In the remaining cases, all solutions
converge to the unique Nash equilibrium, x∗ = (( 1

2 ,
1
2 ), ( 1

2 ,
1
2 )). §

7.3 Supermodular Games

In a supermodular game, higher choices by one’s opponents make one’s own higher
strategies look relatively more desirable. In Section 3.4, we used this property to show that
the best response correspondences of supermodular games are monotone in the stochastic
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T

H
h t

(i) replicator
T

H
h t

(ii) projection

T

H
h t

(iii) Brown-von Neumann-Nash
T

H
h t

(iv) Smith

T

H
h t

(v) best response
T

H
h t

(vi) logit(.2)

Figure 7.2.3: Six basic dynamics in Matching Pennies. The contour plots are the corresponding Lyapunov
functions.
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dominance order; this implies in turn that these games admit minimal and maximal Nash
equilibria.

Given this monotone structure on best response correspondences, it is natural to look
for convergence results for supermodular games under the best response dynamic (BR).
In Section 7.3.1, we use elementary methods to establish a global convergence result for
(BR) under some strong additional assumptions on the underlying game: in particular, it
must be derived from a two-player normal form game that satisfies both supermodularity
and “diminishing returns” conditions.

To prove more general convergence results, we appeal to the theory of cooperative
differential equations. These are smooth differential equations under which increasing
the value any component of the state variable increases the growth rates of all other com-
ponents. Under some mild regularity conditions, almost all solutions of these equations
converge to rest points.

Because of the smoothness requirement, these techniques cannot be applied to the best
response dynamic itself. Happily, the needed monotonicity carries over from exact best
responses to perturbed best responses, although only those that can be generated from
stochastic perturbations of payoffs. In Section 7.3.2, we use this idea to prove almost global
convergence of stochastically perturbed best response dynamics in supermodular games.

7.3.1 The Best Response Dynamic in Two-Player Normal Form Games

Let U = (U1,U2) be a two-player normal form game, and let F be the population game
obtained when members of two populations are randomly matched to play U (cf Example
2.2.2). Then the best response dynamic (BR) for F takes the form

(BR)
ẋ1
∈ B1(x) − x1 = M1(F1(x)) − x1 = M1(U1x2) − x1,

ẋ2
∈ B2(x) − x2 = M2(F2(x)) − x2 = M2((U2)′x1) − x2.

Our convergence result for supermodular games concerns simple solutions of this
dynamic. A solution {xt}t≥0 of (BR) is simple if the set of times at which it is not differentiable
has no accumulation point, and if at other times, the target states Bp(xt) are pure (i.e.,
vertices of Xp).

Exercise 7.3.1. (i) Provide an example of a 2× 2 game with a Nash equilibrium x∗ such
that no solution to (BR) starting from x∗ is simple.

(ii) Show that there exists a simple solution to (BR) from every initial condition in game
U = (U1,U2) if for all nonempty sets Ŝ1

⊆ S1 and Ŝ2
⊆ S2, the game in which players
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are restricted to strategies in Ŝ1 and Ŝ2 admits a pure Nash equilibrium. (Theorem
3.4.12 implies that U has this property if it is supermodular.)

If {xt}t≥0 is a simple solution trajectory of (BR), we can list the sequence of times {tk}

at which the solution is not differentiable (i.e., at which the target state for at least one
population changes). During each open interval of times Ik = (tk−1, tk), the pure strategies
ik ∈ S1 and jk ∈ S2 selected by revising agents are fixed. We call ik and jk the interval k
selections for populations 1 and 2.

The following lemma links shows that ik+1 must perform at least as well as ik against
both jk and jk+1, and that the analogous comparisons between the payoffs of jk and jk+1

also hold.

Lemma 7.3.2. Suppose that revising agents select strategies i = ik and j = jk during interval Ik,
and strategies i′ = ik+1 and j′ = jk+1 during interval Ik+1. Then

(i) U1
i′ j ≥ U1

i j and U2
i j′ ≥ U2

i j , and
(ii) U1

i′ j′ ≥ U1
i j′ and U2

i′ j′ ≥ U2
i′ j .

Exercise 7.3.3. Prove Lemma 7.3.2. (Hint: Start by verifying that x2
tk

is a convex combination
of x2

tk−1
and the vertex v2

j , and that x2
tk+1

is a convex combination of x2
tk

and v2
j′ .)

Now, recall from Exercise 3.4.4 that U = (U1,U2) is supermodular if

(7.28) U1
i+1, j+1−U1

i, j+1 ≥ U1
i+1, j−U1

i, j and U2
i+1, j+1−U2

i+1, j ≥ U2
i, j+1−U2

i, j for all i < n1, j < n2.

(When (7.28) holds, the population game F induced by U is supermodular as well.) If the
inequalities in (7.28) always hold strictly, we say that U is strictly supermodular.

Our convergence result requires two additional conditions on U. We say that U exhibits
strictly diminishing returns if for each fixed strategy of the opponent, the benefit a player
obtains by increasing his strategy is decreasing—in other words, if payoffs are “concave
in own strategy”:

U1
i+2, j −U1

i+1, j < U1
i+1, j −U1

i, j for all i ≤ n1
− 2 and j ∈ S2, and

U2
i, j+2 −U2

i, j+1 < U2
i, j+1 −U2

i, j for all i ∈ S1 and j ≤ n2
− 2.

Finally, we say that U is nondegenerate if for each fixed pure strategy of the opponent, a
player is not indifferent among any of his pure strategies.

Theorem 7.3.4. Suppose that F is generated by random matching in a two-player normal form
game U that is strictly supermodular, exhibits strictly diminishing returns, and is nondegenerate.
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Then every simple solution trajectory of the best response dynamic (BR) converges to a pure Nash
equilibrium.

Proof. To begin, suppose that the sequence of times {tk} is finite, with final element tK.
Let i∗ and j∗ be the selections made by revising agents after time tK. Then the pure state
x∗ = (v1

i∗ , v
2
j∗) is in B(xt) for all t ≥ tK, and {xt} converges to x∗. Since payoffs are continuous,

it follows that x∗ ∈ B(x∗), and so that x∗ is a Nash equilibrium. To complete the proof of the
theorem, we establish by contradiction that the sequence of times {tk} cannot be infinite.

To begin, note that at time tk, agents in each population p are indifferent between their
interval k and interval k + 1 selections. Moreover, since U exhibits strictly decreasing
returns, it is easy to verify that whenever such an indifference occurs, it must be between
two consecutive strategies in Sp. Putting these observations together, we find that each
transition in the sequence {(ik, jk)} is of length 1, in the sense that

|ik+1 − ik| ≤ 1 and
∣∣∣ jk+1 − jk

∣∣∣ ≤ 1 for all k.

Next, we say that there is an improvement step from (i, j) ∈ S to (i′, j′) ∈ S, denoted
(i, j) ↗ (i′, j′), if either (i) U1

i′ j > U1
i j and j′ = j, or (ii) i′ = i and U2

i j′ > U2
i j. Lemma 7.3.2(i)

and the fact that U is nondegenerate imply that (ik, jk) ↗ (ik+1, jk+1) if either ik = ik+1 or
jk = jk+1. Moreover, applying both parts of the lemma, we find that if ik , ik+1 and jk , jk+1,
we have that (ik, jk)↗ (ik+1, jk)↗ (ik+1, jk+1), and also that (ik, jk)↗ (ik, jk+1)↗ (ik+1, jk+1).

Now suppose that the sequence {tk} is infinite. Then since S is finite, there must be
a strategy profile that is the interval k selection for more than one k. In this case, the
arguments in the previous two paragraphs imply that there is a length 1 improvement
cycle: that is, a sequence of length 1 improvement steps beginning and ending with the
same strategy profile.

Evidently, this cycle must contain an improvement step of the form (ı̃, ̃)↗ (ı̃, ̃+ 1) for
some (ı̃, ̃) ∈ S. Strict supermodularity of U then implies that

(7.29) (i, ̃)↗ (i, ̃ + 1) for all i ≥ ı̃.

It follows that for the sequence of length 1 improvement steps to return to (ı̃, ̃), there must
be an improvement step of the form (ı̃, ̂)↗ (ı̃ − 1, ̂) for some ̂ > ̃ (see Figure 7.3.1). This
time, strict supermodularity of U implies that

(7.30) (ı̃, j)↗ (ı̃ − 1, j) for all j ≤ ̂.

From (7.29) and (7.30), it follows that no cycle of length 1 improvement steps containing
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Figure 7.3.1: The proof of Theorem 7.3.4.

(ı̃, ̃) ↗ (ı̃, ̃ + 1) can reach any strategy profile (i, j) with i ≥ ı̃ and j ≤ ̃. In particular,
the cycle cannot return to (ı̃, ̃), which is a contradiction. This completes the proof of the
theorem. �

7.3.2 Stochastically Perturbed Best Response Dynamics

While Theorem 7.3.4 was proved using elementary techniques, it was not as general as
one might hope: it restricted attention to two-player normal form games, and required not
only the assumption of supermodularity, but also that of decreasing returns. In order to
obtain a more general convergence result, we turn from exact best response dynamics to
perturbed best response dynamics. Doing so allows us to avail ourselves of a powerful set
of techniques for smooth dynamics with a monotone structure: the theory of cooperative
differential equations.

To begin, let us recall the transformations used to discuss the stochastic dominance
order. In Section 3.4, we defined the matrices Σ ∈ R(np

−1)×np , Σ̃ ∈ Rnp
×(np
−1), and Ω ∈ Rnp

×np

by

Σ =


0 1 · · · 1
...
. . . . . .

...

0 · · · 0 1

 , Σ̃ =



−1 0 · · · 0

1 −1 . . .
...

0 1 . . . 0
...

. . . . . . −1

0 . . . 0 1


, and Ω =



1 1 · · · · · · 1
0 0 · · · · · · 0

0 0 . . .
...

...
...

. . .
...

0 0 · · · · · · 0


.

We saw that yp
∈ Xp stochastically dominates xp

∈ Xp if and only if Σyp
≥ Σxp. We also
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verified that

(7.31) Σ̃Σ = I −Ω.

Since Ω is the null operator on TXp, equation (7.31) describes a sense in which the stochastic
dominance operator Σ is “inverted” by the difference operator Σ̃.

Applying the change of coordinates Σ to the set Xp yields the set of transformed
population states

X p
≡ ΣXp =

{
x p
∈ Rnp

−1 : mp
≥ x p

1 ≥ · · · ≥ x p
np−1 ≥ 0

}
.

By postmultiplying both sides of (7.31) by xp and letting xp = (mp, 0, . . . , 0) denote the
minimal state in Xp, we find that the inverse of the map Σ : Xp

→ X p is described as
follows:

(7.32) x p = Σxp
⇔ xp = Σ̃x p + xp.

To work with full social states x ∈ X, we introduce the block diagonal matrices Σ =

diag(Σ, . . . ,Σ) and Σ̃ = diag(Σ̃, . . . , Σ̃), and let X ≡ ΣX =
∏

p∈P X p. If we let x = (x1, . . . , xp)
be the minimal state in X, then the inverse of the map Σ : X→ X is described by

(7.33) x = Σx ⇔ x = Σ̃x + x.

To simplify the discussion to follow, let us assume for convenience that each population
is of mass 1. Then our stochastically perturbed best response dynamics take the form

(7.34) ẋp = M̃p(Fp(x)) − xp,

where

M̃p
i (πp) = P

(
i = argmax j∈Sp π

p
j + εp

j

)
for some admissible stochastic perturbations ε = (ε1, . . . , εp). Rather than study this
dynamic directly, we apply the change of variable (7.33) to obtain a new dynamic on the
set X :

(7.35) ẋ p = ΣM̃p(Fp(Σ̃x + x)) − x p.

Given the current state x ∈ X , we use the inverse transformation x 7→ x ≡ Σ̃x + x
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to obtain the input for the payoff function Fp, and we use the original transformation
M̃p(Fp(x)) 7→ ΣM̃p(Fp(x)) to convert the perturbed best response into an element of X p. The
next observation verifies the relationship between solutions to the transformed dynamic
(7.35) and solutions to the original dynamic (7.34).

Observation 7.3.5. (7.34) and (7.35) are affinely conjugate: {xt} = {Σ̃x t + x} solves (7.34) if and
only if {x t} = {Σxt} solves (7.35).

Our next task is to show that if F is a supermodular game, then (7.35) is a cooperative
differential equation: writing this dynamic as ẋ = V (x ), we want to show that

∂V p
i

∂x q
j

(x ) ≥ 0 for all x ∈ X whenever (i, p) , ( j, q).

If this inequality is always satisfied strictly, we say that (7.35) is strongly cooperative. As
we explain in Section 7.C, strongly cooperative differential equations converge to rest
points from almost all initial conditions. Thus, if we can prove that equation (7.35) is
strongly cooperative, we can conclude that almost all solutions of our original dynamic
(7.34) converge to perturbed equilibria.

To prove that (7.35) is strongly cooperative, we marshal our facts about supermodular
games and stochastically perturbed best responses. Recall from Chapter 3 that if the
population game F is C1, then F is a supermodular if and only if

Σ̃′DF(x)Σ̃ ≥ 0 for all x ∈ X.

Our result requires an additional nondegeneracy condition: we say that F is irreducible if
each column of Σ̃′DF(x)Σ̃ contains a strictly positive element.

Next, we recall from Lemma 6.C.1 the basic properties of DM̃(π), the derivative matrix
of the stochastically perturbed best response function M̃.

Lemma 7.3.6. Fix π ∈ Rn, and suppose that the perturbed best response function M̃ is derived
from admissible stochastic payoff perturbations. Then the derivative matrix DM̃(π) is symmetric,
has negative off-diagonal elements, and satisfies DM̃(π)1 = 0.

Combining these facts yields the desired result:

Theorem 7.3.7. Let F be a C1 irreducible supermodular game, and let (7.34) be a stochasti-
cally perturbed best response dynamic for F. Then the transformed dynamic (7.35) is strongly
cooperative.
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Proof. (p = 1) Write the dynamic (7.35) as ẋ = V (x ). Then

(7.36) DV (x ) = D(ΣM̃(F(Σ̃x + x))) − I.

Since all off-diagonal elements of I equal zero, it is enough to show that the first term on
the right hand side of (7.36) has all positive components.

Let x = Σ̃x + x and π = F(x). Using the facts that Σ̃Σ = I − Ω and DM̃(π)1 = 0, we
express the first term of the right hand side of (7.36) as follows:

D(ΣM̃(F(Σ̃x + x))) = Σ DM̃(π) DF(x) Σ̃

= Σ DM̃(π) (Σ′Σ̃′ + Ω′) DF(x) Σ̃

= (ΣDM̃(π)Σ′)(Σ̃′DF(x)Σ̃).

Lemma 7.3.6 and the fact that

(ΣDM̃(π)Σ′)i j =
∑
k>i

∑
l> j

DM̃(π)kl

imply that every component of ΣDM̃(π)Σ′ is positive (see Exercise 7.3.8). Since F is
supermodular and irreducible, Σ̃′DF(x)Σ̃ is nonnegative, with each column containing a
positive element. Thus, the product of these two matrices has all positive elements. This
completes the proof of the theorem. �

Exercise 7.3.8. (i) Prove that every component of ΣDM̃(π)Σ′ is positive.
(ii) Explain why Theorem 7.3.7 need not hold when M̃ is generated by deterministic

perturbations.

Observation 7.3.5, Theorem 7.3.7, and Theorems 7.C.1, 7.C.2, and 7.C.3 immediately
imply the following “almost global” convergence result. In part (i) of the theorem, x =

(x1, . . . , xp) is the minimal state in X introduced above; similarly, x̄p = (0, . . . ,mp) is the
maximal state in Xp, and x̄ = (x̄1, . . . , x̄p) is the maximal state in X.

Theorem 7.3.9. Let F be a C1 irreducible supermodular game, and let ẋ = VF,ε(x) be a stochastically
perturbed best response dynamic for F. Then

(i) States x∗ ≡ ω(x) and x̄∗ ≡ ω(x̄) exist and are the minimal and maximal elements of PE(F, ε).
Moreover, [x∗, x̄∗] contains all ω-limit points of VF,ε and is globally asymptotically stable.

(ii) Solutions to ẋ = VF,ε(x) from an open, dense, full measure set of initial conditions in X
converge to states in PE(F, ε).
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Our final example shows that the conclusion of Theorem 7.3.9 cannot be extended from
convergence from almost all initial conditions to convergence from all initial conditions.

Example 7.3.10. Let U be a normal form game with p ≥ 5 players and two strategies per
player. Each player p in U obtains a payoff of 1 if he chooses the same strategy as player
p + 1 (with the convention that p + 1 = 1) and obtains a payoff of 0 otherwise. U has three
Nash equilibria: two strict equilibria in which all players coordinate on the same strategy,
and the mixed equilibrium x∗ = ((1

2 ,
1
2 ), . . . , (1

2 ,
1
2 )). If F is the p population game generated

by random matching in U, it can be shown that F is supermodular and irreducible (see
Exercise 7.3.11(i)).

We now introduce random perturbations εp = (εp
1, ε

p
2) to each player’s payoffs. These

perturbations are such that the differences εp
2 − ε

p
1 admit a common density g that is

symmetric about 0, is decreasing on R+, and satisfies g(0) > 1
2 . It can be shown that the

resulting perturbed best response dynamic (7.34) possesses exactly three rest points: the
mixed equilibrium x∗, and two stable symmetric rest points that approximate the two
pure Nash equilibria (see Exercise 7.3.11(ii)).

One can show that the rest point x∗ is unstable under (7.34). It then follows from
Theorem 7.3.9 that the two stable rest points of (7.34) attract almost all initial conditions in
X, and that the basins of attraction for these rest points are separated by a p−1 dimensional
invariant manifold M that contains x∗. Furthermore, one can show that when p ≥ 5, the
rest point x∗ is unstable with respect to the manifold M . Thus, solutions from all states in
M − {x∗} fail to converge to a rest point. §

The details of these last arguments require techniques for determining the local stability
of rest points. This is the topic of the next chapter.

Exercise 7.3.11. (i) Prove that the game F introduced in Example 7.3.10 is supermodu-
lar and irreducible.

(ii) Prove that under the assumption on payoff perturbations stated in the example,
there are exactly three perturbed equilibria, all of which are symmetric.

7.4 Dominance Solvable Games

The elimination of strictly dominated strategies is the mildest requirement employed in
standard game-theoretic analyses, and so it seems natural to expect evolutionary dynamics
obey this dictum. In this section, we provide some positive results on the elimination of
dominated strategies: under the best response dynamic, any strictly dominated strategy
must vanish in the limit; the same is true under any imitative dynamic so long as we focus
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on interior initial conditions. Arguing inductively, we show next that any strategy that
does not survive iterated elimination of strictly dominated strategies vanishes as well. In
particular, if a game is dominance solvable—that is, if removing iteratively dominated
strategies leaves only one strategy for each population, then best response and imitative
dynamics select this strategy.

These results may seem unsurprising. However, we argue in Chapter 9 that they
are actually borderline cases: under “typical” evolutionary dynamics, strictly dominated
strategies can survive in perpetuity.

7.4.1 Dominated and Iteratively Dominated Strategies

Let F be a population game. We say that strategy i ∈ Sp is strictly dominated if there
exists a strategy j ∈ Sp such that F j(x) > Fi(x) for all x ∈ X: that is, if there is a strategy j that
outperforms strategy i regardless of the population state. Similarly, if Ŝp is a nonempty
subset of Sp and Ŝ =

∏
p∈P Ŝp, we say that i ∈ Sp is strictly dominated relative to Ŝ, denoted

i ∈ Dp(Ŝ), if there exists a strategy j ∈ Ŝp such that F j(x) > Fi(x) for all x ∈ X that satisfy
support(xp) ⊆ Ŝp for all p ∈ P .

We can use these definitions to introduce the notion of iterative dominance. Set
S0 = S. Then Dp(S0) is the set of strictly dominated strategies for population p, and
so Sp

1 = Sp
0 − Dp(S0) is the set of strategies that are not strictly dominated. Proceeding

inductively, we define Dp(Sk) to be the set of strategies that are eliminated during the
(k+1)st round of removal of iteratively dominated strategies, and we let Sp

k+1 = Sp
k −Dp(Sk)

be the set of strategies that survive k + 1 rounds of removal of such strategies.
Since the number of strategies is finite, this iterative procedure must converge, leaving

us with nonempty sets S1
∗, . . . ,S

p
∗. Strategies in these sets are said to survive iterative removal

of strictly dominated strategies. If each of these sets is a singleton, then the game F is said
to be dominance solvable. In this case, the pure social state at which each agent plays his
population’s sole surviving strategy is the game’s unique Nash equilibrium; we call this
state the dominance solution of F.

7.4.2 The Best Response Dynamic

Under the best response dynamic, revising agents always switch to optimal strategies.
Since strictly dominated strategies are never optimal, such strategies cannot persist:

Observation 7.4.1. Let {xt} be a solution trajectory of (BR) for population game F, in which
strategy i ∈ Sp is strictly dominated. Then limt→∞(xt)

p
i = 0.
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Indeed, since i is never a best response, we have that (ẋt)
p
i ≡ −(xt)

p
i , and hence that

(xt)
p
i = (x0)p

i e−t: the mass playing the dominated strategy converges to zero exponentially
quickly.

An inductive argument takes us from the observation above to the following result.

Theorem 7.4.2. Let {xt} be a solution trajectory of (BR) for population game F, in which strategy
i ∈ Sp does not survive iterative elimination of strictly dominated strategies. Then limt→∞(xt)

p
i = 0.

In particular, if F is dominance solvable, then all solutions of (BR) converge to the dominance
solution.

Proof. Observation 7.4.1 provides the basis for this induction: if i < Sp
1, then limt→∞(xt)

p
i =

0. As the inductive hypothesis, suppose that this same equality holds for all i < Sp
k . Now

let j ∈ Sp
k−Sp

k+1. Then by definition, there exists a j′ ∈ Sp
k+1 such that Fp

j′(x) > Fp
j (x) whenever

x ∈ Xk, where Xk = {x ∈ X : xp
i > 0 ⇒ i ∈ Sp

k} is the set of social states in which all agents
in each population p choose a strategies in Sp

k . Since Xk is compact and F is continuous, it
follows that for some c > 0, we have that Fp

j′(x) > Fp
j (x) + c whenever x ∈ Xk, and so that

for some ε > 0, we have that Fp
j′(x) > Fp

j (x) whenever x ∈ Xk,ε = {x ∈ X : xp
i > ε ⇒ i ∈ Sp

k}.
By the inductive hypothesis, there exists a T > 0 such that xt ∈ Xk,ε for all t ≥ T. Thus, for
such t, j is not a best response to xt. This implies that (ẋt)

p
j = −(xt)

p
j for t ≥ T, and hence

that (xt)
p
j = (xT)p

j eT−t, which converges to 0 as t approaches infinity. �

Exercise 7.4.3. Show that under (BR), the time until convergence to the set X∗,ε = {x ∈ X :
xp

i > ε⇒ i ∈ Sp
∗} is uniform over initial conditions in X.

7.4.3 Imitative Dynamics

We now establish analogous results for imitative dynamics. Since these dynamics
leave the boundary of the state space invariant, the elimination results can only hold for
solutions starting from interior initial conditions.

Theorem 7.4.4. Let {xt} be an interior solution trajectory of an imitative dynamic for population
game F, in which strategy i ∈ Sp is strictly dominated. Then limt→∞(xt)

p
i = 0.

Proof. (p = 1) Observation 5.4.16 tells us that all imitative dynamics ẋ = VF(x) exhibit
monotone percentage growth rates (5.17): we can write the dynamic as

(7.37) ẋi = xiGi(x),
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where the continuous function G : X→ Rn satisfies

(7.38) Gk(x) ≤ Gl(x) if and only if Fk(x) ≤ Fl(x) for all x ∈ int(X).

Now suppose strategy i is strictly dominated by strategy j ∈ S. Since X is compact and
F is continuous, we can find a c > 0 such that F j(x) − Fi(x) > c for all x ∈ X. Since G is
continuous as well, equation (7.38) implies that for some C > 0, we have that G j(x)−Gi(x) >
C for all x ∈ X.

Now write r = xi/x j. Equation (7.37) and the quotient rule imply that

(7.39)
d
dt

r =
d
dt

xi

x j
=

ẋix j − ẋ jxi

(x j)2 =
xiGi(x)x j − x jG j(x)xi

(x j)2 = r
(
Gi(x) − G j(x)

)
.

Thus, along every interior solution trajectory {xt} of ẋ = VF(x) we have that

rt = r0 +

∫ t

0
rs

(
Gi(x) − G j(x)

)
ds ≤ r0 − C

∫ t

0
rs ds.

Grönwall’s Inequality (Lemma 4.A.7) then tells us that rt ≤ r0 exp(−Ct), and hence that rt

vanishes as t approaches infinity. Since (xt) j is bounded above by 1, (xt)i must approach 0
as t approaches infinity. �

An argument similar to the one used to prove Theorem 7.4.2 can be used to prove that
iteratively dominated strategies are eliminated by imitative dynamics.

Theorem 7.4.5. Let {xt} be an interior solution trajectory of an imitative dynamic for population
game F, in which strategy i ∈ Sp does not survive iterative elimination of strictly dominated
strategies. Then limt→∞(xt)

p
i = 0. In particular, if F is dominance solvable, then all interior

solutions of any imitative dynamic converge to the dominance solution.

Exercise 7.4.6. (i) Prove Theorem 7.4.5.
(ii) Is the time until convergence to X∗,ε = {x ∈ X : xp

i > ε⇒ i ∈ Sp
∗} uniform over initial

conditions in int(X)? Explain.
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Appendix

7.A Limit and Stability Notions for Deterministic Dynamics

We consider differential equations and differential inclusions that are forward invariant
on the compact set X ⊂ Rn.

ẋ = V(x), a unique forward solution exists from each ξ ∈ X.(D)

ẋ ∈ V(x), V is nonempty, convex-valued, bounded, and upper hemicontinuous.(DI)

When V is discontinuous, we allow solutions to be of the Carathéodory type—that is, to
satisfy ẋt = V(xt) (or ẋt ∈ V(xt)) at almost all t ∈ [0,∞).

7.A.1 ω-Limits and Notions of Recurrence

Let {xt} = {xt}t≥0 be a solution trajectory to (D) or (DI). The ω-limit of {xt} is the set of all
points that the trajectory approaches arbitrarily closely infinitely often:

ω({xt}) =
{

y ∈ X : there exists {tk}
∞

k=1 with lim
k→∞

tk = ∞ such that lim
k→∞

xtk = y
}
.

The following proposition lists some basic properties of ω-limit sets.

Proposition 7.A.1. Let {xt} be a solution to (D) (or (DI)). Then
(i) ω({xt}) is non-empty and connected.
(ii) ω({xt}) is closed. In fact, ω({xt}) =

⋂
t≥0 cl({xs : s ≥ t}).

(iii) ω({xt}) is invariant under (D) (or (DI)).

If {xt} is the unique solution to (D) with initial condition x0 = ξ, we write ω(ξ) in place
of ω({xt}). In this case, the set

Ω =
⋃
ξ∈X

ω(ξ),

contains all points that are approached arbitrarily closely infinitely often by some solution
of (D). Among other things, Ω contains all rest points, periodic orbits, and chaotic attractors
of (D). Since Ω need not be closed, its closure Ω̄ = cl(Ω) is used to define a standard notion
of recurrence for differential equations.

Example 7.A.2. To see that Ω need not be closed, consider the replicator dynamic in
standard Rock-Paper-Scissors (Figure 5.3.1(i)). The unique Nash equilibrium x∗ = ( 1

3 ,
1
3 ,

1
3 )
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is a rest point, and solution trajectories from all other interior initial conditions form
closed orbits around x∗. The vertices eR, eP, and eS are also rest points, and each trajectory
starting from a boundary point that is not a vertex converges to a vertex. Thus, Ω =

int(X) ∪ {eR, eP, eS}, but Ω̄ = X. §

While we will not make much use of them here, many other notions of recurrence
besides Ω̄ are available. To obtain a more demanding notion of recurrence for (D), call
the state ξ recurrent, denoted ξ ∈ R , if the solution from (D) returns arbitrarily close to ξ
infinitely often—in other words, if ξ ∈ ω(ξ). The Birkhoff center of (D) is the closure cl(R )
of the set of all recurrent points of (D).

More inclusive notions of recurrence can be obtained by allowing occasional short
jumps between nearby solution trajectories. Given a differential equation (D) with flow
φ, an ε-chain of length T from x to y is a sequence of states x = x0, x1, . . . , xk = y such that
for some sequence of times t1, . . . , tn ≥ 1 satisfying

∑k
j=1 ti = T, we have

∣∣∣φti(xi−1) − x j

∣∣∣ < ε
for all i ∈ {1, . . . , k}. State x is said to be chain recurrent, denoted x ∈ CR , if for all ε > 0
there is an ε-chain from x to itself.

The primacy of the notion of chain recurrence is captured by Theorem 9.B.4, known
as the Fundamental Theorem of Dynamical Systems: if φ is a smooth flow on a compact set
X, then X can be decomposed into two sets: a set on which the flow admits a Lyapunov
function, and the set CR of chain recurrent points. Chain recurrence also plays a basic
role in characterizing long run behavior in models of learning in games (see the Notes).

7.A.2 Stability of Sets of States

Let A ⊆ X be a closed set, and call O ⊆ X a neighborhood of A if it is open relative
to X and contains A. We say that A is Lyapunov stable under (D) (or (DI)) if for every
neighborhood O of A there exists a neighborhood O′ of A such that every solution {xt} that
starts in O′ is contained in O: that is, x0 ∈ O′ implies that xt ∈ O for all t ≥ 0. A is attracting
if there is a neighborhood Y of A such that every solution that starts in Y converges to A:
that is, x0 ∈ Y implies that ω({xt}) ⊆ A. A is globally attracting if it is attracting with Y = X.
Finally, the set A is asymptotically stable if it is Lyapunov stable and attracting, and it is
globally asymptotically stable if it is Lyapunov stable and globally attracting.

Example 7.A.3. Attracting sets need not be asymptotically stable. A counterexample is
provided by a flow on the unit circle that moves clockwise except at a single point. The
fact that the domain is the unit circle is unimportant, since one can embed this flow as a
limit cycle in a flow on the plane. §
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Example 7.A.4. Invariance is not included in the definition of asymptotic stability. Thus,
under the dynamic ẋ = −x on R, any closed interval containing the origin is asymptotically
stable. §

7.B Stability Analysis via Lyapunov Functions

Let Y ⊆ X. The function L : Y → R is a Lyapunov function for (D) or (DI) if its value
changes monotonically along every solution trajectory. We state the results to follow for
the case in which the value of L decreases along solution trajectories; of course, the obvious
analogues of these results hold for the opposite case.

The following lemma will prove useful in a number of the analyses to come.

Lemma 7.B.1. Suppose that the function L : Y → R and the trajectory {xt}t≥0 are Lipschitz
continuous.

(i) If L̇(xt) ≤ 0 for almost all t ≥ 0, then the map t 7→ L(xt) is nonincreasing.
(ii) If in addition L̇(xs) < 0, then L(xt) < L(xs) for all t > s.

Proof. The composition t 7→ L(xt) is Lipschitz continuous. Thus, the Fundamental
Theorem of Calculus tells us that when t > s, we have that

L(xt) − L(xs) =

∫ t

s
L̇(xu) du ≤ 0,

where the inequality is strict if L̇(xs) < 0. �

7.B.1 Lyapunov Stable Sets

The basic theorem on Lyapunov stability applies both to differential equations (D) and
differential inclusions (DI).

Theorem 7.B.2 (Lyapunov stability). Let A ⊆ X be closed, and let Y ⊆ X be a neighborhood of
A. Let L : Y→ R+ be Lipschitz continuous with L−1(0) = A. If each solution {xt} of (D) (or (DI))
satisfies L̇(xt) ≤ 0 for almost all t ≥ 0, then A is Lyapunov stable under (D) (or (DI)).

Proof. Let O be a neighborhood of A such that cl(O) ⊂ Y. Let c = minx∈bd(O) L(x), so that
c > 0. Finally, let O′ = {x ∈ O : L(x) < c}. Lemma 7.B.1 implies that solution trajectories
that start in O′ do not leave O, and hence that A is Lyapunov stable. �
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Example 7.B.3. The requirement that the function L be constant on A cannot be dispensed
with. Consider a flow on the unit circle C = {x ∈ R2 : (x1)2 +(x2)2 = 1} that moves clockwise
at states x with x1 > 0 and is at rest at states in the semicircle A = {x ∈ C : x1 ≤ 0}. If we let
L(x) = x2, then L̇(x) ≤ 0 for all x ∈ C, and A is attracting (see Theorem 7.B.4 below), but A
is not Lyapunov stable.

We can extend this example so that the flow is defined on the unit disk D = {x ∈ R2 :
(x1)2 + (x2)2

≤ 1}. Suppose that when x1 > 0, the flow travels clockwise along the circles
centered at the origin, and that the half disk A′ = {x ∈ D : x1 ≤ 0} consists entirely of rest
points. Then L(x) = x2 satisfies L̇(x) ≤ 0 for all x ∈ D, and A′ is attracting, but A′ is not
Lyapunov stable. §

7.B.2 ω-Limits and Attracting Sets

We now provide some results that use Lyapunov functions to characterize ω-limits
of solution trajectories that begin in the Lyapunov function’s domain. These results
immediately yield sufficient conditions for a set to be attracting. To state our results, we
call the (relatively) open set Y ⊂ X inescapable if for each solution trajectory {xt}t≥0 with
x0 ∈ Y, we have that cl ({xt}) ∩ bd(Y) = ∅.

Our first result focuses on the differential equation (D).

Theorem 7.B.4. Let Y ⊂ X be relatively open and inescapable under (D). Let L : Y → R be C1,
and suppose that L̇(x) ≡ ∇L(x)′V(x) ≤ 0 for all x ∈ Y. Then ω(x0) ⊆ {x ∈ Y : L̇(x) = 0} for all
x0 ∈ Y. Thus, if L̇(x) = 0 implies that V(x) = 0, then ω(x0) ⊆ RP(V) ∩ Y.

Proof. Let {xt} be the solution to (D) with initial condition x0 = ξ ∈ Y, let χ ∈ ω(ξ), and
let {yt} be the solution to (D) with y0 = χ. Since Y is inescapable, the closures of trajectories
{xt} and {yt} are contained in Y.

Suppose by way of contradiction that L̇(χ) , 0. Since χ ∈ ω(ξ), we can find a divergent
sequence of times {tk}

∞

k=1 such that limk→∞ xtk = χ = y0. Since solutions to (D) are unique,
and hence continuous in their initial conditions, we have that

(7.40) lim
k→∞

xtk+1 = y1, and hence that lim
k→∞

L(xtk+1) = L(y1).

But since y0 = χ ∈ ω(ξ) and L̇(χ) , 0, applying Lemma 7.B.1 to both {xt} and {yt} yields

L(xt) ≥ L(χ) > L(y1)

for all t ≥ 0, contradicting the second limit in (7.40). This proves the first claim of the
theorem, and the second claim follows immediately from the first. �
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Theorem 7.B.5 is an analogue of Theorem 7.B.4 for upper hemicontinous differential
inclusions. Where the proof of Theorem 7.B.4 relied on the continuity of solutions to
(D) in their initial conditions, the proof of Theorem 7.B.5 takes advantage of the upper
hemicontinuity of the map from initial conditions ξ to solutions of (DI) starting from ξ.

Theorem 7.B.5. Let Y ⊂ X be relatively open and inescapable under (DI). Let L : Y → R be C1

and satisfy (i) ∂L
∂v (x) ≡ ∇L(x)′v ≤ 0 for all v ∈ V(x) and x ∈ Y, and (ii) [0 < V(x) implies that

∂L
∂v (x) < 0] for all v ∈ V(x) and x ∈ Y. Then for all solutions {xt} of (DI) with x0 ∈ Y, we have that
ω({xt}) ⊆ {x ∈ Y : 0 ∈ V(x)}.

Proof. Suppose that χ ∈ ω({xt}), but that 0 < V(χ). Then ∂L
∂v (χ) < 0 for all v ∈ V(χ).

Thus, since V(χ) is compact by assumption, there exists a b > 0 such that ∂L
∂v (χ) < −b for all

v ∈ V(χ). Because V is upper hemicontinuous and L is C1, it follows that ∂L
∂v̂ (χ̂) < − b

2 for all
v̂ ∈ V(χ̂) and all χ̂ sufficiently close to χ. So since V is bounded, there is a time u ∈ (0, 1]
such that all solutions {yt} of (DI) with y0 = χ satisfy

(7.41) L(yt) ≤ L(ys) ≤ L(χ) − bs
2 for all s ∈ [0,u] and t > s.

Now let {tk}
∞

k=1 be a divergent sequence of times such that limk→∞ xtk = χ, and for each
k, define the trajectory {xk

t }t≥0 by xk
t = xt+tk . Since the set of continuous trajectories C[0,T](X)

is compact in the sup norm topology, the sequence of trajectories {{xk
t }}
∞

k=1 has a convergent
subsequence, which we take without loss of generality to be {{xk

t }}
∞

k=1 itself. We call the
limit of this subsequence {ŷt}. Evidently, ŷ0 = χ.

Given our conditions on the correspondence V, the set-valued map

χ̂ 7→ {{xt} : {xt} is a solution to (DI) with x0 = χ̂}

is upper hemicontinuous with respect to the sup norm topology on C[0,T](X) (see Appendix
6.A). It follows that {ŷt} is a solution to (DI). Consequently,

(7.42) lim
k→∞

xtk+1 = ŷ1, and so lim
k→∞

L(xtk+1) = L(ŷ1).

But Lemma 7.B.1 and inequality (7.41) imply that

L(xt) ≥ L(χ) > L(ŷ1)

for all t ≥ 0, contradicting the second limit in (7.42). �

Theorem 7.B.6 is a simple convergence result for differential inclusions. Here the
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Lyapunov function need only be Lipschitz continuous (rather than C1), but the condition
on the rate of decrease of this function is stronger than in the previous results.

Theorem 7.B.6. Let Y ⊂ X be relatively open and inescapable under (DI), and let L : Y → R+

be Lipschitz continuous. Suppose that along each solution {xt} of (DI) with x0 ∈ Y, we have that
L̇(xt) ≤ −L(xt) for almost all t ≥ 0. Then ω({xt}) ⊂ {x ∈ Y : L(x) = 0}.

Proof. Observe that

L(xt) = L(x0) +

∫ t

0
L̇(xu) du ≤ L(x0) +

∫ t

0
−L(xu) du = L(x0) e−t,

where the final equality follows from the fact that α0 +
∫ t

0
−αu du is the value at time t of the

solution to the linear ODE α̇t = −αt with initial condition α0 ∈ R. It follows immediately
that limt→∞ L(xt) = 0. �

7.B.3 Asymptotically Stable and Globally Asymptotically Stable Sets

Combining Theorem 7.B.2 with Theorem 7.B.4, 7.B.5, or 7.B.6 yields asymptotic stability
and global asymptotic stability results for deterministic dynamics. Corollary 7.B.7 offers
such a result for the differential equation (D).

Corollary 7.B.7. Let A ⊆ X be closed, and let Y ⊆ X be a neighborhood of A. Let L : Y→ R+ be
C1 with L−1(0) = A. If L̇(x) ≡ ∇L(x)′V(x) < 0 for all x ∈ Y − A, then A is asymptotically stable
under (D). If in addition Y = X, then A is globally asymptotically stable under (D).

7.C Cooperative Differential Equations

Cooperative differential equations are defined by the property that increases in the
value of one component of the state variable increase the growth rates of all other compo-
nents. Their solutions have appealing monotonicity and convergence properties.

Let ≤ denote the standard partial order on Rn: that is, x ≤ y if and only if xi ≤ yi for all
i ∈ {1, . . . ,n}. We write x < y when x ≤ y and x , y, so that x j < y j for some j. Finally, we
write x � y when xi < yi for all i ∈ {1, . . . ,n}. We call a vector or a matrix strongly positive
if all of its components are positive; thus, x ∈ Rn is strongly positive if x� 0.

Let X ⊂ Rn be a compact convex set that possesses a minimal and a maximal element
with respect to the partial order ≤. Let V : X → Rn be a C1 vector field with V(x) ∈ TX(x)
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for all x ∈ X, so that the differential equation

(7.43) ẋ = V(x)

is forward invariant on X. We call the differential equation (7.43) cooperative if

(7.44)
∂Vi

∂x j
(x) ≥ 0 for all i , j and x ∈ X.

Equation (7.43) is irreducible if for every x ∈ X and every nonempty proper subset I of
the index set {1, . . .n}, there exist indices i ∈ I and j ∈ {1, . . . ,n} − I such that ∂Vi

∂x j
(x) , 0.

An obvious sufficient condition for (7.43) to be irreducible is that it be strongly cooperative,
meaning that the inequality in condition (7.44) is strict for all i , j and x ∈ X.

In Appendix 4.A.3, we saw how to represent all solutions to the dynamic (7.43) si-
multaneously via the semiflow φ : R+ × X → X, defined by φt(ξ) = xt, where {xt}t≥0 is the
solution to (7.43) with initial condition x0 = ξ. We say that the semiflow φ is monotone
if x ≤ y implies that φt(x) ≤ φt(y) for all t ≥ 0: that is, weakly ordered initial conditions
induce weakly ordered solution trajectories. If in addition x < y implies that φt(x)� φt(y)
for all t > 0, we say that φ is strongly monotone.

Theorem 7.C.1 tells us that cooperative irreducible differential equations generate
strongly monotone semiflows.

Theorem 7.C.1. Suppose that ẋ = V(x) is cooperative and irreducible. Then
(i) For all t > 0, the derivative matrix of its semiflow φ is strongly positive: Dφt(x)� 0.
(ii) The semiflow φ is strongly monotone.

For the intuition behind Theorem 7.C.1, let {xt} and {yt} be solutions to (7.43) with
x0 < y0. Suppose that at some time t > 0, we have that xt ≤ yt and (xt)i = (yt)i. If we could
show that Vi(xt) ≤ Vi(yt), then it seems reasonable to expect that (xt+ε)i will not be able
to surpass (yt+ε)i. But since xt and yt only differ in components other than i, the vector
z = yt − xt ≥ 0 has zi = 0, and so

Vi(yt) − Vi(xt) =

∫ 1

0
∇Vi(xt + αz)′z dα =

∫ 1

0

∑
j,i

∂Vi

∂x j
(xt + αz) z j dα.

The final expression is nonnegative as long as ∂Vi
∂x j
≥ 0 whenever j , i.

The next theorem sets out the basic properties of strongly monotone semiflows on X.
To state this result, we let C(φ) = {x ∈ X : ω(x) = {x∗} for some x∗ ∈ RP(φ)} denote the
set of initial conditions from which the semiflow φ converges to a rest point. Also, let
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Ω(φ) =
⋃

x∈X ω(x) be the set of ω-limit points under φ.

Theorem 7.C.2. Suppose that the semiflow φ on X is strongly monotone. Then
(i) (Convergence criteria) If φT(x) ≥ x for some T > 0, then ω(x) is periodic with period T.

If φt(x) ≥ x over some nonempty open interval of times, then x ∈ C(φ).
(ii) (Unordered ω-limit sets) If x, y ∈ ω(z), then x ≯ y and y ≯ x.
(iii) (Minimal and maximal rest points) Let x = min X and x̄ = max X. Then x∗ = min RP(φ)

and x̄∗ = max RP(φ) exist; in fact, ω(x) = x∗ and ω(x̄) = x̄∗. Moreover, [x∗, x̄∗] contains
Ω(φ) and is globally asymptotically stable.

Proof. (i) IfφT(x) ≥ x, thenφ(n+1)T(x) ≥ φnT(x) for all positive integers n, so monotonicity
and the compactness of X imply that limn→∞ φnT(x) = y for some y ∈ X. By the continuity
and group properties of the flow,

φt+T(y) = φt+T

(
lim
n→∞

φnT(x)
)

= lim
n→∞

φt+(n+1)T(x) = lim
n→∞

φt(φ(n+1)T(x)) = φt(y),

so the flow from y is T-periodic. A continuity argument shows that the orbit from y is
none other than ω(x). The proof of the second claim is omitted.

(ii) Suppose that x, y ∈ ω(z) and that x < y. Since φ is strongly monotone, and by the
continuity of φt(ξ) in ξ, there are neighborhoods Nx,Ny ⊂ X of x and y and a time T > 0
such that φT(Nx) � φT(Ny). Choose τy > τx > 0 such that φτx(z) ∈ Nx and φτy(z) ∈ Ny.
Then for all t close enough to τy,

φτx+T(z)� φt+T(z) = φt−τx(φτx+T(z)).

Therefore, part (i) implies that ω(z) is a singleton.
(iii) Since x and x̄ are the minimal and maximal points in X, part (i) implies thatω(x) =

x∗ and ω(x̄) = x̄∗ for some x∗, x̄∗ ∈ RP(φ). Hence, if x ∈ X ⊆ [x, x̄], then φt(x) ≤ φt(x) ≤ φt(x̄)
for all t ≥ 0, so taking limits yields x∗ ≤ ω(x) ≤ x̄∗; thus, Ω(φ) ⊆ [x∗, x̄∗]. Finally, if
[x∗, x̄∗] ⊆ [y, z] ⊆ X, then x ∈ [y, z] implies that φt(x) ∈ [φt(y), φt(z)] ⊆ [y, z], so [x∗, x̄∗] is
Lyapunov stable, and hence globally asymptotically stable by the previous argument. �

If the derivative matrices of the semiflow are strongly positive, one can obtain even
stronger results, including the convergence of solution trajectories from generic initial
conditions to rest points.

Theorem 7.C.3. Suppose that the semiflow φ on X is strongly monotone, and that its derivative
matrices Dφt(x) are strongly positive for all t > 0. Then
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(i) (Limit set dichotomy) If x < y, then either ω(x) < ω(y), or ω(x) = ω(y) = {x∗} for some
x∗ ∈ RP(φ).

(ii) (Generic convergence to equilibrium) C(φ) is an open, dense, full measure subset of X.

7.N Notes

Section 7.1. The results in Section 7.1.1 are proved for symmetric random matching
games in Hofbauer (2000), the seminal reference on Lyapunov functions for evolutionary
dynamics. Global convergence in all potential games of dynamics satisfying positive
correlation is proved in Sandholm (2001), building on earlier work of Hofbauer and Sig-
mund (1988) and Monderer and Shapley (1996). Convergence of perturbed best response
dynamics in potential games is proved by Hofbauer and Sandholm (2007).

Shahshahani (1979), building on the early work of Kimura (1958), showed that the repli-
cator dynamic for a potential game is a gradient dynamic after a “change in geometry”—
that is, after the introduction of an appropriate Riemannian metric on int(X). Subsequently,
Akin (1979, 1990) proved that Shahshahani’s (1979) result can also be represented using
the change of variable presented in Theorem 7.1.9. The direct proof offered in the text is
from Sandholm et al. (2008).

Section 7.2. Theorem 7.2.1 is due to Nagurney and Zhang (1997); the proof in the text
is from Sandholm et al. (2008). Theorem 7.2.4 was first proved for normal form games
with an interior ESS by Hofbauer et al. (1979) and Zeeman (1980). Akin (1990, Theorem
6.4) and Aubin (1991, Section 1.4) extend this result to nonlinear single population games,
while Cressman et al. (2001) extend it to linear multipopulation games.

Section 7.2.2 follows Hofbauer and Sandholm (2007, 2008). These papers take inspira-
tion from Hart and Mas-Colell (2001), which points out the role of integrability in models
of regret-based learning in repeated normal form games. Hofbauer (2000) proves the
convergence of the BNN, best response, and perturbed best response dynamics in normal
form games with an interior ESS. A proof of the existence of a cycle in Example 7.2.6 can
be found in Hofbauer and Sandholm (2008); this reference also contains a statement and
proof of the version of Danskin’s Envelope Theorem cited in the text. The probabilis-
tic characterization of integrability alluded to the text is presented in Sandholm (2006).
For subdifferentials of convex functions, see Hiriart-Urruty and Lemaréchal (2001); their
Example D.3.4 is especially relevant to our discussion in the text.

Smith (1984) proves Theorem 7.2.11 for his dynamic; the general result presented here
is due to Hofbauer and Sandholm (2008).

Kojima and Takahashi (2007) consider a class of single population random matching
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games called anti-coordination games, in which at each state x, the worst response to x
is always in the support of x. They prove (see also Hofbauer (1995b)) that such games
must have a unique equilibrium, that this equilibrium is interior, and that it is globally
asymptotically stable under the best response dynamic. However, also they present an
example (due to Hofbauer) showing that neither the replicator dynamic nor the logit
dynamic need converge in these games, the latter even at arbitrarily low noise levels.

Section 7.3. Section 7.3.1 follows Berger (2007). Exercise 7.3.1(ii) is due to Hofbauer
(1995b), and Lemma 7.3.2(i) is due to Monderer and Sela (1997). It is worth noting
that Theorem 7.3.4 extends immediately to ordinal supermodular games (also known as
quasi-supermodular games; see Milgrom and Shannon (1994)). Moreover, since ordinal
potential games (Monderer and Shapley (1996)) are defined by the absence of cycles of
improvement steps, a portion of the proof of Theorem 7.3.4 establishes the convergence
of simple solutions of (BR) in nondegenerate ordinal potential games.

Section 7.3.2 follows Hofbauer and Sandholm (2002, 2007).
Section 7.4. Akin (1980) shows that starting from any interior population state, the

replicator dynamic eliminates strategies that are strictly dominated by a pure strategy.
Versions of Theorems 7.4.4 and 7.4.5 can be found in Nachbar (1990) and Samuelson and
Zhang (1992); see also Hofbauer and Weibull (1996).

Section 7.A. For properties ofω-limit sets of differential equations, see Robinson (1995);
forω-limit sets of differential inclusions, see Benaı̈m et al. (2005). For applications of chain
recurrence in the theory of learning in games, see Benaı̈m and Hirsch (1999a), Hofbauer
and Sandholm (2002), and Benaı̈m et al. (2005, 2006b). The Fundamental Theorem of
Dynamical Systems is due to Conley (1978); see Robinson (1995) for a textbook treatment.
Other good general references on notions of recurrence for differential equations include
Nemytskii and Stepanov (1960), Akin (1993), and Benaı̈m (1998, 1999).

Section 7.B. The standard reference on Lyapunov functions for flows is Bhatia and
Szegő (1970).

Section 7.C. The standard reference on cooperative differential equations and monotone
dynamical systems is Smith (1995). Theorems 7.C.1, 7.C.2(i), 7.C.2(ii), and 7.C.3(i) in the
text are Smith’s (1995) Theorems 4.1.1, 1.2.1, 1.2.3, and 2.4.5, respectively. Theorem 7.C.3(ii)
combines Theorem 2.4.7 of Smith (1995) with Theorem 1.1 of Hirsch (1988), the latter after
a reversal of time.
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CHAPTER

EIGHT

Local Stability under Evolutionary Dynamics

8.0 Introduction

In Chapter 7, we analyzed classes of games in which many evolutionary dynamics
converge to equilibrium from all or most initial conditions. While we argued in Chapter
3 that games from many applications lie in these classes, it is certain that at least as many
interesting games do not.

In cases where global convergence results are not available, one can turn instead to
analyses of local stability. If a society somehow finds itself playing a particular equilibrium,
how can we tell whether this equilibrium will persist in the face of occasional, small
disturbances in behavior? This chapter introduces a refinement of Nash equilibrium—
that of an evolutionarily stable state (or ESS)—that captures the robustness of the equilibrium
to invasion by small groups exhibiting different aggregate behaviors. The main results in
this chapter show that states satisfying a version of this concept called regular Taylor ESS
are locally stable under many evolutionary dynamics.

We will see that games with an ESS share some structural properties with stable games,
at least in the neighborhood of the ESS. Taking advantage of this connection, we show in
Section 8.4 how to establish local stability of ESS under some dynamics through the use
of local Lyapunov functions. Our results here build on our analyses in Section 7.2, where
we constructed Lyapunov functions for many dynamics for use in stable games.

The other leading approach to local stability analysis is linearization. Given a rest point
of a nonlinear (but smooth) dynamic, one can approximate the behavior of the dynamic
in a neighborhood of the rest point by studying an appropriate linear dynamic: namely,
the one defined by the derivative matrix of the nonlinear dynamic, evaluated at the rest

263



point in question. In Sections 8.5 and 8.6, we use linearization to study the two families
of smooth dynamics introduced in Chapters 5 and 6: the imitative dynamics, and the
perturbed best response dynamics. Surprisingly, this analysis will lead us to a deep and
powerful connection between the replicator and logit dynamics, one that seems difficult
to reach by other means.

It is worth noting now that linearization is also very useful for establishing instability
results. For this reason, the techniques we develop in this chapter will be a very important
ingredient of our analyses in Chapter 9, where we study nonconvergent dynamics.

The first two sections of the chapter formally establish some results that were hinted
at in earlier chapters. In Section 8.1, we indicate two senses in which a non-Nash rest
point of an imitative dynamic cannot be stable. In Section 8.2, we show that under most
dynamics, a Nash equilibrium of a potential game is locally stable if and only if it is a local
maximizer of potential.

The linearization techniques used in Sections 8.5 and 8.6 and in Chapter 9 require a
working knowledge of matrix analysis and linear differential equations; we present these
topics in detail in Appendices 8.A and 8.B. The main theorems of linearization theory are
themselves presented in Appendix 8.C.

8.1 Non-Nash Rest Points of Imitative Dynamics

We saw in Chapters 5 and 6 that under five of our six classes of evolutionary dynamics,
rest points are identical to Nash equilibria (or to perturbed versions thereof). The lone
exception is the imitative dynamics: Theorem 5.4.21 shows that the rest points of these
dynamics are the restricted equilibria, a set that includes not only the Nash equilibria,
but also any state that would be Nash equilibria were the strategies unused at that state
removed from the game. Theorem 5.7.1 established one sense in which these extra rest
points are fragile: by combining a small amount of a “better behaved” dynamic with an
imitative dynamic, one obtains a new dynamic that satisfies Nash stationarity. But we
mentioned in Section 5.4.6 that this fragility can be expressed more directly: there we
claimed that non-Nash rest points of imitative dynamics cannot be locally stable, and so
are not plausible predictions of play.

We are now in a position to formally establish this last claim. Recall from Observa-
tion 5.4.16 that imitative dynamics exhibit monotone percentage growth rates: they can be
expressed in the form

(8.1) ẋp
i = xp

i Gp
i (x),
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with the percentage growth rates Gp
i (x) ordered by payoffs Fp

i (x) as in equation (5.17). This
fact drives our instability result.

Theorem 8.1.1. Let VF be an imitative dynamic for population game F, and let x̂ be a non-Nash
rest point of VF. Then x̂ is not Lyapunov stable under VF, and no interior solution trajectory of VF

converges to x̂.

Proof. (p = 1) Since x̂ is a restricted equilibrium that is not a Nash equilibrium, each
strategy j in the support of x̂ satisfies F j(x̂) = F(x̂), and any best response i to x̂ is an unused
strategy that satisfies Fi(x̂) > F(x̂). Also, since x̂ is a rest point of VF, equation (8.1) implies
that each j in the support of x̂ has G j(x̂) = 0. Thus, monotonicity of percentage growth
rates implies that Gi(x̂) > G j(x̂) = 0, and so the continuity of Gi implies Gi(x) ≥ k > 0 on
some small neighborhood O of x̂.

Now let {xt} be an interior solution trajectory of VF (see Theorem 5.4.14). Then if xs ∈ O
for all s ∈ (t,u), it follows that

log((xu)i)−log((xt)i) =

∫ u

t

(
d
ds log((xs)i)

)
ds =

∫ u

t

(ẋs)i

(xs)i
ds =

∫ u

t
Gi(xs) ds ≥ k(u−t).

Rearranging and exponentiating yields

(xu)i ≥ (xt)i exp(k(u − t)).

Thus, during intervals that xs is in O, (xs)i is strictly increasing. This immediately implies
that there is no neighborhood O′ of x̂ such that solutions starting in O′ stay in O, and so
x̂ is not Lyapunov stable. Also, since (xt)i cannot decrease inside O ∩ int(X), no interior
solution trajectory can converge to x̂. �

8.2 Local Stability in Potential Games

We saw in Section 7.1 that in potential games, the potential function serves as a strict
Lyapunov function for any evolutionary dynamic satisfying positive correlation (PC);
solution trajectories of such dynamics ascend the potential function and converge to
connected sets of rest points. For dynamics that also satisfy Nash stationarity (NS), these
sets consist entirely of Nash equilibria.

That the potential function is a strict Lyapunov function has important implications for
local stability of sets of rest points. Call A ⊆ X a local maximizer set of the potential function
f : X → R if it is connected, if f is constant on A, and if there exists a neighborhood O of
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A such that f (x) > f (y) for all x ∈ A and all y ∈ O − A. Theorem 3.1.7 implies that such
a set consists entirely of Nash equilibria. We call the set A ⊆ NE(F) isolated if there is a
neighborhood of A that does not contain any Nash equilibria other than those in A.

If the value of f is nondecreasing along solutions of a dynamic, then they cannot escape
from a neighborhood of a local maximizer set. If the value of f is actually increasing in
this neighborhood, then solutions in the neighborhood should converge to the set. This is
the content of the following theorem.

Theorem 8.2.1. Let F be a potential game with potential function f , let VF be an evolutionary
dynamic for F, and suppose that A ⊆ NE(F) is a local maximizer set of f .

(i) If VF satisfies positive correlation (PC), then A is Lyapunov stable under VF.
(ii) If in addition VF satisfies Nash stationarity (NS) and A is isolated, then A is an asymptot-

ically stable set under VF.

Proof. Part (i) of the theorem follows immediately from Lemma 7.1.1 and Theorem
7.B.2. To prove part (ii), note that (NS), (PC), and the fact that A is isolated imply that there
is a neighborhood O of A such that ˙f (x) = ∇ f (x)′VF(x) > 0 for all x ∈ O − A. Corollary
7.B.7 then implies that A is asymptotically stable. �

For dynamics satisfying (PC) and (NS), being an isolated local maximizer set is not
only a sufficient condition for being asymptotically stable; it is also necessary.

Theorem 8.2.2. Let F be a potential game with potential function f , let VF be an evolutionary
dynamic for F that satisfies (PC) and (NS). Suppose that A ⊆ NE(F) is a smoothly connected
asymptotically stable set under VF. Then A is an isolated local maximizer set of f .

Proof. Since A is a smoothly connected set of Nash equilibria, Exercise 3.1.15 implies
that f takes some fixed value c throughout A. Now let ξ be an initial condition in O − A,
where O is the basin of attraction of A. Then ω(ξ) ⊆ A. But since f is a strict Lyapunov
function for VF, it follows that f (ξ) < c. Since ξ ∈ O − A was arbitrary, we conclude that
that A is an isolated local maximizer set. �

Theorems 8.2.1 and 8.2.2 allow us to characterize locally stable rest points for dynamics
satisfying positive correlation (PC). Since the best response and perturbed best response
dynamics do not satisfy this condition, the former because of lack of smoothness and the
latter because of the perturbations, Theorems 8.2.1 and 8.2.2 do not apply.

In the case of the best response dynamic, Theorem 6.1.8 establishes analogues of (NS)
and (PC), which in turn imply that solution trajectories ascend the potential function and
converge to Nash equilibrium (Theorem 7.1.4). By using these results along with the
arguments above, we obtain
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Theorem 8.2.3. Let F be a potential game with potential function f , let VF be the best response
dynamic for F, and let A ⊆ NE(F) be smoothly connected. Then A is an isolated local maximizer
set of f if and only if A is asymptotically stable under VF.

In the case of perturbed best response dynamics, the roles of conditions (PC) and
(NS) are played by virtual positive correlation and perturbed stationarity (Theorem 6.2.13
and Observation 6.2.10). These in turn ensure that the dynamics ascend the perturbed
potential function

f̃ (x) = f (x) −
∑
p∈P

mpvp( 1
mp xp)

(Theorem 7.1.6). Substituting these results into the arguments above yields

Theorem 8.2.4. Let F be a potential game with potential function f , let VF,v be the perturbed best
response dynamic for F generated by the admissible deterministic perturbations v = (v1, . . . , vp),
and let A ⊆ PE(F, v) be smoothly connected. Then A is an isolated local maximizer set of f̃ if and
only if A is asymptotically stable under VF,v.

8.3 Evolutionarily Stable States

In the remainder of this chapter, we introduce the notion of an evolutionarily stable state
and show that it provides a sufficient condition for local stability under a wide range
of evolutionary dynamics, including all of the dynamics that were shown to be globally
convergent in stable games in Chapter 7.

The birth of evolutionary game theory can be dated to the definition of an evolutionarily
stable strategy in single-population matching environments by Maynard Smith and Price.
In introducing this concept, these authors envisioned model of evolution quite different
from the dynamic models considered in this book. Maynard Smith and Price focused on
monomorphic populations—populations whose members all choose the same strategy—
but allowed this common strategy to be a mixed strategy. Their notion of an evolutionarily
stable strategy is meant to capture the capacity of a monomorphic population to resist
invasion by a monomorphic mutant group whose members play some alternative mixed
strategy.

Clearly, Maynard Smith and Price’s model is different from the polymorphic-population,
pure-strategist model studied in this book. Even so, Maynard Smith and Price’s formal
definition of an evolutionarily stable strategy remains coherent in our setting: indeed, we
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adopt it as our definition of an evolutionarily stable state, allowing us use the acronym
“ESS” without regard for context.

The interpretation of ESS in the polymorphic population setting is somewhat strained,
since it relies on comparisons between the aggregate payoffs of the incumbent and invad-
ing populations, rather than on direct comparisons of the payoffs to different strategies.
Still, the fact that the ESS condition is sufficient for stability under many population
dynamics amply justifies its use.

Even restricting attention to single-population settings, the literature offers many al-
ternate definitions of ESS and of related concepts. As we shall see, the differences between
these definitions are rather subtle, and in random matching environments, all of the con-
cepts we consider below are equivalent. But in multipopulation settings, there are two
quite distinct definitions of ESS. One is most natural for studying monomorphic models à
la Maynard Smith and Price, while the other is most natural for the polymorphic models
considered here. It is a definition of the latter type, which we dub Taylor ESS, that provides
our sufficient condition for stability for multipopulation dynamics.

8.3.1 Single-Population Games

Let us focus first on the case of single-population games. In this context, we call x ∈ X
an evolutionarily stable state (ESS) of F if

(8.2) There is a neighborhood O of x such that (y − x)′F(y) < 0 for all y ∈ O − {x}.

Two equivalent characterizations of ESS are provided in Theorems 8.3.1 and 8.3.5 below.
While the conditions from Theorem 8.3.5 are the closest to the original definition of ESS
(see the Notes), we use the definition above because it is the most concise.

We can interpret definition (8.2) using the notion of invasion from Section 3.3.3. Fix
x ∈ X, and let y ∈ O be a population state near x. Condition (8.2) requires that if there is an
incumbent population whose aggregate behavior is described by y, and an infinitesimal
group of invaders whose aggregate behavior is described by x, then the average payoff of
the invaders must exceed the average payoff in the incumbent population.

While it is appealingly simple, it not immediately clear why definition (8.2) should be
viewed as a stability condition for x: it considers invasions of other states y by x, while
one would expect a stability condition for x to address invasions of x by other states. We
argue next that (8.2) is equivalent to a condition that is somewhat more cumbersome, but
that is stated in terms of invasions of x by other states.
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This new condition is stated in terms of inequalities of the form

(8.3) (y − x)′F(εy + (1 − ε)x) < 0.

Suppose that an incumbent population with aggregate behavior x is invaded by group
with aggregate behavior y, with the invaders making up an ε share of the post-entry
population. Inequality (8.3) requires that the average payoffs of the incumbents exceed
the average payoffs of the invaders.

Now, consider the following requirement on the population state x:

(8.4) There is an ε̄ > 0 such that (8.3) holds for all y ∈ X − {x} and ε ∈ (0, ε̄).

Condition (8.4) says that x admits a uniform invasion barrier: so long as the proportion of
invaders in the post-entry population is less than ε̄, the incumbents will receive higher
payoffs than the invaders in aggregate. If we define the invasion barrier of x against y by

bx(y) = inf
({
ε ∈ (0, 1) : (y − x)′F(εy + (1 − ε)x) ≥ 0

}
∪ {1}

)
,

then condition (8.4) says that bx(y) ≥ ε̄ > 0 for all y ∈ X − {x}.
Theorem 8.3.1 shows that ESSs are characterized by the existence of a uniform invasion

barrier.

Theorem 8.3.1. State x ∈ X is an ESS if and only if condition (8.4) holds.

Exercise 8.3.2. Prove Theorem 8.3.1 via the following three steps.
(i) Show that if condition (8.4) holds, then there is a δ > 0 such that the set U =

{(1 − λ)x + λy : y ∈ X, λ ∈ [0, bx(y))} contains a δ-neighborhood of x. (Hint: Start by
representing each point in X − {x} as a convex combination of x and a point in the
set C = {y ∈ X : yi = 0 for some i ∈ support(x)}.)

(ii) Use part (i) to show that condition (8.4) is equivalent to the following condition:

(8.5) There is a neighborhood O of x such that (8.3) holds for all y ∈ O−{x} and ε ∈ (0, 1).

(iii) Finally, show that x is an ESS if and only if condition (8.5) holds.

Exercise 8.3.3. Consider the following variant of condition (8.4):

(8.6) For each y ∈ X − {x}, there is an ε̄ > 0 such that (8.3) holds for all ε ∈ (0, ε̄).
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This condition requires a positive invasion barrier bx(y) for each y ∈ X − {x}, but does not
require uniformity: invasion barriers need not be bounded away from 0.

(i) Show that if F(x) = Ax is linear, then condition (8.6) is equivalent to condition (8.4),
and so characterizes ESS in these games. (Hint: Observe that

bx(y) =


(x−y)′Ax

(x−y)′A(x−y) if (y − x)′Ax < 0 and (y − x)′Ay > 0,

0 otherwise.)

(ii) Construct a three-strategy game with a state x∗ that satisfies condition (8.6) but that
is not an ESS. (Hint: Let x∗ = (0, 1

2 ,
1
2 ), and let D1 and D2 be closed disks in X ⊂ R3

that are tangent to bd(X) at x∗ and whose radii are r1 and r2 > r1. Introduce a payoff

function of the form F(x) = −c(x)(x− x∗), where c(x) is positive on int(D1)∪ (X−D2)
and negative on int(D2) −D1. Then use Proposition 8.3.4 below.)

We now turn to the relationship between ESS and Nash equilibrium. As a first step,
we show that the former is a refinement of the latter:

Proposition 8.3.4. Every ESS is an isolated Nash equilibrium.

Proof. Let x be an ESS of F, let O be the neighborhood posited in condition (8.2), and
let y ∈ X − {x}. Then for all small enough ε > 0, xε = εy + (1 − ε)x is in O, and so satisfies
(x− xε)′F(xε) > 0. Simplifying and dividing by ε yields (x− y)′F(xε) ≥ 0, so taking ε to zero
yields (y − x)′F(x) ≤ 0. That is, x is a Nash equilibrium. Moreover, if w ∈ O − {x} were a
Nash equilibrium, we would have (w − x)′F(w) ≥ 0, contradicting that x satisfies (8.2). �

The converse of Proposition 8.3.4 is false: the mixed equilibrium of a two-strategy coor-
dination game provides a simple counterexample.

Theorem 8.3.5 shows precisely what restrictions ESS adds to those already imposed by
Nash equilibrium.

Theorem 8.3.5. Suppose that F is Lipschitz continuous. Then state x is an ESS if and only if

x is a Nash equilibrium: (y − x)′F(x) ≤ 0 for all y ∈ X.(8.7)

There is a neighborhood O of x such that for all y ∈ O − {x},

(y − x)′F(x) = 0 implies that (y − x)′F(y) < 0.
(8.8)

According to the theorem, an ESS x is a Nash equilibrium that satisfies the following
additional property: if a state y near x is an alternative best response to x, then an
infinitesimal group of invaders whose aggregate behavior is described by x can invade an
incumbent population playing y.
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Exercise 8.3.6. Show that if F(x) = Ax is linear, then condition (8.8) is equivalent to the
global condition

(8.9) For all y ∈ X − {x}, (y − x)′F(x) = 0 implies that (y − x)′F(y) < 0.

Proof of Theorem 8.3.5. That condition (8.2) implies conditions (8.7) and (8.8) follows
easily from Proposition 8.3.4. While the converse is immediate if x ∈ int(X), in general the
proof of the converse requires a delicate argument.

To begin, suppose that x ∈ X satisfies conditions (8.7) and (8.8). Let S∗ = argmaxi∈S Fi(x)
be the set of pure best responses to x, let S0 = S − S∗, let X∗ = {v∗ ∈ X : support(v∗) ⊆ S∗}
be the set of mixed best responses to x, and let and X0 = {v0

∈ X : support(v0) ⊆ S0
} be the

set of states at which all best responses to x are unused. Since x is a Nash equilibrium,
we have that support(x) ⊆ S∗ and x ∈ X∗. Moreover, each y ∈ X can be represented as a
convex combination of the form

y = (1 − λ)y∗ + λy0,

where y∗ ∈ X∗, y0
∈ X0, and λ =

∑
j∈S0 y j ∈ [0, 1]. Evidently, we have y∗ = y when λ = 0,

and y0 = y when λ = 1; in all other cases, y uniquely determines both y∗ and y0.
We want to show that for some neighborhood U of x, we have (y − x)′F(y) < 0 for all

y ∈ U − {x}. To do so, we introduce the decomposition

(y − x)′F(y) = ((1 − λ)y∗ + λy0
− x)′F(y)(8.10)

= λ(y0
− x)′F(y) + (1 − λ)(y∗ − x)′(F(y) − F(y∗)) + (1 − λ)(y∗ − x)′F(y∗)

≡ T1(y) + T2(y) + T3(y).

To prove the theorem, it is enough to establish these two claims:

T1(y) + T2(y) ≤ 0 when y ∈ U, and T1(y) + T2(y) < 0 when y ∈ U − X∗;(8.11)

T3(y) ≤ 0 when y ∈ U, and T3(y) < 0 when y ∈ U ∩ X∗ − {x}.(8.12)

To accomplish this, let ‖v‖ =
∑n

i=1 |vi| denote the L1 norm of v ∈ Rn, and let K be the
Lipschitz constant for F with respect to this norm. Also, let O be the neighborhood from
condition (8.8), and choose r > 0 so that O contains a ball of radius r centered at x.

Since x ∈ X∗ and y0
∈ X0, we have that (y0

−x)′F(x) < 0. Therefore, since F is continuous,
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we can pick a neighborhood U′ of x and a positive constant ε such that

(8.13) λ(y0
− x)′F(y) < −λε for all y ∈ U′.

Moreover, we can choose a neighborhood U ⊆ U′ of x such that

(8.14)
∥∥∥y − x

∥∥∥ < min{ ε20K ,
r
5 ,

1
2 } whenever y ∈ U.

Suppose that
∥∥∥y − x

∥∥∥ ≤ 1
2 . Since support(x) ∩ S0 = ∅, we have that

λ =
∑
j∈S0

∣∣∣y j

∣∣∣ =
∑
j∈S0

∣∣∣y j − x j

∣∣∣ ≤∑
i∈S∗

∣∣∣yi − xi

∣∣∣ +
∑
j∈S0

∣∣∣y j − x j

∣∣∣ =
∥∥∥y − x

∥∥∥ ≤ 1
2 ,

and so that 1
1−λ ≤ 2. Since

∥∥∥v − y
∥∥∥ ≤ 2 for any v ∈ X, it follows that∥∥∥y∗ − x

∥∥∥ =
∥∥∥ 1

1−λ (y − λy0) − x
∥∥∥

≤

∥∥∥y − x
∥∥∥ + λ

1−λ

∥∥∥y0
− y

∥∥∥
≤

∥∥∥y − x
∥∥∥ + 4λ

≤ 5
∥∥∥y − x

∥∥∥ .
Equation (8.14) therefore yields

(8.15)
∥∥∥y∗ − x

∥∥∥ < min{ ε4K , r} whenever y ∈ U.

Now suppose that y ∈ U. Applying the first bound in (8.15), we find that

(1 − λ)(y∗ − x)′(F(y) − F(y∗)) ≤
∥∥∥y∗ − x

∥∥∥ K
∥∥∥y − y∗

∥∥∥
=

∥∥∥y∗ − x
∥∥∥ K

∥∥∥λ(y0
− y∗)

∥∥∥
= 2λK

∥∥∥y∗ − x
∥∥∥

≤
1
2λε.

Since λ > 0 when y < X∗, combining this bound with (8.13) yields claim (8.11).
The second bound in (8.15) tells us that y∗ ∈ O. Since y∗ ∈ X∗ as well, we have that

(y∗ − x)′F(x) = 0, so condition (8.8) tells us that

(y∗ − x)′F(y∗) ≤ 0, with equality if and only if y∗ = x.

Since y∗ is distinct from x whenever y ∈ X∗ − {x}, we have claim (8.12). This completes the
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proof of the theorem. �

8.3.2 Multipopulation Games

As we noted at the start of this section, there are two rather different ways of extending
the definition of ESS from a single-population setting to a multipopulation setting. If F is
a game played by p ≥ 1 populations, we call x ∈ X a Taylor ESS of F if

(8.16) There is a neighborhood O of x such that (y − x)′F(y) < 0 for all y ∈ O − {x}.

(The text of this condition is identical that in (8.2); the only difference is that F may now
be a multipopulation game.) We call x a Cressman ESS of F if

(8.17)
There is a neighborhood O of x such that for all y ∈ O − {x},

there is a p ∈ P such that (yp
− xp)′Fp(y) < 0.

Condition (8.17) is identical to condition (8.16) in single-population settings. But in
multipopulation settings, it is weaker. Both conditions consider invasions of a collection
of incumbent populations y = (y1, . . . , yp) ∈ O−{x} by a collection of invading populations
x = (x1, . . . , xp). For x to be a Taylor ESS, the aggregate payoff of the invading populations
must exceed the aggregate payoff of the incumbent populations. But for x to be a Cressman
ESS, it is enough that one of the invading populations xp earn a higher average payoff

than the corresponding incumbent population yp.
If we focus on the evolutionary setting studied by Maynard Smith and Price—that

of monomorphic populations of mixed strategists—then the appropriate extension of the
ESS concept to multiple populations is Cressman ESS. (See the Notes for an extended
discussion.) But to understand the dynamics of behavior in polymorphic populations of
pure strategists, Taylor ESS turns out to be the more useful condition. Because of this, we
will write “ESS” in place of “Taylor ESS” in some of the discussions below.

Exercise 8.3.7. Let F = (F1,F2) be a population game, and let F̂ = (F1, 2F2) be the game
obtained by doubling the payoffs of population 2’s strategies. Show that F and F̂ have the
same Nash equilibria and Cressman ESSs, but that their Taylor ESSs may differ.

Exercise 8.3.8. Suppose that F has no own-population interactions: Fp(x) is independent
of xp for all p ∈ P . Show that if x∗ is a Cressman ESS of F, then it is a pure social state:
(x∗)p = mpep

i for some i ∈ Sp and p ∈ P . Of course, this implies that any Taylor ESS is a
pure social state as well. See Proposition 3.3.10 for a closely related result in the context
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of stable games. (Hint: If xp is not pure, consider an invasion by y = (yp, x−p), where yp is
an alternate best response to x.)

8.3.3 Regular Taylor ESS

While in Section 8.3.2 we focused on the distinction between Taylor ESS and Cressman
ESS, it is also the case that each of these concepts admits a number of characterizations
corresponding to those of single population ESS. For example, Theorem 8.3.5 has the
following analogue for Taylor ESS

Corollary 8.3.9. Suppose that F is Lipschitz continuous. Then x is a Taylor ESS if and only if

x is a Nash equilibrium: (y − x)′F(x) ≤ 0 for all y ∈ X.(8.18)

There is a neighborhood O of x such that for all y ∈ O − {x},

(y − x)′F(x) = 0 implies that (y − x)′F(y) < 0.
(8.19)

The text of these conditions is identical to that in conditions (8.7) and (8.8), but F is now
allowed to be a multipopulation game.

Some of our local stability results require a slight strengthening of these conditions.
To strengthen the Nash equilibrium condition (8.18), we suppose that x is a quasistrict
equilibrium: within each population, all strategies in use earn the same payoff, a payoff

that is strictly greater than that of each unused strategy. (This is a generalization of strict
equiibrium, which in addition requires x to be a pure state.) To strengthen (8.19), we replace
the inequality in this condition with a differential version. All told, we call x ∈ X a regular
Taylor ESS if

x is a quasistrict equilibrium: Fp
i (x) = F̄p(x) > Fp

j (x) whenever xp
i > 0 and xp

j = 0.(8.20)

For all y ∈ X − {x}, (y − x)′F(x) = 0 implies that (y − x)′DF(x)(y − x) < 0.(8.21)

When p = 1, we can call a state x satisfying (8.20) and (8.21) a regular ESS for short.

Exercise 8.3.10. (i) Confirm that every regular Taylor ESS is a Taylor ESS.
(ii) Show that condition (8.21) does not change if the implication is only checked for

y , x in a neighborhood of x, as in condition (8.19).
(iii) Show that if F is linear, then condition (8.21) is equivalent to condition (8.19).

It is useful to have a more concise characterization of regular Taylor ESS. For any set
of strategies I ⊂

⋃
p∈P Sp, let Rn

I = {y ∈ Rn : yp
j = 0 whenever j < I} denote the set of

vectors in Rn whose components corresponding to strategies outside I equal zero. Also,
let S(x) ⊆

⋃
p∈P Sp denote the support of state x. Then it is easy to verify
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Observation 8.3.11. State x is a regular Taylor ESS if and only if is a quasistrict equilibrium that
satisfies

(8.22) z′DF(x)z < 0 for all nonzero z ∈ TX ∩ Rn
S(x).

Condition (8.22) resembles the derivative condition we associate with strictly stable
games. However, the condition need only hold at the equilibrium, and negative definite-
ness is only required to hold in directions that move along the face of X on which the
equilibrium lies.

8.4 Local Stability via Lyapunov Functions

In this remainder of this chapter, we show that any regular Taylor ESS x∗ is locally
stable under many evolutionary dynamics. In this section, our approach is to construct a
strict local Lyapunov function for each dynamic in question: that is, a nonnegative function
defined in a neighborhood of x∗ that vanishes precisely at x∗ and whose value decreases
along solution of the dynamic other than the stationary one at x∗. The results presented
in Appendix 7.B show that the existence of such a function ensures the asymptotically
stability of x∗.

The similarity between the definitions of regular ESS and of stable games—in partic-
ular, the negative semidefiniteness conditions that play a central role in both contexts—
suggests the Lyapunov functions for stable games from Section 7.2 as the natural starting
points for our stability analyses of ESSs. In some cases—under the projection and repli-
cator dynamics, and whenever the ESS is interior—we will be able to use the Lyapunov
functions from Section 7.2 without amendment. But more generally, we will need to
modify these functions in order to make them local Lyapunov functions for ESSs.

8.4.1 The Replicator and Projection Dynamics

The analysis is simplest in the cases of the replicator and projection dynamics. In
Section 7.2, we proved global convergence of these dynamics in every strictly stable game
by showing that measures of “distance” from the game’s unique Nash equilibrium served
as global Lyapunov functions. The proofs of these convergence results relied on nothing
about the payoff structure of the game apart from the fact that the game’s unique Nash
equilibrium is also a GESS.

This observation suggests that if state x∗ is a Taylor ESS of an arbitrary population
game, the same “distance” functions will serve as local Lyapunov functions for x∗ under
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the two dynamics. We confirm this logic in the following theorem.

Theorem 8.4.1. Let x∗ be a Taylor ESS of F. Then x∗ is asymptotically stable under
(i) the replicator dynamic for F;
(ii) the projection dynamic for F.

Exercise 8.4.2. Prove Theorem 8.4.1 by showing that the functions Hx∗ and Ex∗ from Theo-
rems 7.2.4 and 7.2.1 define strict local Lyapunov functions for the two dynamics.

8.4.2 Target and Pairwise Comparison Dynamics: Interior ESS

In proving convergence results for other classes of dynamics in Section 7.2, we relied
directly on the negative semidefiniteness condition (3.16) that characterizes stable games.
If a game admits an interior ESS that satisfies the strict inequalities in (8.22), then condition
(3.16) holds in a neighborhood of the ESS. This allows us again to use the Lyapunov
functions from Section 7.2 without amendment to prove local stability results.

Theorem 8.4.3. Let x∗ ∈ int(X) be a regular Taylor ESS of F. Then x∗ is asymptotically stable
under

(i) any separable excess payoff dynamic for F;
(ii) the best response dynamic for F;
(iii) any impartial pairwise comparison dynamic for F.

Exercise 8.4.4. Prove Theorem 8.4.3 by showing that the functions Γ, G, and Ψ from
Theorems 7.2.8, 7.2.9, and 7.2.11 define a strict local Lyapunov functions for an ESS x∗

under the three dynamics.

Rest points of perturbed best response dynamics generally do not coincide with Nash
equilibria, and hence with ESSs. Nevertheless, the next exercise indicates that an appro-
priate negative definiteness condition is still enough to ensure local stability.

Exercise 8.4.5. Let x̃ be a perturbed equilibrium of (F, v) for some admissible deterministic
perturbations v = (v1, . . . vp), and suppose that z′DF(x̃)z < 0 for all nonzero z ∈ TX. Show
that x̃ is isolated in the set of perturbed equilibria, and that the function G̃ from Theorem
7.2.10 defines a strict local Lyapunov function for x̃. (Hint: To show that x̃ is isolated, use
the argument at the end of the proof of Theorem 7.2.10.)

For consistency with our previous results, it is natural to try prove stability results
for perturbed best response dynamics for games with an interior ESS. To do so, we need
to assume that the size of the perturbations is “small”, in the hopes that there will be a
perturbed equilibrium that is “close” to the ESS. Since the logit dynamic is parameterized
by a noise level η, it provides a natural setting for the result we seek.
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Theorem 8.4.6. Let x∗ ∈ int(X) be a regular Taylor ESS of F. Then for some neighborhood O of
x∗ and each η > 0 less than some η̂ > 0, there is a unique logit(η) equilibrium x̃η in O, and this
equilibrium is asymptotically stable under the logit(η) dynamic. Finally, x̃η varies continuously
in η, and limη→0 x̃η = x∗.

Proof. (p = 1) Theorem 7.2.10 and Exericises 6.2.6 and 6.2.7 show that for η > 0, the
function

G̃η(x) = η log

∑
j∈S

exp(η−1F̂ j(x))

 + η
∑
j∈S

x j log x j.

(with 0 log 0 ≡ 0) is a Lyapunov function for the logit(η) dynamic when F is a stable game.
If we define

G̃0(x) ≡ G(x) = max
j∈S

F̂ j(x).

to be the Lyapunov function for the best response dynamic in stable games, then G̃η(x) is
continuous in (x, η) on X × [0,∞),

By Exercise 8.4.4, G defines a strict local Lyapunov function for the best response
dynamic at the interior ESS x∗. In particular, x∗ is local minimizer of G: there is an open,
convex neighborhood O ⊂ X of x∗ such that G(x) > G(x∗) for all x ∈ O − {x∗}. Moreover,
since F is C1 and satisfies z′DF(x∗)z < 0 for all nonzero z ∈ TX, we can choose O in such a
way that z′DF(x)z < 0 for all nonzero z ∈ TX and x ∈ O.

Because G̃η(x) is continuous in (x, η), the Theorem of the Maximum (see the Notes)
implies that the map

η 7→ β̃(η) ≡ argmin
x∈cl(O)

G̃η(x).

is upper hemicontinuous on [0,∞). Thus, since β̃(0) = {x∗} ⊂ O (in particular, since
x∗ < bd(O)), there is an η̂ > 0 such that β̃(η) ⊂ O for all η < η̂. This implies that each
x̃η ∈ β̃(η) is a local minimizer of G̃η not only with respect to cl(O), but also with respect to
the full state space X.

Exercise 8.4.5 implies that the value of G̃η is decreasing along solutions to the logit(η)
dynamic in the set O, implying that each local minimizer x̃η is a rest point of this dynamic—
indeed, x̃η must be an asymptotically stable rest point. Finally, since O is convex, the last
paragraph of the proof of Theorem 7.2.10 shows that when η < η̂, β̃(η) ⊂ O is a singleton.
This completes the proof of the theorem. �
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8.4.3 Target and Pairwise Comparison Dynamics: Boundary ESS

It remains for us to prove local stability results for boundary ESSs for the the dynamics
considered in Theorem 8.4.3.

Theorem 8.4.7. Let x∗ be a regular Taylor ESS of F. Then x∗ is asymptotically stable under
(i) any separable excess payoff dynamic for F;
(ii) the best response dynamic for F;
(iii) any impartial pairwise comparison dynamic for F.

To prove Theorem 8.4.7, we show that suitably modified versions of the Lyapunov
functions for stable games serve as local Lyapunov functions here. Letting Sp(x∗) =

support((x∗)p) and C > 0, we augment the functions Γ, G, and Ψ from Section 7.2 by the
function

(8.23) Υx∗(x) = C
∑
p∈P

∑
j<Sp(x∗)

xp
j ,

which is proportional to the number of agents using strategies outside the support of x∗.
We provide a detailed proof of the theorem for the case of impartial pairwise comparison
dynamics, and leave the proofs of the other two cases as exercises.

Proof of Theorem 8.4.7(iii). (p = 1) Let ẋ = VF(x) be an impartial pairwise comparison
dynamic for F. Define the C1 function Ψx∗ : X→ R by

Ψx∗(x) = Ψ(x) + Υx∗(x) = Ψ(x) + C
∑

j<S(x∗)

x j.

Here Ψ is the Lyapunov function defined in Theorem 7.2.11, and Υx∗ is as defined in
equation (8.23); the constant C > 0 will be determined later.

Since VF is an impartial pairwise comparison dynamic, Theorem 7.2.11 shows that
the function Ψ is nonnegative, with Ψ(x) = 0 if and only if x ∈ NE(F). It follows that
Ψx∗ too is nonnegative, with Ψx∗(x) = 0 if and only if x is a Nash equilibrium of F with
support(x) ⊆ support(x∗). Thus, since x∗ is an ESS, it is isolated in the set of Nash equilibria
(Proposition 8.3.4), so there is a neighborhood O of x∗ on which x∗ is the unique zero of
Ψx∗ . If we can show that there is also a neighborhood O′ of x∗ such that Ψ̇x∗(x) < 0 for all
x ∈ O′ − {x∗}, then Ψx∗ is a strict local Lyapunov function for x∗, so the conclusion of the
theorem will follow from Corollary 7.B.7.

To reduce the amount of notation in the analysis to come, let 10
∈ Rn be the vector

whose jth component equals 0 if j ∈ support(x∗) and equals 1 otherwise, so that (10)′x is
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the mass of agents who use strategies outside the support of x∗ at state x. Then we can
write Ψx∗(x) = Ψ(x) + C (10)′x, and so can express the time derivative of Ψx∗ as

Ψ̇x∗(x) = Ψ̇(x) + C (10)′ẋ.

Now the proof of Theorem 7.2.11 shows that the time derivative of Ψ satisfies

Ψ̇(x) ≤ ẋ′DF(x)ẋ,

with equality holding precisely at the Nash equilibria of VF. To finish the proof, it is
enough to show that

ẋ′DF(x)ẋ + C (10)′ẋ ≤ 0

for all x ∈ O′ − {x∗}. This follows directly from the following lemma, choosing C ≥M/N.

Lemma 8.4.8. Let ẋ = VF(x) be a pairwise comparison dynamic for F, and let x∗ be a regular ESS
of F. Then there is a neighborhood O′ of x∗ and constants M,N > 0 such that for all x ∈ O′,

(i) ẋ′DF(x)ẋ ≤M (10)′x;
(ii) (10)′ẋ ≤ −N (10)′x.

Proof. Suppose without loss of generality that S(x∗) = support(x∗) is given by {1, . . . ,n∗}.
Then to complement 10

∈ Rn, let 1∗ ∈ Rn be the vector whose first n∗ components equal
1 and whose remaining components equal 0, so that 1 = 1∗ + 10. Next, decompose the
identity matrix I as I∗+ I0, where I∗ = diag(1∗) and I0 = diag(10), and finally, decompose I∗

as Φ∗+Ξ∗, where Ξ∗ = 1
n∗1
∗(1∗)′ and Φ∗ = I∗−Ξ∗. Notice that Φ∗ is the orthogonal projection

of Rn onto Rn
0 ∩ Rn

S(x∗) = {z ∈ Rn
0 : z j = 0 whenever j < S(x∗)}, and that I = Φ∗ + Ξ∗ + I0.

Using this decomposition of the identity matrix, we can write

ẋ′DF(x)ẋ = ((Φ∗ + Ξ∗ + I0) ẋ)′DF(x)((Φ∗ + Ξ∗ + I0) ẋ)

= (Φ∗ẋ)′DF(x)(Φ∗ẋ) + ((Ξ∗ + I0) ẋ)′DF(x) ẋ + (Φ∗ẋ)′DF(x)((Ξ∗ + I0) ẋ).(8.24)

Since x∗ is a regular ESS, we know that z′DF(x∗)z < 0 for all nonzero z ∈ TX∪Rn
S(x∗). Thus,

since DF(x) is continuous in x, there is a neighborhood Ô of x∗ on which the first term of
(8.24) is nonpositive.

Turning to the second term, note that since 1′ẋ = 0 and (10)′ = 1′I0, we have that

(Ξ∗ + I0)ẋ = ( 1
n∗1
∗(1∗)′ + I0)ẋ = (− 1

n∗1
∗(10)′ + I0)ẋ = ((I − 1

n∗1
∗1′)I0)ẋ.
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Let ‖A‖ denote the spectral norm of the matrix A (see Appendix 8.A.6). Then applying
spectral norm inequalities and the Cauchy-Schwarz inequality, we find that

(8.25) ((Ξ∗ + I0)ẋ)′DF(x)ẋ = ((I − 1
n∗1
∗1′)I0ẋ)′DF(x)ẋ ≤

∣∣∣ I0ẋ
∣∣∣ ∥∥∥I − 1

n∗1(1∗)′
∥∥∥ ∥∥∥DF(x)

∥∥∥ ∣∣∣ẋ∣∣∣ .
Since DF(x), VF(x), and ρi j(F(x), x) are continuous in x on the compact set X, we can

find constants K and R such that

(8.26)
∥∥∥I − 1

n∗1(1∗)′
∥∥∥ ∥∥∥DF(x)

∥∥∥ ∣∣∣ẋ∣∣∣ ≤ K and max
i, j∈S

ρi j(F(x), x) ≤ R for all x ∈ X.

Now since x∗ is a quasistrict equilibrium, we have that Fi(x∗) = F(x∗) > F j(x∗) for all
i ∈ support(x∗) = {1, . . . ,n∗} and all j < support(x∗). Thus, since the pairwise comparison
dynamic satisfies sign preservation (5.24), we have ρi j(F(x∗), x∗) = 0 for such i and j, and
because F is continuous, there is a neighborhood O′ ⊆ Ô of x∗ on which for such i and j
we have Fi(x) > F j(x), and hence ρi j(F(x), x) = 0. From this argument and the bound on ρi j

in (8.26), it follows that for x ∈ O′, we have that

∣∣∣ I0ẋ
∣∣∣ =

√∑
j>n∗

∣∣∣ẋ j

∣∣∣2
≤

∑
j>n∗

∣∣∣ẋ j

∣∣∣
=

∑
j>n∗

∣∣∣∣∣∣∣∑k∈S xkρkj(F(x), x) − x j

∑
k∈S

ρ jk(F(x), x)

∣∣∣∣∣∣∣
≤

∑
j>n∗

∑
k∈S

xkρkj(F(x), x) + x j

∑
k∈S

ρ jk(F(x), x)


=

∑
j>n∗

∑
k>n∗

xkρkj(F(x), x) +
∑
j>n∗

x j

∑
k∈S

ρ jk(F(x), x)

≤ 2Rn
∑
j>n∗

x j

= 2Rn (10)′x.

We therefore conclude that at all x ∈ O′,

((Ξ∗ + I0)ẋ)′DF(x)ẋ ≤ 2KRn (10)′x.

Essentially the same argument provides a similar bound on the third term of (8.24),
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completing the proof of part (i) of the lemma.
We proceed with the proof of part (ii). Following the line of argument after equation

(8.26) above, we note that since x∗ is quasistrict and since the pairwise comparison dynamic
satisfies sign preservation, we have ρ ji(F(x∗), x∗) > 0 and ρi j(F(x∗), x∗) = 0 whenever
i ∈ support(x∗) = {1, . . . ,n∗} and j < support(x∗). So, since F and ρ are continuous,
sign preservation implies that there is a neighborhood O′ of x∗ and an r > 0 such that
ρ ji(F(x), x) > r and ρi j(F(x), x) = 0 for all i ≤ n∗, j > n∗, and x ∈ O′. Applying this
observation and then canceling like terms when both j and k are greater than n∗ in the
sums below, we find that for all x ∈ O′,

(10)′ẋ =
∑
j>n∗

ẋ j

=
∑
j>n∗

∑
k∈S

xkρkj(F(x), x) − x j

∑
k∈S

ρ jk(F(x), x)


=

∑
j>n∗

∑
k>n∗

xkρkj(F(x), x) − x j

∑
k∈S

ρ jk(F(x), x)


= −

∑
j>n∗

x j

∑
i≤n∗

ρ ji(F(x), x)

≤ −r n∗(10)′x.

This completes the proof of the lemma, and thus the proof of Theorem 8.4.7. �

Exercise 8.4.9. Prove Theorem 8.4.7(ii) (for p = 1) by showing that under the best response
dynamic, the function

Gx∗(x) = G(x) + Υx∗(x) = max
y∈X

(y − x)′F(x) + C
∑

j<S(x∗)

x j

is a strict local Lyapunov function for any regular ESS x∗. (Hint: The proof is nearly the
same as the one above, but building on the proof of Theorem 7.2.9 instead of the proof of
Theorem 7.2.11, and using Theorems 7.B.2 and 7.B.6 in place of Corollary 7.B.7.)

Exercise 8.4.10. Prove Theorem 8.4.7(i) (for p = 1) by showing that under the separable
excess payoff dynamic with revision protocol τ, the function

Γx∗(x) = Γ(x) + Υx∗(x) =
∑
i∈S

∫ F̂i(x)

0
τi(s) ds + C

∑
j<S(x∗)

x j
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is a strict local Lyapunov function for any regular ESS x∗. (Hint: Establish this variant of
Lemma 8.4.8: under the excess payoff dynamic generated by τ, there is a neighborhood
O′ of x∗ such that

(i) ẋ′DF(x)ẋ ≤ K T(x) (10)′x and
(ii) (10)′ẋ = −T(x) (10)′x,

for all x ∈ O′, where T(x) =
∑

i∈S τi(F̂i(x)).)

8.5 Linearization of Imitative Dynamics

In this section and the next, we study the stability of rest points of evolutionary
dynamics using linearization. This technique requires the dynamic in question to be
smooth, at least near the rest point in question, and it can be inconclusive in borderline
cases. But, more optimistically, it does not require the guesswork needed to find Lyapunov
functions. Furthermore, instead of establishing just asymptotic stability, a rest point found
stable via linearization (that is, one that is linearly stable) must attract solutions from all
nearby initial conditions at an exponential rate. Linearization is also very useful for
proving that a rest point is unstable, a fact we will avail ourselves of repeatedly when
studying nonconvergence in Chapter 9. Finally, linearization techniques allow us to prove
local stability results for imitative dynamics other than the replicator dynamic, for which
no Lyapunov functions have been proposed.

In the Appendix, we explain the techniques from matrix analysis (Appendix 8.A),
linear differential equation theory (Appendix 8.B), and linearization theory (Appendix
8.C) used in this chapter and the next. We assume in the remainder of this chapter and in
the next chapter that payoffs are defined on the positive orthant (see Appendix 3.A.7), as
doing so will allow us to avoid using affine calculus. Reviewing multivariate product and
chain rules from Appendix 3.A.4 may be helpful for following the arguments to come.

We begin the analysis with some general background on linearization of evolutionary
dynamics. Recall that a single population dynamic

(D) ẋ = V(x)

describes the evolution of the population state through the simplex X. In evaluating the
stability of the rest point x∗ using linearization, we are relying on the fact that near x∗, the
dynamic (D) can typically be well approximated by the linear dynamic

(L) ẏ = DV(x∗)y.
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Because we are only interested in how (D) behaves on the simplex, we only care
about how (L) behaves on the tangent space TX. Indeed, it is only because (D) defines a
dynamic on X that it makes sense to think of (L) as a dynamic on TX. At each state x ∈ X,
V(x) ∈ TX describes the current direction of motion through the simplex. It follows that
the derivative DV(x) must map any tangent vector z into TX, as one can verify by writing

V(x + z) = V(x) + DV(x)z + o(|z|)

and noting that V(x) and V(x + z) are both in TX. Thus, in (L), ẏ lies in TX whenever y lies
in TX, implying that TX is invariant under (L).

Keeping this argument in mind is important when using linearization to study stability
under the dynamic (D): rather than looking at all the eigenvalues of DV(x∗), we should
only consider those associated with the restricted linear map DV(x∗) : TX → TX, which
sends each tangent vector z ∈ TX to a new tangent vector DV(x∗)z ∈ TX. The scalar
λ = a + ib is an eigenvalue of this restricted map if DV(x∗)z = λz for some vector z whose
real and imaginary parts are both in TX. If all eigenvalues of this restricted map have
negative real part, then the rest point x∗ is linearly stable under (D) (cf Corollary 8.C.2).

Hines’s Lemma, stated next and proved in Appendix 8.A.7, is often the key to making
these determinations. In stating this result, we let Rn

0 = {z ∈ Rn : 1′z = 0} denote the
tangent space of the simplex. In the single population case, TX and Rn

0 are the same, but it
is useful to separate these two notations in multipopulation cases, where TX =

∏
p∈P Rnp

0

Lemma 8.5.1. Suppose that Q ∈ Rn×n is symmetric, satisfies Q1 = 0, and is positive definite with
respect to Rn

0 , and that A ∈ Rn×n is negative definite with respect to Rn
0 . Then each eigenvalue of

the linear map QA : Rn
0 → Rn

0 has negative real part.

8.5.1 The Replicator Dynamic

In this section, we show that any regular Taylor ESS x∗ is linearly stable under the
replicator dynamic. To begin, we focus on the case in which x∗ is interior.

Theorem 8.5.2. Let x∗ int(X) be a regular Taylor ESS of F. Then x∗ is linearly stable under the
replicator dynamic.

Proof. (p = 1) The single population replicator dynamic is given by

(R) ẋi = Vi(x) = xiF̂i(x).

To compute DV(x), recall from equation (7.21) that the derivative of the excess payoff
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function F̂(x) = F(x) − 1F(x) is given by

DF̂(x) = DF(x) − 1(x′DF(x) + F(x)′) = (I − 1x′)DF(x) − 1F(x)′.

Then applying the product rule for componentwise products (see Appendix 3.A.4), we
find that

DV(x) = D(diag(x)F̂(x))(8.27)

= diag(x)DF̂(x) + diag(F̂(x))

= diag(x)((I − 1x′)DF(x) − 1F(x)′) + diag(F̂(x))

= Q(x)DF(x) − x F(x)′ + diag(F̂(x)),

where we write Q(x) = diag(x) − xx′.
Since x∗ is an interior Nash equilibrium, F(x∗) is a constant vector, implying that

F(x∗)′Φ = 0′ and that F̂(x∗) = 0. Thus, equation (8.27) becomes

(8.28) DV(x∗)Φ = Q(x∗)DF(x∗)Φ.

Since the matrices Q(x∗) and DF(x∗)Φ satisfy the conditions of Hines’s Lemma, the eigen-
values of DV(x∗)Φ (and hence of DV(x∗)) corresponding to directions in Rn

0 have negative
real part. This completes the proof of the theorem. �

Exercise 8.5.3. Let x∗ be an interior Nash equilibrium of F that satisfies z′DF(x∗)z > 0 for
all nonzero z ∈ TX. Show that x∗ is a source under the replicator dynamic: all relevant
eigenvalues of DV(x∗) have positive real part, implying that all solutions of the replicator
dynamic that start near x∗ are repelled. (Hint: See the discussion in Appendix 8.A.7.)
Also, construct a game with an equilibrium that satisfies the conditions of this result.

Exercise 8.5.4. Show that if x∗ int(X) is a regular Taylor ESS, then x is linearly stable under
the projection dynamic.

The next example highlights the fact that being a regular ESS is only a sufficient
condition for an interior equilibrium to be locally stable under the replicator dynamic, not
a necessary condition.

Example 8.5.5. Zeeman’s game revisited. In Example 6.1.7, we introduced the single popu-
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lation game F(x) = Ax generated by random matching in

A =


0 6 −4
−3 0 5
−1 3 0

 .
This game admits Nash equilibria at states x∗ = (1

3 ,
1
3 ,

1
3 ), (4

5 , 0,
1
5 ) and e1; the replicator

dynamic has rest points at these states, as well as at the restricted equilibria (0, 5
8 ,

3
8 ), e2,

and e3. Examining the phase diagram in Figure 8.5.1, we see that the behavior of the
dynamic near the non-Nash rest points is consistent with Theorem 8.1.1.

Since F is not a stable game (why not?), Theorem 8.5.2 does not tell us whether x∗ is
stable. But we can check this directly: following the proof of Theorem 8.5.2, we compute

DV(x∗)Φ = Q(x∗)DF(x∗)Φ = Q(x∗)AΦ =
1
9


4 9 −13
−5 −9 14
1 0 −1

 .
In addition to the irrelevant eigenvalue of 0 corresponding to eigenvector 1, this matrix
has pair of complex eigenvalues, − 1

3 ± i
√

2
3 , corresponding to eigenvectors (−2± i(3

√
2), 1∓

i(3
√

2), 1)′ whose real and complex parts lie in Rn
0 . Since the real parts of the relevant

eigenvalues are both − 1
3 , the Nash equilibrium x∗ is linearly stable under the replicator

dynamic. §

We now establish the stability of all regular Taylor ESSs.

Theorem 8.5.6. Let x∗ be a regular Taylor ESS of F. Then x∗ is linearly stable under the replicator
dynamic.

Proof. (p = 1) Suppose without loss of generality that the support of x∗ is {1, . . . ,n∗},
so that the number of unused strategies at x∗ is n0 = n − n∗. For any matrix M ∈ Rn×n,
we let M++

∈ Rn∗×n∗ denote the upper left n∗ × n∗ block of M, and we define the blocks
M+0

∈ Rn∗×n0 , M0+
∈ Rn0

×n∗ , and M00
∈ Rn0

×n0 similarly. Also, for each vector v ∈ Rn, we let
v+
∈ Rn∗ and v0

∈ Rn0 denote the upper and lower “blocks” of v.
Recall our expression (8.27) for the derivative matrix of the replicator dynamic:

DV(x) = Q(x)DF(x) − x F(x)′ + diag(F̂(x)),

where Q(x) = diag(x) − xx′. Now observe that x∗j = 0 for all j > n∗, that F̂i(x∗) = 0 for all
i ≤ n∗, and, since x∗ is quasistrict, that F̂ j(x∗) < 0 for all j > n∗ (see the proof of Lemma
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Figure 8.5.1: The replicator dynamic in Zeeman’s game.

5.5.4). Therefore, by writing Q = Q(x∗), D = DF(x∗), π = F(x∗), and π̂ = F̂(x∗), we can
express DV(x∗) in the block diagonal form

(8.29) DV(x∗) =

Q++D++
− (x∗)+(π+)′ Q++D+0

− (x∗)+(π0)′

0 diag(π̂0)

 .
To complete the proof of the theorem, we need to show that if v + iw with v,w ∈ Rn

0 is an
eigenvector of DV(x∗) with eigenvalue a + ib, then a < 0.

We split the analysis into two cases. Suppose first that (v+ iw)0 = 0 (i.e., that v j = w j = 0
whenever j > n∗). Then it is easy to see that (v+ iw)+ must be an eigenvector of DV(x∗)++ =

Q++D++
− (x∗)+(π+)′. Now because x∗ is a Nash equilibrium with support {1, . . . ,n∗}, π+ is

a constant vector, and since v,w ∈ Rn
0 and (v + iw)0 = 0, the components of (v + iw)+ sum to

zero. Together, these observations imply that (x∗)+(π+)′(v + iw)+ = 0. Finally, Q++
∈ Rn∗×n∗

and D++
∈ Rn∗×n∗ satisfy the conditions of Hines’s Lemma, the latter by requirement (8.22)

for regular ESSs, and so this lemma enables us to conclude that a < 0.
Now suppose that (v + iw)0 , 0, so that v j + iw j , 0 for some j > n∗. Then since

the lower right block of DV(x∗) is the diagonal matrix diag(π̂0), the jth component of the
eigenvector equation for DV(x∗) is π̂ j(v j + iw j) = (a + ib)(v j + iw j), implying that a = π̂ j (and
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also that b = w j = 0). But as we noted above, the fact that x∗ is a quasistrict equilibrium
implies that π̂ j < 0, and so that a < 0. This completes the proof of the theorem. �

Exercise 8.5.7. Suppose that x∗ = ei is a strict equilibrium of F. Show that for each j , i,
the vector e j − ei is an eigenvector of DV(x∗) with eigenvalue F j(x∗) − Fi(x∗).

Exercise 8.5.8. Suppose that x∗ is a quasistrict Nash equilibrium of F. We saw in Theorem
8.5.6 that for each unused strategy j, the excess payoff F̂ j(x∗) is an eigenvalue of DV(x∗)
corresponding to an eigenvector in TX. Assume that F̂ j(x∗) is not an eigenvalue of DV(x∗)
corresponding to an eigenvector in TX ∩ Rn

S(x∗). Show thatζ + 1
n∗1
−ι j

 ∈ TX

is an eigenvector of DV(x∗) corresponding to eigenvalue F̂ j(x∗), where ι j is the appropriate
standard basis vector in Rn0 , and where ζ is the unique vector in Rn∗ satisfying 1′ζ = 0 and

(Q++D++
− π̂ jI) ζ = π̂ j( 1

n∗1 − (x∗)+) + Q++(D+0ι j − 1
n∗D

++1).

Why is there exactly one vector that satisfies these conditions? What goes wrong if the
restriction on F̂ j(x∗) does not hold?

8.5.2 General Imitative Dynamics

Theorem 8.5.6 established the local stability of all regular Taylor ESSs under the repli-
cator dynamic. Theorem 8.5.9 parlays the previous analysis into a local stability result for
all imitative dynamics.

Theorem 8.5.9. Assume that x∗ is a hyperbolic rest point of both the replicator dynamic (R) and
a given imitative dynamic (5.5). Then x∗ is linearly stable under (R) if and only if it is linearly
stable under (5.5). Thus, if x∗ is a regular Taylor ESS that satisfies the hyperbolicity assumptions,
it is linearly stable under (5.5).

Proof. (p = 1) We only consider the case in which x∗ is interior; for boundary cases, see
Exercise 8.5.12.

Recall from Observation 5.4.16 that any imitative dynamic (5.5) has monotone percent-
age growth rates: we can express the dynamic as

ẋi = xiGi(x), where(8.30)
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Gi(x) ≥ G j(x) if and only if Fi(x) ≥ F j(x).(8.31)

Lemma 8.5.10 shows that property (8.31) imposes a remarkable amount of structure on
the derivative matrix of the percentage growth rate function G at the equilibrium x∗.

Lemma 8.5.10. Let x∗ be an interior Nash equilibrium, and suppose that ΦDF(x∗) and ΦDG(x∗)
define invertible maps from TX to itself. Then ΦDG(x∗)Φ = c ΦDF(x∗)Φ for some c > 0.

Proof. Since x∗ is a Nash equilibrium, and hence a rest point of (8.30), we have that
ΦF(x∗) = ΦG(x∗) = 0. It follows that

(8.32) ΦF(x∗ + εz) = εΦDF(x∗)z + o(ε) and ΦG(x∗ + εz) = εΦDG(x∗)z + o(ε).

for all z ∈ TX. Since we can rewrite condition (8.31) as

(ei − e j)′G(x) ≥ 0 if and only if (ei − e j)′F(x) ≥ 0,

and since ei − e j ∈ TX, equation (8.32) implies that for all i, j ∈ S and z ∈ TX,

(8.33) (ei − e j)′ΦDG(x∗)z ≥ 0 if and only if (ei − e j)′ΦDF(x∗)z ≥ 0.

(This observation is trivial when z = 0, and when z , 0 it follows from the fact that the
linear terms dominate in (8.32) when ε is small.) By Proposition 3.B.6, condition (8.33) is
equivalent to the requirement that for all i, j ∈ S, there is a ci j > 0 such that

(8.34) (ei − e j)′ΦDG(x∗)Φ = ci j(ei − e j)′ΦDF(x∗)Φ.

Now write gi j = (ei − e j)′ΦDG(x∗)Φ and fi j = (ei − e j)′ΦDF(x∗)Φ. Since by assumption
ΦDF(x∗)Φ is an invertible map from TX to itself, so is its transpose (see Exercise 8.5.11
below). Therefore, when i, j, and k are distinct, the unique decomposition of fik as a linear
combination of fi j and f jk is as fi j + f jk. But equation (8.34) reveals that

ci j fi j + c jk f jk = gi j + g jk = gik = cik fik,

and so ci j = c jk = cik. This and the fact that ci j = c ji imply that ci j is independent of i and
j. So, since vectors of the form ei − e j span TX, we conclude from equation (8.34) that
ΦDG(x∗)Φ = c ΦDF(x∗)Φ, where c is the common value of the constants ci j. This completes
the proof of the lemma. �

We proceed with the proof of Theorem 8.5.9. Let V(x) = diag(x)F̂(x) and W(x) =
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diag(x)G(x) denote the replicator dynamic (R) and the dynamic (8.30), respectively. Since
W(x) ∈ TX, we have that 1′W(x) = x′G(x) = 0, and hence that Ĝ(x) ≡ G(x)− 1x′G(x) = G(x).
Thus (8.30) can be rewritten as W(x) = diag(x)Ĝ(x).

Now, repeating calculation (8.27) reveals that

DW(x) = Q(x)DG(x) − 1G(x)′ + diag(Ĝ(x)).

Since x∗ is an interior rest point of W, G(x∗) is a constant vector, and so

DW(x∗)Φ = Q(x∗)DG(x∗)Φ = Q(x∗)ΦDG(x∗)Φ,

where the second equality follows from the fact that Q(x∗)1 = 0. Similar reasoning for the
replicator dynamic V shows that

DV(x∗)Φ = Q(x∗)ΦDF(x∗)Φ

Lemma 8.5.10 tells us that ΦDG(x∗)Φ = cΦDF(x∗)Φ for some c > 0. We therefore conclude
from the previous two equations that if x∗ is a hyperbolic rest point under V and W, its
stability properties under the two dynamics are the same. �

Exercise 8.5.11. Suppose that A ∈ Rn×n defines an invertible map from Rn
0 to itself and

maps the vector 1 to the origin. Show that A′ must also have these properties. (Hint: Use
the Fundamental Theorem of Linear Algebra (8.41).)

Exercise 8.5.12. Extend the proof of Theorem 8.5.9 above to the case of boundary equilibria.
(Hint: Combine Lemma 8.5.10 with the proof of Theorem 8.5.6.)

8.6 Linearization of Perturbed Best Response Dynamics

Linearization is also a useful tool for studying perturbed best response dynamics, our
other main class of differentiable evolutionary dynamics.

8.6.1 Deterministically Perturbed Best Response Dynamics

In Chapter 6, we saw that perturbed best response dynamics can be defined in terms
of either stochastic or deterministic payoff perturbations. But Theorem 6.2.2 showed that
there is no loss of generality in focusing on the latter case, and so we will do so here.
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Our first result shows that a negative definiteness condition on the payoff derivative
is a sufficient condition for stability. The conclusion here is similar to that from Exercise
8.4.5, but the analysis is much simpler, and establishes not only asymptotic stability, but
also linear stability.

Theorem 8.6.1. Consider the perturbed best response dynamic for the pair (F, v), and let x̃ be
a perturbed equilibrium of this pair. If DF(x̃) is negative definite with respect to TX, then x̃ is
linearly stable.

Proof. (p = 1) In the single population case, the stochastically perturbed best response
dynamic takes the form

(8.35) ẋ = M̃(F(x)) − x,

where the perturbed maximizer function M̃ is defined in equation (6.12). By the chain
rule, the derivative of law of motion (8.35) is

(8.36) DV(x) = DM̃(F(x))DF(x) − I.

To determine the eigenvalues of the product DM̃(F(x))DF(x), let us recall the properties
of the derivative matrix DM̃(π) from Corollary 6.C.5: it is symmetric, positive definite on
Rn

0 , and satisfies DM̃(π)1 = 0. Since we have assumed that DF(x̃) is negative definite with
respect to Rn

0 , Hines’s Lemma implies that the eigenvalues of DM̃(F(x̃))DF(x̃) (as a map
from Rn

0 to itself) have negative real part. Subtracting the identity matrix I from the matrix
product reduces each of these eigenvalues by 1, so the theorem is proved. �

Exercise 8.6.2. Show that the conclusion of the theorem continues to hold if DF(x) is only
negative semidefinite with respect to TX. (Hint: See the discussion in Appendix 8.A.7.)

Exercise 8.6.3. Let x̃ be a perturbed equilibrium for (F, v). Let λ̄ be the largest eigenvalue
of DM̃(F(x̃)), and let s̄ be the largest singular value of ΦDF(x̃)Φ (see Section 8.A.6). Show
that if λ̄ s̄ < 1, then x̃ is linearly stable: that is, x̃ is stable whenever choice probabilities are
not too sensitive to changes in payoffs, or payoffs are not too sensitive to changes in the
state.

8.6.2 The Logit Dynamic

Imposing the additional structure provided by logit choice allows us to carry our local
stability analysis further. First, building on Theorem 8.4.6, we argue that any regular
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interior ESS must have a linearly stable logit(η) equilibrium nearby whenever the noise
level η is sufficiently small.

Corollary 8.6.4. Let x∗ int(X) be a regular Taylor ESS of F. Then for some neighborhood O of x∗

and all η > 0 less than some η̂ > 0, there is a unique and linearly stable logit(η) equilibrium x̃η in
O.

Proof. (p = 1) Theorem 8.4.6 tells us that for η small enough, the equilibrium x̃η exists
and is unique, and that limη→0 x̃η = x∗. Since x∗ is a regular interior ESS, DF(x∗) is negative
definite with respect to TX, so by continuity, DF(x̃η) is negative definite with respect to
TX for all η close enough to 0. The result therefore follows from Theorem 8.6.1. �

The derivative matrix for the logit dynamic takes an especially appealing form. Recall
from Exercise 6.2.7 that the derivative matrix of the logit(η) choice function is

(8.37) DM̃η(π) = η−1
(
diag(M̃η(π)) − M̃η(π)M̃η(π)′

)
= η−1Q(M̃η(π)).

Now by definition, the logit equilibrium x̃η satisfies M̃η(F(x̃η)) = x̃η. Substituting this fact
into equations (8.36) and (8.37) yields

(8.38) DVη(x̃η) = η−1Q(x̃η)DF(x̃η) − I.

To see the importance of this equation, recall from equation (8.28) that at interior rest
points, the derivative matrix for the replicator dynamic satisfies

(8.39) DV(x∗)Φ = Q(x∗)DF(x∗)Φ.

Together, equations (8.38) and (8.39) show that when evaluated at their respective rest
points and in the relevant tangent directions, the linearizations of the replicator and logit
dynamics at their interior rest points differ only by a positive affine transformation!

Example 8.6.5. To obtain the cleanest connections between the two dynamics, consider a
game that admits a Nash equilibrium x∗ = 1

n1 at the barycenter of the simplex. Then by
symmetry, x̃η = x∗ is also a logit(η) equilibrium for every η > 0. By the logic above, λ is
a relevant eigenvalue of (8.39) if and only if η−1λ − 1 is a relevant eigenvalue of (8.38). It
follows that if x∗ is linearly stable under the replicator dynamic, then it is also linearly
stable under the logit(η) dynamic for any η > 0. §

The foregoing discussion shows how analyses of local stability under the replicator
and logit dynamics can be closely linked. Pushing these arguments further, one can use
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equations (8.38) and (8.39) to connect the long run behaviors of the replicator and best
response dynamics starting from arbitrary initial conditions—see the Notes for further
discussion.

Appendix

8.A Matrix Analysis

In this section we review some basic ideas from matrix analysis. In doing so, we lay
the groundwork for our introduction to linear differential equations in Appendix 8.B; this
in turn underlies our introduction to local linearization of nonlinear differential equations
in Appendix 8.C. The techniques presented here are also used to perform the explicit
calculations that arise when using linearization to analyze evolutionary dynamics.

8.A.1 Rank and Invertibility

While in most of this section we focus on square matrices, we start by considering
matrices A ∈ Rm×n of arbitrary dimensions. The rank of A is the number of linearly
independent columns of A, or, equivalently, the dimension of its range. The nullspace (or
kernel) of A is the set of vectors that the matrix maps to the origin, and the dimension of
this set is called the nullity of A. The rank and nullity of a matrix must sum to its number
of columns:

dim(nullspace(A)) + dim(range(A)) = n;

dim(nullspace(A′)) + dim(range(A′)) = m.(8.40)

In Appendix 3.B.2, we introduced the Fundamental Theorem of Linear Algebra:

(8.41) range(A) = (nullspace(A′))⊥.

To derive a key implication of (8.41) for the ranks of matrices, first recall that any subspace
V ⊆ Rm satisfies dim(V) + dim(V⊥) = m. Letting V = nullspace(A′) and then combining
the result with equation (8.40), we obtain

dim(range(A′)) = dim((nullspace(A′)⊥).
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Therefore, (8.41) yields

dim(range(A′)) = dim(range(A)).

In words: every matrix has the same rank as its transpose.
From this point forward, we suppose that A ∈ Rn×n is a square matrix. We say that A

is invertible if it admits an inverse matrix A−1: that is, a matrix satisfying A−1A = I. Such a
matrix also satisfies AA−1 = I, and when an inverse matrix exists, it is unique. Invertible
matrices can be characterized in a variety of ways: for instance, a matrix is invertible if
and only if it has full rank (i.e., if A ∈ Rn×n has rank n); alternatively, a matrix is invertible
if and only if its determinant is nonzero.

8.A.2 Eigenvectors and Eigenvalues

Let A ∈ Rn×n, and suppose that

(8.42) Ax = λx

for some complex scalar λ ∈ C and some nonzero complex vector x ∈ Cn. Then we call λ
an eigenvalue of A, and x an eigenvector of A associated with λ; sometimes, the pair (λ, x) is
referred to as an eigenpair.

The eigenvector equation (8.42) can be rewritten as (λI − A)x = 0. This equation
can only be satisfied by a nonzero vector if (λI − A) is not invertible, or, equivalently, if
det(λI − A) = 0. It follows that λ is an eigenvalue of A if and only if λ is a root of the
characteristic polynomial det(tI − A).

Since det(tI − A) is a polynomial of degree n in t, the Fundamental Theorem of Algebra
ensures that it has n complex roots:

(8.43) det(tI − A) = (t − λ1) (t − λ2) . . . (t − λn).

To be sure to obtain n roots, we must “count multiplicities”: if the values of λi in the above
expression are not all distinct, the repeated values must be tallied each time they appear.
Evidently, each λi in (8.43) is an eigenvalue of A; if the value λ is repeated k times in (8.43),
we say that λ is an eigenvalue of A of (algebraic) multiplicity k.

We note in passing that that the sum and the product of the eigenvalues of A can be
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described very simply:

n∑
i=1

λi = tr(A);
n∏

i=1

λi = det(A).

(Here, the trace tr(A) of the matrix A is the sum of its diagonal elements.) To remember
these formulas, notice that they are trivially true if A is a diagonal matrix, since in this
case the eigenvalues of A are its diagonal entries.

Each eigenvalue of A corresponds to at least one eigenvector of A, and if an eigenvalue
λ is of algebraic multiplicity k, then there can be as many as k linearly independent
eigenvectors of A corresponding to this eigenvalue. This number of linearly independent
eigenvectors is called the geometric multiplicity of λ. The collection of all eigenvectors
corresponding to λ, the eigenspace of λ, is a subspace of Cn of dimension equal to the
geometric multiplicity of λ.

Example 8.A.1. Let a, b ∈ R be nonzero, and consider these three 2 × 2 matrices:

A =

a 0
0 a

 ; B =

a b
0 a

 ; C =

 a b
−b a

 .
The matrix A has just one eigenvalue, a, which therefore has algebraic multiplicity 2.

It also has geometric multiplicity 2, as its eigenspace is all of C2 = span({e1, e2}). (This
description of C2 relies on our allowing complex scalars when taking linear combinations
of e1 and e2.)

The matrix B also has a lone eigenvalue of a of algebraic multiplicity 2. But here the
geometric multiplicity of a is just 1, since its eigenspace is span({e1}).

The matrix C has no real eigenvalues or eigenvectors; however, it has complex eigen-
values a ± i b ∈ C corresponding to the complex eigenvectors e1 ± i e2 ∈ C2.

Let us explain for future reference the geometry of the linear map x 7→ Cx. By writing
r =
√

a2 + b2 and θ = cos−1( a
r ), we can express the matrix C as

C = r

 cos(θ) sin(θ)
− sin(θ) cos(θ)

 .
Computing Cx for various values of x (try x = e1 and x = e2), reveals that the map x 7→ Cx
first rotates the vector x around the origin clockwise by an angle of θ, and then rescales
the result by a factor of r. §
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8.A.3 Similarity, (Block) Diagonalization, and the Spectral Theorem

The matrix A ∈ Rn×n is similar to matrix B ∈ Rn×n if there exists an invertible matrix
S ∈ Cn×n, called a similarity matrix, such that

B = S−1AS.

When A is similar to B, the linear transformations x 7→ Ax and y 7→ By are equivalent up
to a linear change of variable. Similarity defines an equivalence relation on the set of n×n
matrices, and matrices that are similar have the same characteristic polynomial and the
same eigenvalues, counting either algebraic or geometric multiplicities.

If A is similar to a diagonal matrix D—that is, if A is diagonalizable—then the eigenvalues
of A are simply the diagonal elements of D. In this definition the similarity matrix
is allowed to be complex; if the similarity can be achieved via a real similarity matrix
S ∈ Rn×n, then the diagonal matrix D is also real, and we call A real diagonalizable.

It follows easily from our definitions that a matrix A is diagonalizable if and only if
the sum of the geometric multiplicities of the eigenvalues of A is n. Equivalently, A is
diagaonalizable if and only if each of its eigenvalues has equal algebraic and geometric
multiplicities. It is simple to verify that in this case, a similarity matrix S can be constructed
by choosing n linearly independent eigenvectors of A to be its columns.

It is especially convenient when similarity can be achieved using similarity matrix that
is itself of a simple form. The most important instance occurs when this matrix is an
orthogonal matrix, meaning that its columns form an orthonormal basis for Rn: each column
is of length 1, and distinct columns are orthogonal. (It would make more sense to call
such a matrix an “orthonormal matrix”, but the term “orthogonal matrix” is traditional.)

Orthogonal matrices can be characterized in a variety of ways:

Theorem 8.A.2. The following are equivalent:
(i) R is an orthogonal matrix.
(ii) RR′ = I.
(iii) R′ = R−1.
(iv) The map x 7→ Rx preserves lengths: |Rx| = |x| for all x ∈ Rn.
(v) The map x 7→ Rx preserves inner products: (Rx)′(Ry) = x′y for all x, y ∈ Rn;.
(vi) The map x 7→ Rx is a composition of rotations and reflections.

The last three items are summarized by saying that the linear transformation x 7→ Rx
defined by an orthogonal matrix R is a Euclidean isometry.

While showing that a matrix is similar to a diagonal matrix is quite useful, showing
similarity to a block diagonal matrix often serves just as well. We focus on block diagonal
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matrices with diagonal blocks of these two types:

J1 = (λ); J2 =

 a b
−b a

 .
For reasons that will become clear in Section 8.A.5, we call block diagonal matrices of this
form simple Jordan matrices. Calculations with simple Jordan matrices are often little more
difficult than those with diagonal matrices: for instance, multiplying such a matrix by
itself retains its block diagonal structure.

To muster these ideas, let us call the matrix A ∈ Rn×n normal if it commutes with itself:
that is, if A′A = AA′.

Theorem 8.A.3 (The Spectral Theorem for Real Normal Matrices). The matrix A ∈ Rn×n is
normal if and only if it is similar via an orthogonal matrix R to a simple Jordan matrix B = R−1AR.
The matrix B is unique up to the ordering of the diagonal blocks.

The spectral decomposition of A provides a full account of the eigenvalues and eigen-
vectors of A. Each J1 block (λ) contains a real eigenvalue of A, and the pair of complex
numbers a ± i b derived from each J2 block are complex eigenvalues of A. Moreover,
columns of the orthogonal similarity matrix R either are real eigenvectors of A, or are real
and imaginary parts of complex eigenvectors of A.

The spectral theorem tells us that if A is normal, the behavior of the linear map
x 7→ Ax = RBR−1x can be decomposed into three simple steps. First, one applies the
orthogonal transformation R−1 = R′ to x, obtaining y = R′x. Second, one applies the block
diagonal matrix B to y: each J1 block rescales a component of y, while each J2 block rotates
and rescales a pair of components of y (cf Example 8.A.1). Third, one applies R to BR′x to
undo the initial orthogonal transformation.

Additional restrictions on the J1 and J2 blocks yield characterizations of important
subclasses of the normal matrices.

Corollary 8.A.4. (i) The matrix A ∈ Rn×n is symmetric (A′ = A) if and only if it is similar
via an orthogonal matrix R to a simple Jordan matrix containing only J1 blocks. Thus, the
symmetric matrices are the normal matrices with real eigenvalues.

(ii) The matrix A ∈ Rn×n is skew-symmetric (A′ = −A) if and only if it is similar via an
orthogonal matrix R to a simple Jordan matrix whose J1 blocks all have λ = 0 and whose
J2 blocks all have a = 0. Thus, the skew-symmetric matrices are the normal matrices with
purely imaginary eigenvalues.

(iii) The matrix A ∈ Rn×n is orthogonal (A′ = A−1) if and only if if it is similar via an
orthogonal matrix R to a simple Jordan matrix whose J1 blocks all have λ2 = 1 and whose
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J2 blocks all have a2 + b2 = 1. Thus, the orthogonal matrices are the normal matrices whose
eigenvalues have modulus 1.

8.A.4 Symmetric Matrices

Which matrices are real diagonalizable by an orthogonal matrix? The spectral theorem
for symmetric matrices tells us that A is real diagonalizable by an orthogonal matrix if and
only if it is symmetric. (This is just a restatement of Corollary 8.A.4.) Among other things,
the spectral theorem implies that the eigenvalues of a symmetric matrix are real.

While we often associate a matrix A with the linear transformation x 7→ Ax, a symmetric
matrix is naturally associated with a quadratic form, x 7→ x′Ax. In fact, the eigenvalues
of a symmetric matrix can be characterized in terms of its quadratic form. The Rayleigh-
Ritz Theorem provides simple descriptions of the λ and λ, the maximal and minimal
eigenvalues of A:

λ = max
x∈Rn: |x|=1

x′Ax; λ = min
x∈Rn: |x|=1

x′Ax.

The Courant-Fischer Theorem shows how the remaining eigenvalues of A can be expressed
in terms of a related sequence of minmax problems.

We say that the matrices A,B ∈ Rn×n are congruent if there is an invertible matrix
Q ∈ Rn×n such that

B = QAQ′.

Congruence plays the same role for quadratic forms as similarity does for linear transfor-
mations: if two symmetric matrices are congruent, they define the same quadratic form up
to a linear change of variable. Like similarity, congruence defines an equivalence relation
on the set of n × n matrices. Lastly, note that two symmetric matrices that are similar by
an orthogonal matrix Q are also congruent, since in this case Q′ = Q−1.

The eigenvalues of congruent symmetric matrices are closely linked. Define the inertia
of a symmetric matrix to be the ordered triple consisting of the numbers of positive, neg-
ative, and zero eigenvalues of the matrix. Sylvester’s Law of Inertia tells us that congruent
symmetric matrices have the same inertia. Ostrowski’s Theorem provides a quantitative
extension of this result: if we list the eigenvalues of A and the eigenvalues of B in increas-
ing order, then the ratios between pairs of corresponding eigenvalues are bounded by the
minimal and maximal eigenvalues of Q′Q.
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8.A.5 The Real Jordan Canonical Form

How can we tell if two matrices are similar? If the matrices are diagonalizable, then one
can check for similarity by diagonalizing the two matrices and seeing whether the same
diagonal matrix is obtained in each case. To apply this logic beyond the diagonalizable
case, we would need to find a simple class of matrices with the property that every matrix
is similar to a unique representative from this class. Such a class of matrices would also
provide a powerful computational aid, since calculations involving arbitrary matrices
could be reduced by similarity to calculations with these simple matrices.

With this motivation, we define a real Jordan matrix to be a block diagonal matrix whose
diagonal blocks, known as Jordan blocks, are of these four types:

J1 = (λ); J2 =

 a b
−b a

 ; J3 =



λ 1 0 0 0
0 λ 1 0 0
...
. . . . . . . . .

...

0 0 0 λ 1
0 0 0 0 λ


; J4 =



J2 I 0 0 0
0 J2 I 0 0
...

. . . . . . . . .
...

0 0 0 J2 I
0 0 0 0 J2


.

Theorem 8.A.5. Every matrix A ∈ Rn×n is similar via a real similarity matrix S to a real Jordan
matrix J = S−1AS. The latter matrix is unique up to the ordering of the Jordan blocks.

The real Jordan matrix in the statement of the theorem is called the real Jordan canonical
form of A.

The blocks in the real Jordan form of A provide detailed information about the eigen-
values of A: each J1 block corresponds to a real eigenvalue λ; each J2 block corresponds to
a pair of complex eigenvalues a ± i b; each J3 block corresponds to a real eigenvalue with
less than full geometric multiplicity; and each J4 block corresponds to a pair of complex
eigenvalues with less than full geometric multiplicities. (We can say more if each Jordan
block represents a distinct eigenvalue: then each eigenvalue has geometric multiplicity 1;
the J1 and J2 blocks correspond to eigenvalues whose algebraic multiplicities are also 1;
and the J3 and J4 blocks correspond to eigenvalues with higher algebraic multiplicities,
with these multiplicities being given by the number of appearances of λ (in a J3 block) or
of J2 blocks (in a J4 block).)

Example 8.A.6. Suppose that A ∈ R2×2 has complex eigenvalues a ± i b with complex
eigenvectors v ± i w. Then A(v + i w) = (a + i b)(v + i w). Equating the real and imaginary

298



parts of this equation yields

A
(
v w

)
=

(
v w

)  a b
−b a

 .
Premultiplying by ( v w )−1 reveals that the real Jordan form of A is a single J2 block. §

Example 8.A.7. Suppose that A ∈ R2×2 has a lone eigenvalue, λ ∈ R, which is of algebraic
multiplicity 2 but geometric multiplicity 1. Let x ∈ R2 be an eigenvector of A, so that
(A − λI)x = 0. It can be shown that there exists a vector y that is linearly independent of
x and that satisfies (A − λI)y = x. (Such a vector (and, more generally, vectors that satisfy
higher iterates of this equation) is called a generalized eigenvector of A.) Rewriting the two
equations above, we obtain

A
(
x y

)
=

(
λx x + λy

)
=

(
x y

) λ 1
0 λ

 .
Premultiplying the first and last expressions by ( x y )−1 shows that A has a real Jordan
form consisting of a single J3 block. §

8.A.6 The Spectral Norm and Singular Values

It is often useful to be able to place bounds on the amount of “expansion” generated
by a linear map x 7→ Ax, or by a composite linear map x 7→ Bx 7→ ABx. One can obtain
such bounds by introducing the spectral norm of a matrix A ∈ Rn×n, defined by

‖A‖ = max
x: |x|=1

|Ax| .

(As always in this book, |x| denotes the Euclidean norm of the vector x.) It is not difficult
to check that the spectral norm is submultiplicative, in the following two senses:

|Ax| ≤ ‖A‖ |x| ; and

‖AB‖ ≤ ‖A‖ ‖B‖ .

These inequalities often work hand in hand with the Cauchy-Schwarz inequality, which
expresses the submultiplicativity of inner products of vectors:∣∣∣x′y∣∣∣ ≤ |x| ∣∣∣y∣∣∣ .
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To compute the spectral norm of a matrix, it is best to describe it in a different way. The
product A′A generated by any matrix A is symmetric. It therefore has n real eigenvalues
(see Section 8.A.4), and it can be shown that these eigenvalues are nonnegative. The
square roots of the eigenvalues of A′A are called the singular values of A.

One can show that the spectral norm of A equals the largest singular value of A:

‖A‖ = max
{√
λ : λ is an eigenvalue of A′A

}
.

It makes no difference here if we replace A′A with AA′, since for any A,B ∈ Rn×n, AB and
BA have the same eigenvalues.

The notion of a singular value also underpins the singular value decomposition

Theorem 8.A.8. Every matrix A ∈ Rn×n can be expressed as A = VΣW′, where V and W are
orthogonal matrices, and where Σ is a diagonal matrix whose diagonal entries are the singular
values of A.

In this decomposition, the columns of V are eigenvectors of AA′, and the columns of W
are eigenvectors of A′A.

8.A.7 Hines’s Lemma

In Section 8.5, we introduced Hines’s Lemma:

Lemma 8.5.1. Suppose that Q ∈ Rn×n is symmetric, satisfies Q1 = 0, and is positive definite
with respect to Rn

0 , and that A ∈ Rn×n is negative definite with respect to Rn
0 . Then each eigenvalue

of the linear map QA : Rn
0 → Rn

0 has negative real part.

If we ignored the complications caused by the fact that our dynamics are restricted to the
simplex, Lemma 8.5.1 would reduce to

Lemma 8.A.9. If Q is symmetric positive definite and A is negative definite, then the eigenvalues
of QA have negative real parts.

The proof of Lemma 8.A.9 is a simpler version of the proof below.
The argument below can also be used when other definiteness conditions are imposed

on A. In particular, if A is only negative semidefinite with respect to Rn
0 , then the relevant

eigenvalues of QA have nonpositive real parts, and if A is positive definite with respect
to Rn

0 , the relevant eigenvalues of QA have positive real part.
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Proof of Lemma 8.5.1. Since Q is positive definite with respect to Rn
0 , since Q1 = 0, and

since Rn = Rn
0 ⊕ span({1}), we have that nullspace(Q) = span({1}). Thus, because Q is

symmetric, the Fundamental Theorem of Linear Algebra (8.41) tells us that

range(Q) = (nullspace(Q′))⊥ = (nullspace(Q))⊥ = (span({1}))⊥ = Rn
0 .

In other words, Q maps Rn
0 onto itself, and so is invertible on this space.

Now suppose that

(8.44) QA(v + iw) = (a + ib)(v + iw)

for some v,w ∈ Rn
0 with v + iw , 0 and some a, b in R. Since Q is invertible on Rn

0 , there
exist y, z ∈ Rn

0 , at least one of which is not 0, such that Qy = v and Qz = w. We can thus
rewrite equation (8.44) as

QA(v + iw) = (a + ib)Q(y + iz).

Since Q is invertible on Rn
0 , this implies that

A(v + iw) = (a + ib)(y + iz).

Premultiplying by (v − iw)′ = (Q(y − iz))′ yields

(v − iw)′A(v + iw) = (a + ib)(y − iz)′Q(y + iz).

Equating the real parts of each side yields

v′Av + w′Aw = a(y′Qy + z′Qz).

Since Q is positive definite with respect to Rn
0 and A is negative definite with respect to

Rn
0 , we conclude that a < 0. �

8.B Linear Differential Equations

The simplest ordinary differential equations on Rn are linear differential equations:

(L) ẋ = Ax,
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where A ∈ Rn×n. Although our main interest in this book is in nonlinear differential
equations, linear differential equations are still very important to us: as we explain in
Section 8.C, the behavior of a nonlinear equation in the neighborhood of a rest point is
often well appproximated by the behavior of linear equation in a neighborhood of the
origin.

8.B.1 Examples

Example 8.B.1. Linear dynamics on the line. In the one-dimensional case, equation (L)
becomes ẋ = ax. We described the solution to this equation from initial condition x0 = ξ

in Example 4.A.1: they are of the form xt = ξ exp(at). Thus, if a , 0, the equation has its
unique rest point at the origin. If a > 0, all solutions other than the stationary one move
away from the origin, while if a < 0, all solutions converge to the origin. §

One can always apply a linear change of variable to (L) to reduce it to a simpler form.
In particular, if B = SAS−1 is similar to A, let y = Sx; then since ẏ = Sẋ, we can rewrite (L)
as S−1 ẏ = AS−1y, and hence as ẏ = By. It follows from this observation and from Theorem
8.A.5 that to understand linear differential equations, it is enough to understand linear
differential equations defined by real Jordan matrices.

Example 8.B.2. Linear dynamics on the plane. There are three generic types of 2× 2 matrices:
diagonalizable matrices with two real eigenvalues, diagonalizable matrices with two
complex eigenvalues, and nondiagonlizable matrices with a single real eigenvalue. The
corresponding real Jordan forms are a diagonal matrix (which contains two J1 blocks), a
J2 matrix, and a J3 matrix, respectively. We therefore consider linear differential equations
based on these three types of real Jordan matrices.

When A is diagonal, the linear equation (L) and its solution from initial condition
x0 = ξ are of the following form:

ẋ = Ax =

λ 0
0 µ

 x1

x2

 ; xt =

ξ1eλt

ξ2eµt

 .
The phase diagrams in Figure 8.B.1 show that the behavior of this dynamic depends on
the values of the eigenvalues λ and µ: if both are negative, the origin is a stable node, if
their signs differ, the origin is a saddle, and if both are positive, the origin is an unstable
node.

Now suppose that A is the real Jordan form of a matrix with complex eigenvalues
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(i) stable node (µ < λ < 0) (ii) saddle (µ > 0 > λ) (iii) unstable node (µ > λ > 0)

Figure 8.B.1: Linear dynamics on the plane: two real eigenvalues λ, µ.

(i) stable spiral (a < 0) (ii) center (a = 0) (iii) unstable spiral (a > 0)

Figure 8.B.2: Linear dynamics on the plane: complex eigenvalues a ± i b, b < 0.

a ± i b. Then we have

ẋ = Ax =

 a b
−b a

 x1

x2

 ; xt =

 ξ1eat cos bt + ξ2eat sin bt
−ξ1eat sin bt + ξ2eat cos bt

 .
Phase diagrams for this equation are presented in Figure 8.B.2. Evidently, the stability of
the origin is determined by the real part of the eigenvalues: if a < 0, the origin is a stable
spiral, while if a > 0, the origin is an unstable spiral. In the nongeneric case where a = 0,
the origin is a center, with each solution following a closed orbit around the origin. The
value of b determines the orientation of the cycles. The diagrams in Figure 8.B.2 use b < 0,
which causes solutions to cycle counterclockwise; had we chosen b > 0, these orientations
would have been reversed.
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(i) stable improper node (λ < 0) (ii) unstable improper node (λ > 0)

Figure 8.B.3: Linear dynamics on the plane: A not diagonalizable, one real eigenvalue λ.

Finally, suppose that A is the real Jordan form of a nondiagonalizable matrix with lone
eigenvalue λ. Then we obtain

ẋ = Ax =

λ 1
0 λ

 x1

x2

 ; xt =

ξ1eλt + ξ2teλt

ξ1eλt

 .
The phase diagrams in Figure 8.B.3 reveal the origin to be an improper (or degenerate) node.
It is stable if the eigenvalue λ is negative and unstable if λ is positive. §

8.B.2 Solutions

The Picard-Lindelöf Theorem (Theorem 4.A.2) implies that for any matrix A ∈ Rn×n

there is a unique solution to the linear equation (L) starting from each initial condition
ξ ∈ Rn. While solutions of nonlinear differential equations generally cannot be expressed
in closed form, the solutions to linear equations can always be described explicitly. In the
planar case, Example 8.B.2 provided explicit formulas when A is a Jordan matrix, and the
solutions for other matrices can be obtained through a change of variable. Similar logic
can be employed in the general case, yielding the following result:

Theorem 8.B.3. Let {xt}t∈(−∞,∞) be the solution to (L) from initial condition x0. Then each
coordinate of xt is a linear combination of terms of the form tkeat cos(bt) and tkeat sin(bt), where
a+ i b ∈ C is an eigenvalue of A and k ∈ Z+ is less than the algebraic multiplicity of this eigenvalue.

For analytic purposes, it is often convenient to express solutions of the linear equation
(L) in terms of matrix exponentials. Given a matrix A ∈ Rn×n, we define eA

∈ Rn×n by
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applying the series definition of the exponential function to the matrix A: that is,

(8.45) eA =

∞∑
k=0

Ak

k!
,

where Ak denotes the kth power of A and A0
≡ I is the identity matrix.

Recall that the flow φ : (−∞,∞) × Rn
→ Rn generated by (L) is defined by φt(ξ) = xt,

where {xt}t∈(−∞,∞) is the solution to (L) with initial condition x0 = ξ. Theorem 8.B.4 provides
a concise expression for solutions to (L) in terms of matrix exponentials.

Theorem 8.B.4. The flow of (L) is φt(ξ) = eAtξ.

A benefit of representing solutions to (L) in this way is that properties established for
matrix exponentials can be given immediate interpretations in terms of solutions to (L).
For examples, consider these properties:

Proposition 8.B.5.

(i) If A and B commute, then eA+B = eBeA.
(ii) If B = S−1AS, then eB = S−1eAS.
(iii) e(A′) = (eA)′.

Applying part (i) of the proposition to matrices As and At yields the group property of
the flow of (L): φs+t(ξ) = φt(φs(ξ)). Part (ii) shows that linear flows generated by similar
matrices are linearly conjugate (i.e., that they are equivalent up to a linear change of
variables), as we discussed before Example 8.B.2. Applying parts (iii) and (i) to At when
A is skew-symmetric shows that in this case, eAt is an orthogonal matrix: thus, for each
fixed time t, the map ξ 7→ φt(ξ) is a Euclidean isometry (cf Figure 8.B.2(ii)).

8.B.3 Stability and Hyperbolicity

Theorem 8.B.3 shows in generic cases, the stability of the origin under the linear
equation (L) is determined by the eigenvalues {a1 + i b1, . . . , an + i bn} of A: more precisely,
by the real parts ai of these eigenvalues. If each ai is negative, then all solutions to (L)
converge to the origin; in this case, the origin is called a sink, and the flow φt(x) = eAtx is
called a contraction. If instead each ai is positive, then all solutions besides the stationary
solution at the origin move away from the origin; in this case, the origin is called a source,
and the flow of (L) is called an expansion.

When the origin is a sink, solutions to (L) converge to the origin at an exponential
rate. Define a norm on Rn by ‖x‖ = |S−1x|, where S is the similarity matrix from the Jordan
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decomposition J = S−1AS of A. Then for any a > 0 satisfying a < |ai| for all i ∈ {1, . . .n}, the
flow φ of (L) satisfies

0 is a sink ⇔
∥∥∥φt(ξ)

∥∥∥ ≤ e−at
‖ξ‖ for all t ≥ 0 and all ξ ∈ Rn.

A similar statement in terms of the Euclidean norm holds if one introduces an appropriate
multiplicative constant C = C(a) ≥ 1:

(8.46) 0 is a sink ⇔
∣∣∣φt(ξ)

∣∣∣ ≤ Ce−at
|ξ| for all t ≥ 0 and all ξ ∈ Rn.

If the origin is the source, analogous statements hold if time is run backward: for instance,

(8.47) 0 is a source ⇔
∣∣∣φt(ξ)

∣∣∣ ≤ Ce−a|t|
|ξ| for all t ≤ 0 and all ξ ∈ Rn.

More generally, the flow of (L) may be contracting in some directions and expanding
in others. In the generic case in which each real part ai of an eigenvalue of A is nonzero,
the differential equation ẋ = Ax, its rest point at the origin, and its flow φt(x) = eAtx are all
said to be hyperbolic. Hyperbolic linear flows come in three varieties: contractions (if all
ai are negative), expansions (if all ai are positive), and saddles (if there is at least one ai of
each sign). If a flow is hyperbolic, then the origin is globally asymptotically stable if it is
a sink, and it is unstable otherwise.

If (L) is hyperbolic, then A has k eigenvalues with negative real part (counting algebraic
multiplicities) and n − k eigenvalues with positive real part. In this case, we can view
Rn = Es

⊕Eu as the direct sum of subspaces of dimensions dim(Es) = k and dim(Eu) = n−k,
where the stable subspace Es contains all solutions of (L) that converge to the origin at an
exponential rate (as in (8.46)), while the unstable subspace Eu contains all solutions of (L)
that converge to the origin at an exponential rate if time is run backward (as in (8.47)).

If A is real diagonalizable, then it follows easily from Theorem 8.B.3 that Es and Eu are
the spans of the eigenvectors of A corresponding to the negative and positive eigenvalues
of A, respectively. More generally, Es and Eu can be computed by way of the real Jordan
form J = S−1AS of A. Arrange S and J so that the Jordan blocks of J corresponding to
eigenvalues of A with negative real parts appear in the first k rows and columns, while
the blocks corresponding to eigenvalues with positive real parts appear in the remaining
n− k rows and columns. Then Es is the span of the first k columns of the similarity matrix
S, and Eu is the span of the remaining n − k columns of S. (The columns of S are the real
and imaginary parts of the so-called generalized eigenvectors of A—see Example 8.A.7.)
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8.C Linearization of Nonlinear Differential Equations

Virtually all of the differential equations we study in this book are nonlinear. Never-
theless, when studying the behavior of nonlinear equations in the neighborhood of a rest
point, the theory of linear equations takes on a central role.

Consider the C1 differential equation

(D) ẋ = V(x)

with rest point x∗. By the definition of the derivative, we can approximate the value of V
in the neighborhood of x∗ via

V(y) = 0 + DV(x∗)(y − x∗) + o(
∣∣∣y − x∗

∣∣∣).
This suggests that the behavior of the dynamic (D) near x∗ can be approximated by the
behavior near the origin of the linear equation

(L) ẏ = DV(x∗)y.

To make this idea precise, we must introduce the notion of topological conjugacy of
flows. To begin, let X and Y be subsets of Rn. Then the function h : X→ Y is homeomorphism
if it is bijective (i.e., one-to-one and onto) and continuous with a continuous inverse.

Now let I be an interval containing 0, and let φ : I × X → X and ψ : I × Y → Y
be two flows. We say that φ and ψ are topologically conjugate on X and Y if there is a
homeomorphism h : X → Y such that φt(x0) = h−1

◦ ψt ◦ h (x0) for all times t ∈ I. In other
words, φ and ψ are topologically conjugate if there is a continuous map with continuous
inverse that sends trajectories of φ to trajectories of ψ (and vice versa), preserving the rate
of passage of time. Therefore, to find φt(x0), the position at time t under flow φ when
the initial state is x0 ∈ X, one can apply h : X → Y to x0 to obtain the transformed initial
condition y0 = h(x0) ∈ Y, then run the flow ψ from y0 for t time units, and finally apply h−1

to the result. We summarize this construction in the diagram below:

x0
h

−−−−→ h(x0)

φt

y yψt

φt(x0) ←−−−−
h−1

ψt(h(x0))

The use of linearization to study the behavior of nonlinear differential equations around
fixed points is justified by the Hartman-Grobman Theorem.
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Theorem 8.C.1 (The Hartman-Grobman Theorem). Letφ andψ be the flows of the C1 equation
(D) and the linear equation (L), where x∗ is a hyperbolic rest point of (D). Then there exist
neighborhoods Ox∗ of x∗ and O0 of the origin 0 on which φ and ψ are topologically conjugate.

Combining the Hartman-Grobman Theorem with our analysis in Section 8.B.3 provides a
simple characterization of the stability of hyperbolic rest points of (D).

Corollary 8.C.2. Let x∗ be a hyperbolic rest point of (D). Then x∗ is asymptotically stable if all
eigenvalues of DV(x∗) have strictly negative real parts, and x∗ is unstable otherwise.

By virtue of these results, we say that x∗ is linearly stable if the eigenvalues of DV(x∗) all
have negative real part. While the Hartman-Grobman Theorem implies that a linearly
stable rest point is asymptotically stable, it can be shown further that solutions starting
near a linearly stable rest point converge to it at an exponential rate, as in equation (8.46).

We say that x∗ is linearly unstable if DV(x∗) has at least one eigenvalue with positive
real part. (We do not require x∗ to be hyperbolic.) It can be shown that as long as one
eigenvalue of DV(x∗) has positive real part, most solutions of (D) will move away from x∗

at an exponential rate.
While the topological conjugacy established in Theorem 8.C.1 is sufficient for local

stability analysis, one should understand that topological conjugacy need not preserve
the geometry of a flow. The following result for linear equations makes this point clear.

Theorem 8.C.3. Let ẋ = Ax and ẏ = By be hyperbolic linear differential equations on Rn with
flows φ and ψ. If A and B have the same numbers of eigenvalues with negative real part (counting
algebraic multiplicities), then φ and ψ are topologically conjugate throughout Rn.

Looking back at Example 8.B.2, we see that the phase diagrams of stable nodes (Figure
8.B.1(i)), stable spirals (Figure 8.B.2(i)), and stable improper nodes (Figure 8.B.3(i)) have
very different appearances. Nevertheless, Theorem 8.C.3 reveals that the flows described
in these figures are topologically conjugate—that is, they can be continuously transformed
into one another! To ensure that the geometry of phase diagrams is preserved, one needs
not only topological conjugacy, but rather differentiable conjugacy: that is, conjugacy under
a diffeomorphism (a differentiable transformation with differentiable inverse). As it turns
out, it is possible to establish a local differentiable conjugacy between (D) near x∗ and (L)
near 0 if V is sufficiently smooth, and if the eigenvalues of DV(x∗) are distinct and satisfy
a mild nonresonance condition (see the Notes).

Much additional information about the flow of (D) can be surmised from the derivative
matrix DV(x∗) at a hyperbolic rest point x∗. Suppose that DV(x∗) has k eigenvalues
with negative real part and n − k eigenvalues with positive real part, counting algebraic
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multiplicities. The Stable Manifold Theorem tells us that within some neighborhood of x∗,
there is k dimensional local stable manifold Ms

loc on which solutions converge to x∗ at an
exponential rate (as in (8.46)), and an n−k dimensional local unstable manifold Mu

loc on which
solutions converge to x∗ at an exponential rate if time is run backward (as in (8.47)).

Moreover, both of these manifolds can be extended globally: the k dimensional (global)
stable manifold Ms includes all solutions of (D) that converge to x∗, while the n − k dimen-
sional (global) unstable manifold Mu includes all solutions that converge to x∗ as time runs
backward. Among other implications of the existence of these manifolds, it follows that if
x∗ is hyperbolic and unstable, then the set Ms of states from which solutions converge to
x∗ is of measure zero, while the complement of this set is open, dense, and of full measure.

8.N Notes

Section 8.1: Theorem 8.1.1 is established by Bomze (1986) for the replicator dynamic
and by Nachbar (1990) for general imitative dynamics; see also Weibull (1995).

Section 8.2: This section follows Sandholm (2001). Bomze (2002) provides an exhaus-
tive treatment of local stability under the replicator dynamic for single-population linear
potential games (which are generated by random matching in common interest games),
and the connections between this stability analysis and quadratic programming.

Section 8.3: The notion of an evolutionarily stable strategy was introduced by Maynard
Smith and Price (1973). The distinction between evolutionarily stable strategies and
evolutionarily stable states is emphasized by Thomas (1984). General references on ESS
theory include the survey of Hines (1987) and the monographs of Bomze and Pötscher
(1989) and Cressman (1992).

Most early work on evolutionarily stable strategies considers the single-population
random matching model. The original ESS definition of Maynard Smith and Price (1973)
(see also Maynard Smith (1974)) is via conditions (8.7) and (8.9). The characterizations
of ESS in terms of invasion barriers (8.6) and invasion of nearby states (8.2) in this linear
setting are due to Taylor and Jonker (1978) and Hofbauer et al. (1979), respectively. That
invasion barriers are uniform in this setting (Exercise 8.3.3(ii)) is pointed out explicitly by
Vickers and Cannings (1987); see also Bomze (1986), Zeeman (1980), and Hofbauer and
Sigmund (1988).

Turning now to single-population games with nonlinear payoffs, Theorem 8.3.5 is
announced in Pohley and Thomas (1983), where a state satisfying condition (8.2) is called
a “local ESS”. The theorem is proved in Thomas (1985), and our proof in the text is a
streamlined version of Thomas’s (1985) proof. Theorem 8.3.1 is due to Bomze (1991),
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who calls a a state satisfying our ESS condition (8.2) “strongly uninvadable”, and a state
satisfying the uniform invasion barrier condition (8.4) “uninvadable”; see also Bomze and
Weibull (1995). Exercise 8.3.3(ii) is Example 18 of Bomze and Pötscher (1989).

Definition (8.16) of Taylor ESS is introduced by Taylor (1979); also see Schuster et al.
(1981a). Exercise 8.3.8 is essentially due to Selten (1980); see also van Damme (1991) and
Swinkels (1992).

Definition (8.17) of Cresssman ESS is due to Cressman (1992, 1995, 1996, 2006) and
Cressman et al. (2001), who refer to it as monomorphic ESS and as p-species ESS. To show that
this definition is the heir of the single-population ESS of Maynard Smith and Price (1973),
these papers study a collection of p-dimensional replicator systems, with one system for
each strategy profile y = (y1, . . . , yp) other than the candidate for stability, x = (x1, . . . , xp).
The pth component of the state variable in the p-dimensional system describes the fraction
of the pth species using mixed strategy yp; the remainder of the species uses the incumbent
mixed strategy xp. Results in Cressman et al. (2001) and Cressman (2006) imply that the
origin (i.e., the state at which all members of each species p choose mixed strategy xp) is
asymptotically stable in each such system if and only if x satisfies condition (8.17). (To
see this, use equations (1) and (6) in Cressman et al. (2001) to show that the B-matrix
conditions appearing in Theorems 3 and 5 of that paper are equivalent to condition (8.17)
here.) Interestingly, Cressman (1992) shows that in two-population linear games, any
Cressman ESS is asymptotically stable under the replicator dynamic, but that this is not
true in games played by more than two populations.

The notion of regular ESS is introduced in a single-population setting by Taylor and
Jonker (1978), who prove that a regular ESS is asympotically stable under the replicator
dynamic. Taylor (1979) extends this notion to the multi-population case, and observes
that the stability result for the replicator dynamic extends to this setting.

Thomas (1985), Swinkels (1992), Balkenborg and Schlag (2001), and Cressman (2003)
consider set-valued generalizations of the ESS concept, which are particularly useful in
the context of random matching in extensive form games.

Section 8.4: Theorem 8.4.1(i) on the local stability of ESS under the replicator dynamic
is one of the earliest results on evolutionary game dynamics; see Taylor and Jonker (1978),
Taylor (1979), Hofbauer et al. (1979), Zeeman (1980), and Schuster et al. (1981a). Theorem
8.4.1(ii) follows easily from results of Nagurney and Zhang (1997); see also Sandholm
et al. (2008). The results in Section 8.4.2 are extensions of ones from Hofbauer and
Sandholm (2008). For the Theorem of the Maximum, see Ok (2007). Theorem 8.4.7 is due
to Sandholm (2008c). Hofbauer (1995b) establishes the asymptotic stability of ESS under
the best response dynamic in a single population random matching using a different
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construction than the one presented here.
Section 8.5: Lemma 8.5.1 is due to Hines (1980); see also Hofbauer and Sigmund (1988),

Hopkins (1999), and Sandholm (2007a). Versions of Theorems 8.5.2 and 8.5.6 can be
found in Taylor and Jonker (1978), Taylor (1979), Hines (1980), and Cressman (1992, 1997).
Example 8.5.5 is taken from Zeeman (1980). Theorem 8.5.9 is due to Cressman (1997).

Section 8.6: Linearization of perturbed best response dynamics is studied by Hop-
kins (1999, 2002), Hofbauer (2000), Hofbauer and Sandholm (2002, 2007), Hofbauer and
Hopkins (2005), and Sandholm (2007a). Exercise 8.6.3 is used in Sandholm (2007a) to
show that Nash equilibria of normal form games can always be purified (in the sense
of Harsanyi (1973)) in an evolutionarily stable fashion through an appropriate choice of
payoff noise. See Ellison and Fudenberg (2000) and Ely and Sandholm (2005) for related
results. Example 8.6.5 is due to Hopkins (1999). Hopkins (2002) uses this result to show
that the replicator dynamic closely approximates the evolution of choice probabilities un-
der stochastic fictitious play. Hofbauer et al. (2007) use similar ideas to establish an exact
relationship between the long run time averaged behavior of the replicator dynamic and
the long run behavior of the best response dynamic.

Appendix 8.A: Horn and Johnson (1985) is an outstanding general reference on matrix
analysis. Many of the results we described are also presented in Hirsch and Smale (1974).

Appendix 8.B: Both Hirsch and Smale (1974) and Robinson (1995) provide thorough
treatments of linear differential equations at the undergraduate and graduate levels, re-
spectively.

Appendix 8.C: Robinson (1995) is an excellent reference on dynamical systems in general
and on linearization in particular. For more on differentiable conjugacy around rest points,
see Hartman (1964).
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CHAPTER

NINE

Nonconvergence of Evolutionary Dynamics

9.0 Introduction

We began our study of the global behavior of evolutionary dynamics in Chapter 7,
focusing on combinations of games and dynamics generating global or almost global con-
vergence to equilibrium. The analysis there demonstrated that global payoff structure—in
particular, the structure captured in the definitions of potential, stable, and supermodular
games—makes compelling evolutionary justifications of the Nash prediction possible.

On the other hand, once we move beyond these classes of well-behaved games, it is not
clear how often convergence will occur. The present chapter counterbalances Chapter 7 by
investigating nonconvergence of evolutionary dynamics for games, describing a variety
of environments in which cycling or chaos offer the best predictions of long run behavior.

Section 9.1 leads with a study of conservative properties of evolutionary dynamics,
focusing on the existence of constants of motion and on the preservation of volume under
the replicator and projection dynamics. Section 9.2 continues with a panoply of exam-
ples of nonconvergence. Among other things, this section offers games in which no
reasonable evolutionary dynamic converges to equilibrium, demonstrating that no evolu-
tionary dynamic can provide a blanket justification for the prediction of Nash equilibrium
play. Section 9.3 proceeds by offering examples of chaotic evolutionary dynamics—that
is, dynamics exhibiting complicated attracting sets and sensitive dependence on initial
conditions.

The possibility of nonconvergence has surprising implications for evolutionary sup-
port of traditional solution concepts. Under dynamics that satisfy Nash stationarity (NS),
solution trajectories that converge necessarily converge to Nash equilibria. But since no
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reasonable evolutionary dynamic converges in all games, general support for standard
solution concepts is not assured.

Since the Nash prediction is not always supported by an evolutionary analysis, it is
natural to turn to a less demanding notion—namely, the elimination of strategies that
are strictly dominated by a pure strategy. As this requirement is the mildest employed in
standard game theoretic analyses, it is natural to expect to find support for this requirement
via an evolutionary approach.

In Section 9.4, we present the striking finding that evolutionary dynamics satisfying
four mild conditions—continuity, Nash stationarity, positive correlation, and innovation—
do not eliminate strictly dominated strategies in all games. Moreover, while we saw
in Chapter 7 that imitative dynamics and the best response dynamic eliminate strictly
dominated strategies, we show here that small perturbations of these dynamics do not.
This analysis demonstrates that evolutionary dynamics provide surprisingly little support
for a basic rationality criterion.

As always, the appendices provide the mathematical background necessary for our
analysis. Appendix 9.A describes some classical theorems on nonconvergence used
throughout the chapter. Appendix 9.B introduces the notion of an attractor of a dy-
namic, and establishes the continuity properties of attractors that underlie our analysis of
dominated strategies.

9.1 Conservative Properties of Evolutionary Dynamics

It is often impossible to provide precise descriptions of long run behavior under
nonconvergent dynamics. An important exception occurs in cases where the dynamics
lead certain quantities to be preserved. We explore this idea in the current section, where
we argue that in certain strategic environments, the replicator and projection dynamics
exhibit noteworthy conservative properties.

9.1.1 Constants of Motion in Null Stable Games

In Section 7.2.1, we introduced null stable population games. These games are defined
by the requirement that

(y − x)′(F(y) − F(x)) = 0 for all x, y ∈ X,

and include zero-sum games (Example 3.3.7) and multi-zero-sum games (Exercise 3.3.9)
as special cases.
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In Exercise 7.2.2, we saw if x∗ is an interior Nash equilibrium of a null stable game
F : X→ Rn, then the value of the function

Ex∗(x) =
∣∣∣x − x∗

∣∣∣2
is preserved along interior segments of solution trajectories of the projection dynamic:
thus, as these segments are traversed, Euclidean distance from the equilibrium x∗ is fixed.
Similar conclusions hold for interior solutions of the replicator dynamic: Exercise 7.2.5
shows that such solutions preserve the value of the function

Hx∗(x) =
∑
p∈P

hp
(x∗)p(xp), where hp

yp(xp) =
∑

i∈Sp(yp)

yp
i log

yp
i

xp
i

is a relative entropy function.
When x∗ is interior, the level sets of Ex∗ and Hx∗ foliate from x∗ like the layers of an onion.

Each solution trajectory is limited to one of these layers, a manifold whose dimension is
one less than that of X.

Example 9.1.1. In Figure 5.3.1, we presented phase diagrams of the six basic evolutionary
dynamics for standard Rock-Paper-Scissors,

F(x) =


FR(x)
FP(x)
FS(x)

 =


0 −1 1
1 0 −1
−1 1 0



xR

xP

xS

 =


xS − xP

xR − xS

xP − xR

 ,
a zero-sum game with unique Nash equilibrium x∗ = (1

3 ,
1
3 ,

1
3 ). Figures 5.3.1(i) and 5.3.1(ii)

show that interior solutions of the replicator and projection dynamics form closed orbits
around x∗. These orbits describe the level sets of the functions Ex∗ and Hx∗ . Note that an
affine transformation of Hx∗ yields a simpler constant of motion for the replicator dynamic,
H (x) = −

∑
i∈S log xi. §

When dim(X) > 2, the level sets of Ex∗ and Hx∗ need not pin down the locations of
interior solutions of (P) and (R). But if the null stable game F has multiple Nash equilibria,
then there are multiple collections of level sets, and intersections of these sets do determine
the positions of interior solutions.

Example 9.1.2. Consider the population game F generated by random matching in the
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1

3

4

Figure 9.1.1: Solutions of the projection dynamic on level set Ex∗ (x) =
√

3
12 , x∗ = ( 1

4 ,
1
4 ,

1
4 ,

1
4 ).

symmetric zero-sum game A:

(9.1) F(x) = Ax =


0 −1 0 1
1 0 −1 0
0 1 0 −1
−1 0 1 0



x1

x2

x3

x4

 =


x4 − x2

x1 − x3

x2 − x4

x3 − x1

 .
The Nash equilibria of F are the points on line segment NE connecting states (1

2 , 0,
1
2 , 0)

and (0, 1
2 , 0,

1
2 ).

The arguments above show that interior solutions to the projection dynamic maintain
a constant distance from every Nash equilibrium of F. This is illustrated in Figure 9.1.1,
which presents solutions on the sphere inscribed in the pyramid X; this is the level set on
which Ex∗ takes the value

√
3

12 , where x∗ = ( 1
4 ,

1
4 ,

1
4 ,

1
4 ). Each solution drawn in the figure is a

circular closed orbit orthogonal to line segment NE.
Figure 9.1.2 presents solution trajectories of the replicator dynamic for game F. Dia-

grams (i) and (ii) show solutions on level sets of Hx∗ where x∗ = ( 1
4 ,

1
4 ,

1
4 ,

1
4 ); the first (smaller)

level set is nearly spherical, while the second approximates the shape of the pyramid X.
Diagrams (iii) and (iv) present solutions on level sets of Hx∗ with x∗ = (3

8 ,
1
8 ,

3
8 ,

1
8 ) and

x∗ = ( 1
8 ,

3
8 ,

1
8 ,

3
8 ) . By our previous discussion, the intersection of the two level sets is a

closed curve describing a single orbit of the dynamic. §

Example 9.3.2 will show that even in zero-sum games, very complicated dynamics can
arise within the level sets of Hx∗ .

Exercise 9.1.3. (i) Suppose that A ∈ Rn×n is skew-symmetric. Show that the eigenvalues
of A all have zero real part, and so that the number of nonzero eigenvalues is even.
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1

2

3

4

(i) x∗ = ( 1
4 ,

1
4 ,

1
4 ,

1
4 ), Hx∗ (x) = .02

1

3

4

(ii) x∗ = ( 1
4 ,

1
4 ,

1
4 ,

1
4 ), Hx∗ (x) = .58

1

3

4

(iii) x∗ = ( 3
8 ,

1
8 ,

3
8 ,

1
8 ), Hx∗ (x) = .35

1

3

4

(iv) x∗ = ( 1
8 ,

3
8 ,

1
8 ,

3
8 ), Hx∗ (x) = .35

Figure 9.1.2: Solutions of the replicator dynamic on level sets of Hx∗ .
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(ii) Suppose that A ∈ Rn×n is a symmetric zero-sum game that admits an interior Nash
equilibrium x∗. Show that if n is even, then x∗ is contained in a line segment
consisting entirely of Nash equilibria. (Hint: Consider the matrix ΦAΦ.)

The previous analysis shows that in zero-sum games, typical solutions of the replicator
dynamic do not converge. The next exercise shows that the time averages of these solutions
do converge, and that the limits of the time averages are Nash equilibria.

Exercise 9.1.4. Convergence of time averages under the replicator dynamic. Let F(x) = Ax be
the population game generated by the symmetric normal form game A ∈ Rn×n, and let
ẋ = VF(x) be the replicator dynamic for this game. Suppose that {xt}t≥0 is a solution to VF

that is bounded away from bd(X) (i.e., that there is an ε > 0 such that (xt)i ≥ ε for all t ≥ 0
and i ∈ S). Let

x̄t =
1
t

∫ t

0
xs ds

be the average value of the state over the time interval [0, t]. Following the steps below,
prove that {x̄t}t≥0 converges to the set of (interior) Nash equilibria of F as t approaches
infinity:

(9.2) lim
t→∞

min
x∗∈NE(F)

∣∣∣x̄t − x∗
∣∣∣ = 0.

In particular, if F has a unique interior Nash equilibrium x∗, then {x̄t} converges to x∗.
(i) Define yt ∈ Rn by (yt)i = log (xt)i. Compute d

dt yt.
(ii) Show that

1
t
(
yt − y0

)
=

1
t

∫ t

0

(
Axs − 1x′sAxs

)
ds.

(iii) Let x̄∗ be an ω-limit point of the trajectory {x̄t}. Show that Ax̄∗ is a constant vector,
and hence that x̄∗ is a Nash equilibrium. (Hint: Use the fact that the trajectory {yt}

is constrained to a compact set.)
(iv) Conclude that (9.2) holds. (Hint: Use the fact that the trajectory {x̄t} is constrained

to a compact set.)

Exercise 9.1.5. Prove that the conclusion of Exercise 9.1.4 continues to hold in a two-
population random matching setting.

Exercise 9.1.6. Explain why the argument in Exercise 9.1.4 does not allow its conclusion to
be extended to random matching in p ≥ 3 populations.
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9.1.2 Preservation of Volume

Let ẋ = V(x) be differential equation on X with flow φ : R × X → X, and let µ
denote Lebesgue measure on X. The differential equation is said to volume preserving (or
incompressible) on Y ⊆ X if for any measurable set A ⊆ Y, we have µ(φt(A)) = µ(A) for
all t ∈ R. Preservation of volume has strong implications for local stability of rest points:
since an asymptotically stable rest point must draw in all nearby initial condition, no such
rest points can exist in regions where volume is preserved (see Theorem 9.A.4).

We now show that in single population zero-sum games, the replicator dynamic is
volume preserving after a well-chosen change in speed. Compared to the standard
replicator dynamic, the speed-adjusted replicator dynamic on int(X),

(9.3) ẋp
i = q(x) xp

i F̂p
i (x), where q(x) =

∏
r∈P

∏
j∈S

1
xr

j

,

moves relatively faster at states closer to the boundary of the simplex, with speeds ap-
proaching infinity as the boundary is approached. The solution trajectories of (9.3) have
the same locations as those of the standard replicator dynamic (see Exercise 5.4.10), so the
implications of volume preservation for stability of rest points extend immediately to the
latter dynamic.

Theorem 9.1.7. Let F(x) = Ax be generated by random matching in the symmetric zero-sum
game A = −A′ ∈ Rn×n. Then the dynamic (9.3) for F is volume preserving on int(X). Therefore,
no interior Nash equilibrium of F is asymptotically stable under the replicator dynamic.

The proof of Theorem 9.1.7 is based on Liouville’s Theorem, which tells us that the rate
at which the dynamic ẋ = V(x) expands or contracts volume near state x is given by the
divergence divV(x) ≡ tr(DV(x)). More precisely, Liouville’s Theorem tells us that

d
dtµ(φt(A)) =

∫
φt(A)

divV(x) dµ(x).

for each Lebesgue measurable set A. Thus, if divV ≡ 0, so that V is divergence free, then
the flow φ is volume preserving. See Section 9.A.1 for a proof and further discussion of
this result.

Proof. The replicator dynamic is described by the vector field R : X→ TX, where

R(x) = diag(x)(F(x) − 1x′F(x)).
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Since F(x) = Ax, and since x′Ax ≡ 0 (because A is symmetric zero-sum), we can simplify
the previous expression to

(9.4) R(x) = diag(x)Ax.

The dynamic (9.3) can be written as

V(x) = q(x)R(x),

where q is the function from int(X)→ R+ defined in equation (9.3). If we can show that V
is divergence free on int(X), then our result will follow from Liouville’s Theorem.

To compute DV(x), let q̂ : int(Rn
+)→ R+ and R̂ : Rn

→ Rn be the natural extensions of q
and R, so that ∇q(x) = Φ∇q̂(x) and DR(x) = DR̂(x)Φ. Then the chain rule implies that

(9.5) DV(x) = q(x)DR(x) + R(x)∇q(x)′ =
(
q(x)DR̂(x) + R(x)∇q̂(x)′

)
Φ.

To evaluate this expression, write [x−1] = ( 1
x1
, . . . , 1

xn
)′, and compute from equations (9.3)

and (9.4) that

∇q̂(x) = −q̂(x)[x−1] and DR̂(x) = diag(x)A + diag(Ax).

Substituting into equation (9.5) yields

DV(x) = q(x)
(
(diag(x)A + diag(Ax) − diag(x)Ax[x−1]′

)
Φ

= q(x)
[(

diag(x)A + diag(Ax) − diag(x)Ax[x−1]′
)

−
1
n

(
diag(x)A + diag(Ax) − diag(x)Ax[x−1]′

)
11′

]
.

Therefore,

divV(x) = q(x)

∑
i∈S

xi Aii +
∑
i∈S

(Ax)i −

∑
i∈S

xi(Ax)i
1
xi

−
1
n

∑
i∈S

xi

∑
j∈S

Ai j −
1
n

∑
i∈S

∑
j∈S

Ai jx j + 1
n

∑
i∈S

∑
j∈S

xi Ai jx j

∑
k∈S

1
xk

 .
The first term in the brackets equals 0 since Aii = 0; the second and third terms cancel; the
fourth and fifth terms cancel since Ai j = −A ji; and the sixth term is 0 since x′Ax = 0. We
therefore conclude that divV(x) = 0 on int(X), and hence that the flow of (9.3) is volume
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preserving. The conclusion about asymptotic stability follows from Theorem 9.A.4. �

Under single population random matching, volume preservation under the replicator
dynamic is only assured in zero-sum games. Remarkably, moving to multipopulation
random matching ensures volume preservation regardless of the payoffs in the underlying
normal form game.

Suppose the population game F is generated by random matching of members of
p ≥ 2 populations to play a p player normal form game. Since each agent’s opponents in
a match will be members of the other populations, the agent’s payoffs do not depend on
his own population’s state: Fp(x) ≡ Fp(x−p). Theorem 9.1.8 shows that this last condition
is sufficient to prove that the flow of the replicator dynamic for F is volume preserving.

Theorem 9.1.8. Let F be a game played by p ≥ 2 populations that satisfies Fp(x) ≡ Fp(x−p). Then
the dynamic (9.3) for F is volume preserving on int(X). Therefore, no interior Nash equilibrium of
F is asymptotically stable under the replicator dynamic.

Exercise 9.1.9. Prove Theorem 9.1.8. To simplify the notation, assume that each population
is of unit mass. (Hint: To prove that the vector field V from equation (9.3) is divergence
free, start by showing that the derivative matrix of Vp at x with respect to directions in
TXp is the np

× np matrix

DTXpVp(x) = q(x)
(
diag(πp) − π̄pI − xp(πp)′ − diag(xp)πp [(xp)−1]′ + π̄pxp[(xp)−1]′

)
Φ,

where πp = Fp(x−p) and π̄p = F̄p(x−p) = (xp)′πp.)

Analogues of Theorems 9.1.7 and 9.1.8 can be established for the projection dynamics
via much simpler calculations, and without introducing a change in speed.

Exercise 9.1.10. Let F(x) = Ax be generated by random matching in the symmetric zero
sum game A = −A′ ∈ Rn×n. Show that the projection dynamic for F is volume preserving
on int(X).

Exercise 9.1.11. Let F be a game played by p ≥ 2 unit-mass populations that satisfies
Fp(x) ≡ Fp(x−p). Show that the projection dynamic for F is volume preserving on int(X).

9.2 Games with Nonconvergent Evolutionary Dynamics

In this section, we introduce examples of games for which many evolutionary dynamics
fail to converge to equilibrium.
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9.2.1 Circulant Games

The matrix A ∈ Rn×n is called a circulant matrix if it is of the form

A =



a0 a1 · · · an−2 an−1

an−1 a0 a1 · · · an−2
. . . . . . . . . . . . . . .

a2 · · · an−1 a0 a1

a1 a2 · · · an−1 a0


.

When we view A as the payoff matrix for a symmetric normal form game, we refer to A
as a circulant game. Such games always include the central state x∗ = 1

n1 among their Nash
equilibria. Note that Rock-Paper-Scissors games are circulant games with n = 3, a0 = 0,
a1 = −l, and a2 = w. Most of the specific games considered below will also have diagonal
payoffs equal to 0.

Their symmetric structure make circulant games simple to analyze. In doing so, we
will find it convenient to refer to strategies modulo n.

Exercise 9.2.1. Verify that the eigenvalue/eigenvector pairs of the circulant matrix A are

(9.6) (λk, vk) =

 n−1∑
j=0

a jι
jk
n , (1, ιkn, . . . , ι

(n−1)k
n )′

 , k = 0, . . . ,n − 1,

where ιn = exp(2πi
n ) = cos(2π

n ) + i sin(2π
n ) is the nth root of unity.

Exercise 9.2.2. Let F(x) = Ax be generated by random matching in the circulant game A,
and let ẋ = R(x) = diag(x)(Ax − 1x′Ax) be the replicator dynamic for F. Show that the
derivative matrix of R at the Nash equilibrium x∗ = 1

n1 is the circulant matrix

DR(x∗) = 1
n (A − 2 11′ā),

where ā = 1
n1′a is the average of the components of the vector a = (a0, a1, . . . , an−1)′. It then

follows from the previous exercise that the eigenvalue/eigenvector pairs (λk, vk) of DR(x∗)
are given by

(9.7) (λk, vk) =

1
n

n−1∑
j=0

(a j − 2ā)ι jkn , (1, ιkn, . . . , ι
(n−1)k
n )′

 , k = 0, . . . ,n − 1.

Example 9.2.3. The hypercycle system. Suppose that a0 = . . . = an−2 = 0 and that an−1 = 1,
so that each strategy yields a positive payoff only against the strategy that precedes it
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λ1

λ2

1
3

(i) n = 3

λ1

λ2

λ3

1
4

(ii) n = 4

λ1

λ2

λ3

λ4

1
5

(iii) n = 5

Figure 9.2.1: Eigenvalues of the hypercycle system.

(modulo n). In this case, x∗ = 1
n1 is the unique Nash equilibrium of F, and the replicator

dynamic for A is known as the hypercycle system.
We determine the local stability of the rest point x∗ by considering the eigenvalues of

DR(x∗). Substituting into equations (9.6) and (9.7) shows that the eigenvector/eigenvalue
pairs are of the form

(λk, vk) =

1
n
ι(n−1)k
n −

2
n2

n−1∑
j=0

ι jkn , (1, ιkn, . . . , ι
(n−1)k
n )′

 , k = 0, . . . ,n − 1.

Eigenvalue λ0 = 1
n −

2
n = − 1

n corresponds to eigenvector v0 = 1 and so has no bearing on
the stability analysis. For k ≥ 1, the sum in the formula for λk vanishes (why?), leaving
us with λk = 1

n ι
(n−1)k
n = 1

n ι
−k
n . The stability of x∗ therefore depends on whether any λk with

k > 0 has positive real part. As Figure 9.2.1 illustrates, this largest real part is negative
when n ≤ 3, zero when n = 4, and positive when n ≥ 5. It follows that x∗ is asymptotically
stable when n ≤ 3, but unstable when n ≥ 5. Exercise 9.2.4 shows that the local stability
results can be extended to global stability results, and that global stability can also be
proved when n = 4. When n ≥ 5, it is possible to show that the boundary of X is repelling,
as it is in the lower dimensional cases, and that the dynamic admits a stable periodic orbit
(see the Notes). §

Exercise 9.2.4. Consider the function H : int(X) → R defined by H (x) = −
∑

i∈S log xi (cf
Example 9.1.1.)

(i) Show that under the hypercycle equation with n = 2 or 3, H is a strict Lyapunov
function on int(X), and hence that x∗ is globally asymptotically stable with respect
to int(X).
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(ii) Show that under the hypercycle equation with n = 4 we have Ḣ (x) ≤ 0 on int(X),
with equality if and only if x lies in Y = {y ∈ int(X) : y1 + y3 = y2 + y4}. Show that the
sole invariant subset of Y is {x∗}. Then use Theorems 7.B.2 and 7.B.4 and Proposition
7.A.1(iii) to conclude that x∗ is globally asymptotically stable with respect to int(X).

Example 9.2.5. Monocyclic games. A circulant game A is monocyclic if a0 = 0, a1, . . . , an−2 ≤ 0,
and an−1 > 0. Let ā = 1

n

∑
i ai. If we assume that ā < 0, then the Nash equilibrium x∗ = 1

n1,
which yields a payoff of ā for each strategy, is the unique interior Nash equilibrium of
F(x) = Ax. More importantly, there is an open, dense, full measure set of initial conditions
from which the best response dynamic for F(x) = Ax converges to a limit cycle; this limit
cycle is contained in the set where M(x) = maxi∈S Fi(x) equals 0.

Here is a sketch of the proof. Consider a solution trajectory {xt} of the best response
dynamic that lies in set B1 = {x ∈ X : argmaxi∈S Fi(x) = {1}} during time interval [0,T). For
any t ∈ [0,T), we have that

xt = e−tx0 + (1 − e−t) e1.

Since the diagonal elements of A all equal zero, it follows that

(9.8) M(xt) = F1(xt) = e−tF1(x0) = e−tM(x0).

For j < {1, 2}we have that

(9.9) F j(xt) = e−tF j(x0) + (1 − e−t)A j1 ≤ e−tF j(x0) < e−tF1(x0) = F1(xt).

Equations (9.8) and (9.9) and the fact that

F1(e1) = 0 < an−1 = F2(e1)

imply that a solution starting in region B1 must hit the set B12 = {x ∈ X : argmaxi∈S Fi(x) =

{1, 2}}, and then immediately enter region B2 = {x ∈ X : argmaxi∈S Fi(x) = {2}}.
Repeating the foregoing argument shows that the trajectory next enters best response

regions B3,B4, . . . ,B0 in succession before returning to region B1. Therefore, if we denote
by B the set of states at which there are at most two best responses, then B is forward
invariant under the best response dynamic. Moreover, equation (9.8) implies that the
maximal payoff M(xt) approaches 0 along all solution trajectories in B.

In light of this discussion, we can define the return map r : B12 → B12, where r(x) is the
position at which a solution starting at x ∈ B12 first returns to B12. All fixed points of r lie in
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M−1(0). In fact, it can be shown that r is a contraction on M−1(0) for an appropriate choice
of metric, and so that r has a unique fixed point (see the Notes). We therefore conclude
that any solution trajectory starting in the open, dense, full measure set B converges to the
closed orbit that passes through the unique fixed point of the return map r. §

9.2.2 Continuation of Attractors for Parameterized Games

The games we construct in the examples to come will generate nonconvergent behavior
for large classes of evolutionary dynamics. Recall our general formulation of evolutionary
dynamics from Chapter 4: each revision protocol ρ defined a map from population games
F to differential equations ẋ = VF(x) via

(9.10) ẋp
i = (VF)p

i (x) =
∑
j∈Sp

xp
jρ

p
ji(F

p(x), xp) − xp
i

∑
j∈Sp

ρp
ij(F

p(x), xp).

In Chapter 5, we introduced the following three desiderata for ρ and V.

(C) Continuity: ρp is Lipschitz continuous.
(NS) Nash stationarity: VF(x) = 0 if and only if x ∈ NE(F).
(PC) Positive correlation: Vp

F(x) , 0 implies that Vp
F(x)′Fp(x) > 0.

We have seen that under continuity condition (C), any Lipschitz continuous popula-
tion game F will generate a Lipschitz continuous differential equation (9.10), an equation
that admits unique solutions from every initial condition in X. But a distinct consequence
of condition (C)—one involving comparisons of dynamics across games—is equally im-
portant for the analyses to come.

Suppose we have a collection of population games {Fε}ε∈(−ε̄,ε̄) that have identical strategy
sets and whose payoffs vary continuously in ε. Then under condition (C), the law of
motion ẋ = VFε(x) varies continuously in ε. Moreover, if we let φε : R+ × X → X denote
the semiflow under VFε , then the map (ε, t, x) 7→ φεt (x) is continuous as well. This fact is
important for understanding how evolution under V(·) changes as we vary the underlying
game. To capture the effects on long run behavior under V(·), we must introduce the notion
of an attractor. We keep the introduction here brief; additional details can be found in
Appendix 9.B.

A set A ⊆ X is an attractor of the flow φ if it is nonempty, compact, and invariant under
φ, and if there is a neighborhood U of A such that

(9.11) lim
t→∞

sup
x∈U

dist(φt(x),A) = 0.
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The set B(A) = {x ∈ X : ω(x) ⊆ A} is called the basin of A . Put differently, attractors are
asymptotically stable sets that are also invariant under the flow.

A key property of attractors for the current context is known as continuation. Fix an
attractor A = A0 of the flowφ0. Then as ε varies continuously from 0, there exist attractors
Aε of the flowsφε that vary upper hemicontinuously from A ; their basins B(Aε) vary lower
hemicontinuously from B(A). Thus, if we slightly change the parameter ε, the attractors
that exist under φ0 continue to exist, and they do not explode.

Exercise 9.2.6. In defining an attractor via equation (9.11), we require that it attract solutions
from all nearby states uniformly in time. To understand the role of uniformity in this
definition, let φ be a flow on the unit circle that moves clockwise except at the topmost
point x∗ (cf Example 7.A.3). Explain why {x∗} is not an attractor under this flow.

As a first application of these ideas, consider the 4 × 4 circulant game

(9.12) Fε(x) = Aεx =


0 0 −1 ε

ε 0 0 −1
−1 ε 0 0
0 −1 ε 0



x1

x2

x3

x4

 .
When ε = 0, the payoff matrix Aε = A0 is symmetric, so F0 is a potential game with
potential function f (x) = 1

2x′A0x = −x1x3 − x2x4. The function f attains its minimum of −1
4

at states v = ( 1
2 , 0,

1
2 , 0) and w = (0, 1

2 , 0,
1
2 ), has a saddle point with value −1

8 at the Nash
equilibrium x∗ = (1

4 ,
1
4 ,

1
4 ,

1
4 ), and attains its maximum of 0 along the closed path of Nash

equilibria γ consisting of edges e1e2, e2e3, e3e4, and e4e1. It follows from results in Section
7.1 that if ẋ = VF0(x) satisfies (NS) and (PC), then all solutions whose initial conditions ξ
satisfy f (ξ) > − 1

8 converge to γ. (In fact, if x∗ is a hyperbolic rest point of VFε , then the
Stable Manifold Theorem (see Appendix 8.C) tells us that the set of initial conditions from
which solutions converge to x∗ is a manifold of dimension no greater than 2, and hence
has measure zero.) The phase diagram for the Smith dynamic game F0 is presented in
Figure 9.2.2(i).

Now suppose that ε > 0. If our revision protocol satisfies continuity (C), then the
attractor γ of VF0 continues to an attractor γε of VFε ; γε is contained in a neighborhood of
γ, and its basin approximates that of γ (see Figure 9.2.2(ii)). At the same time, the unique
Nash equilibrium of Fε is the central state x∗. We have therefore proved

Proposition 9.2.7. Let V(·) be an evolutionary dynamic that satisfies (C), (PC), and (NS), let Fε

be given by (9.12), and let δ > 0. Then for ε > 0 suffficiently small, solutions to ẋ = VFε(x) from
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Figure 9.2.2: The Smith dynamic in game Fε.
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Figure 9.2.3: The replicator dynamic in Mismatching Pennies.

all initial conditions x with f (x) > −1
8 + δ converge to an attractor γε on which f exceeds −δ; in

particular, γε contains neither Nash equilibria nor rest points.

9.2.3 Mismatching Pennies

Mismatching Pennies is a three-player normal form game in which each player has two
strategies, Heads and Tails. Player p receives a payoff of 1 for choosing a different strategy
than player p + 1 and a payoff of 0 otherwise, where players are indexed modulo 3.

If we let F be the population game generated by random matching in Mismatching
Pennies, then for each population p ∈ P = {1, 2, 3}we have that

Fp(x) =

Fp
H(x)

Fp
T(x)

 =

xp+1
T

xp+1
H

 .
The unique Nash equilibrium of F is the central state x∗ = (( 1

2 ,
1
2 ), ( 1

2 ,
1
2 ), ( 1

2 ,
1
2 )). Since

there are two strategies per player, it will simplify our analysis to let yp = xp
H be the

proportion of population p players choosing Heads, and to focus on the new state variable
y = (y1, y2, y3) ∈ Y = [0, 1]3 (see Exercise 9.2.12 for details).

Example 9.2.8. The replicator dynamic for Mismatching Pennies. After our change of variable,
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the replicator dynamic ẏ = V̂F(y) for Mismatching Pennies takes the form

ẏ =


ẏ1

ẏ2

ẏ3

 =


y1(1 − y1)(1 − 2y2)
y2(1 − y2)(1 − 2y3)
y3(1 − y3)(1 − 2y1)

 .
The derivative matrix for an arbitrary state y and the equilibrium state y∗ = ( 1

2 ,
1
2 ,

1
2 ) are

DV̂(y) =

(
(1−2y1)(1−2y2) −2y1(1−y1) 0

0 (1−2y2)(1−2y3) −2y2(1−y2)
−2y3(1−y3) 0 (1−2y3)(1−2y1)

)
and DV̂(y∗) =

(
0 −

1
2 0

0 0 −
1
2

−
1
2 0 0

)
.

DV̂(y∗) is a circulant matrix with an eigenvalue of −1
2 corresponding to eigenvector 1,

and eigenvalues of 1
4 ±

√
3

4 i corresponding to eigenvectors (−1,−1, 2)′ ± (−
√

3,
√

3, 0)′; note
that 1, (−1,−1, 2)′, and (−

√
3,
√

3, 0)′ are mutually orthogonal. The phase diagram for
the replicator dynamic is a spiral saddle: interior solutions on the diagonal where y1 =

y2 = y3 head directly toward y∗, while all other orbits are attracted to a two-dimensional
manifold containing an unstable spiral. This is depicted in Figure 9.2.3, where behavior
in populations 1, 2, and 3 is measured on the left-right, front-back, and top-bottom axes,
respectively. Solutions on the manifold containing the unstable spiral converge to a six-
segment heteroclinic cycle; this cycle agrees with the best response cycle of the underlying
normal form game. §

Example 9.2.9. The best response dynamic in Mismatching Pennies. The analysis of the best
response dynamic in Mismatching Pennies is very similar to the corresponding analysis
in monocyclic games (Example 9.2.5). Divide the state space Y = [0, 1]3 into eight octants
in the natural way. Then the two octants corresponding to vertices HHH and TTT are
backward invariant, while solutions starting in any of the remaining six octants proceed
through those octants according to the best response cycle of the underlying game (see
Exercise 9.2.10). As Figure 9.2.4 illustrates, almost all solutions to the best response
dynamic converge to a six-sided closed orbit in the interior of Y. §

Exercise 9.2.10. (i) Give an explicit formula for the best response dynamic for Mis-
matching Pennies in terms of the state variable y ∈ Y = [0, 1]3.

(ii) Prove that octants HHH and TTT described in the previous example are backward
invariant.

(iii) Prove that solutions starting in any of the remaining octants proceed through those
octants according to the best response cycle of the underlying game.

The following proposition shows that the previous two examples are not exceptional.
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Figure 9.2.4: The best response dynamic in Mismatching Pennies (two viewpoints).
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Proposition 9.2.11. Let V(·) be an evolutionary dynamic that is generated by a C1 revision protocol
ρ and that satisfies Nash stationarity (NS). Let F be Mismatching Pennies, and suppose that the
unique Nash equilibrium x∗ of F is a hyperbolic rest point of ẋ = VF(x). Then x∗ is unstable under
VF, and there is an open, dense, full measure set of initial conditions from which solutions to VF

do not converge.

Proposition 9.2.11 is remarkable in that it does not require the dynamic to satisfy a
payoff monotonicity condition. Instead, it takes advantage of the fact that by definition,
the revision protocol for population p does not condition on the payoffs of other popu-
lations. In fact, the specific payoffs of Mismatching Pennies are not important to obtain
the instability result; any three-player game whose unique Nash equilibrium is interior
works equally well. The proof of the theorem makes these points clear.

Proof. For ε close to 0, let Fε be generated by a perturbed version of Mismatching
Pennies in which player 3’s payoff for playing H when player 1 plays T is not 1, but 1+2ε

1−2ε .
Then like Mismatching Pennies itself, Fε has a unique Nash equilibrium, here given by
((1

2 + ε, 1
2 − ε), ( 1

2 ,
1
2 ), ( 1

2 ,
1
2 )).

For convenience, let us argue in terms of the state variable y = (x1
H, x

2
H, x

3
H) ∈ Y = [0, 1]3

(see Exercise 9.2.12). If ẏ = V̂Fε(y) is the dynamic ẋ = VFε(x) expressed in terms of y, then
Nash stationarity (NS) tells us that

(9.13) V̂Fε( 1
2 + ε, 1

2 ,
1
2 ) = 0

whenever |ε| is small. Now by definition, the law of motion for population 1 does not
depend directly on payoffs in the other populations, regardless of the game at hand (cf
equation (9.10)). Therefore, since changing the game from Fε to F0 does not alter population
1’s payoff function, equation (9.13) implies that

V̂1
F0( 1

2 + ε, 1
2 ,

1
2 ) = 0

whenever |ε| is small. This observation and the fact that the dynamic is differentiable at
y∗ = (1

2 ,
1
2 ,

1
2 ) imply that

∂V̂1
F0

∂y1 (y∗) = 0.

Repeating this argument for the other populations shows that the trace of DV̂F0(y∗),
and hence the sum of the eigenvalues of DV̂F0(y∗), is 0. Since y∗ is a hyperbolic rest point
of V̂F0 , it follows that some eigenvalue of DV̂F0(y∗) has positive real part, and thus that y∗
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is unstable under V̂F0 . Thus, the Stable Manifold Theorem (see Appendix 8.C) tells us that
the set of initial conditions from which solutions converge to y∗ is of dimension at most 2,
and that its complement is open, dense, and of full measure in Y. �

Exercise 9.2.12. Let X be the state space for a p population game with two strategies per
population, and let Y = [0, 1]p , so that TY = Rp .

(i) Show that the change of variable h : X→ Y has inverse h−1 : Y→ X, where

h(x) =


x1

1
.
.
.

x
p
1

 and h−1(y) =


y1

1−y1

.

.

.

yp

1−yp

 .
(ii) Show that the derivative of h at x, Dh(x) : TX→ TY, and the derivative of h−1 at y,

Dh−1(y) : TY → TX, can be written as Dh(x)z = Mz and Dh−1(y)ζ = M̃ζ for some
matrices M ∈ Rp×2p and M̃ ∈ R2p×p . Show that if M is viewed as a linear map from
TX to TY, then its inverse is M̃.

(iii) Fix a C1 vector field V : X → TX, and define the new vector field V̂ : Y → TY by
V̂(y) = h(V(h−1(y))). Show that the dynamics ẋ = V(x) and ẏ = V̂(y) are linearly
conjugate under H: that is, that {xt} solves the former equation if and only if {h(xt)}
solves the latter.

(iv) Let x∗ be a rest point of V, and let y∗ = h(x∗) be the corresponding rest point of
V̂. Show that the eigenvalues of DV(x∗) with respect to TX are identical to the
eigenvalues of DV̂(y∗) with respect to TY. What is the relationship between the
corresponding pairs of eigenvectors?

9.2.4 The Hypnodisk Game

The virtue of Proposition 9.2.11 is that apart from hyperbolicity of equilibrium, vir-
tually no assumptions about the evolutionary dynamic V(·) were needed to establish
nonconvergence. We now show that if one is willing to introduce a payoff monotonic-
ity condition—namely, positive correlation (PC)—then one can obtain a nonconvergence
without smoothness conditions, and using a two-dimensional state variable, rather than
a three-dimensional one as in Mismatching Pennies. This low dimensionality will turn
out to be crucial when we study survival of dominated strategies in Section 9.4.

Our construction will be based on potential games. In Figure 9.2.5, we present the
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(i) The potential function

1

2 3

(ii) The projected payoff vector field

Figure 9.2.5: A coordination game.

potential function and projected payoff vector field of the coordination game

FC(x) = Cx =


1 0 0
0 1 0
0 0 1



x1

x2

x3

 =


x1

x2

x3

 .
By our analysis in Chapter 3, solutions to any evolutionary dynamic ẋ = VFC(x) satisfying
conditions (NS) and (PC) ascend the potential function f C(x) = 1

2x′Cx = 1
2 ((x1)2+(x2)2+(x3)2)

drawn in diagram (i), or, equivalently, travel at acute angles to the projected payoff vectors
in diagram (ii). It follows that solutions to VFC from most initial conditions converge to
the strict Nash equilibria at the vertices of X.

As a second example, suppose that agents are randomly matched to play the antico-
ordination game −C. In Figure 9.2.6, we draw the resulting population game F−C(x) =

−Cx = −x and its concave potential function f −C(x) = −1
2x′Cx = − 1

2 ((x1)2 + (x2)2 + (x3)2).
Both pictures reveal that under any evolutionary dynamic satisfying conditions (NS) and
(PC), all solution trajectories converge to the unique Nash equilibrium x∗ = ( 1

3 ,
1
3 ,

1
3 ).

The construction of the hypnodisk game H : X→ R3 is easiest to describe in geometric
terms. Begin with the coordination game FC(x) = Cx pictured in Figure 9.2.5(ii). Then draw
two circles centered at state x∗ = ( 1

3 ,
1
3 ,

1
3 ) with radii 0 < r < R < 1

√
6
, as shown in Figure

9.2.7(i); the second inequality ensures that both circles are contained in the simplex. Twist
the portion of the vector field lying outside of the inner circle in a clockwise direction,
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(i) The potential function

1

2 3

(ii) The projected payoff vector field

Figure 9.2.6: An anticoordination game.

excluding larger and larger circles as the twisting proceeds, so that the outer circle is
reached when the total twist is 180◦ (Figure 9.2.7(ii)).

Exercise 9.2.13. Provide an explicit formula for the resulting population game H(x).

What does this construction accomplish? Examining Figure 9.2.7(ii), we see that inside
the inner circle, H is identical to the coordination game FC. Thus, solutions to dynamics
satisfying (NS) and (PC) starting at states other than x∗ in the inner circle must leave the
inner circle. At states outside the outer circle, H is identical to the anticoordination game
F−C, so solutions to dynamics satisfying (NS) and (PC) starting at states outside the outer
circle must enter the outer circle. Finally, at each state x in the annulus bounded by the two
circles, H(x) is not a componentwise constant vector. Therefore, states in the annulus are
not Nash equilibria, and so are not rest points of dynamics satisfying (NS). We assemble
these observations in the following proposition.

Proposition 9.2.14. Let V(·) be an evolutionary dynamic that satisfies (C), (NS), and (PC), and
let H be the hypnodisk game. Then every solution to ẋ = VH(x) other than the stationary solution
at x∗ enters the annulus with radii r and R and never leaves, ultimately converging to a cycle
therein.

The claim of convergence to limit cycles in the final sentence of the proposition follows
from the Poincaré-Bendixson Theorem (Theorem 9.A.5).
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(i) Projected payoff vector field for the coordination game
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(ii) Projected payoff vector field for the hypnodisk game

Figure 9.2.7: Construction of the hypnodisk game.
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9.3 Chaotic Evolutionary Dynamics

In all of the phase diagrams we have seen so far, ω-limit sets have taken a fairly simple
form: solution trajectories have converged to rest points, closed orbits, or chains of rest
points and connecting orbits. When we consider games with just two or three strategies,
this is unavoidable: clearly, all solution trajectories of continuous time dynamics in one
dimension converge to equilibrium, while in two-dimensional systems, the Poincaré-
Bendixson Theorem (Theorem 9.A.5) tells us that the three types of ω-limit sets described
above exhaust all possibilities.

Once we move to flows in three or more dimensions, ω-limit sets can be much more
complicated sets often referred to as chaotic (or strange) attractors. Central to most defini-
tions of chaos is sensitive dependence on initial conditions: solution trajectories starting from
close together points on the attractor move apart at an exponential rate. Chaotic attractors
can also be recognized in phase diagrams by their rather intricate appearance. Rather
than delving deeply into these ideas, we content ourselves by presenting a few examples.

Example 9.3.1. Consider the single population game F generated by random matching in
the normal form game A below:

F(x) = Ax =


0 −12 0 22

20 0 0 −10
−21 −4 0 35
10 −2 2 0



x1

x2

x3

x4

 .
The lone interior Nash equilibrium of this game is the central state x∗ = (1

4 ,
1
4 ,

1
4 ,

1
4 ).

Let ẋ = VF(x) be the replicator dynamic for game F. One can calculate that the eigen-
values of DVF(x∗) are approximately −3.18 and .34± 1.98i, so like the Nash equilibrium of
Mismatching Pennies (Example 9.2.8), the interior equilibrium x∗ here is a sprial saddle
with an unstable spiral.

Figure 9.3.1 presents the initial portion of the solution of ẋ = VF(x) from initial condition
x0 = (.24, .26, .25, .25). This solution spirals clockwise about x∗. Near the rightmost point
of each circuit, where the value of x3 gets close to zero, solutions sometimes proceed along
an “outside” path on which the value of x3 surpasses .6. But they sometimes follow an
“inside” path on which x3 remains below .4, and at other times do something in between.
Which of these alternatives occurs is difficult to predict from approximate information
about the previous behavior of the system.

Sensitive dependence on initial conditions is illustrated directly in Figure 9.3.2, which
tracks the solutions from two nearby initial conditions, (.47, .31, .11, .11) and (.46999, .31,
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Figure 9.3.1: A chaotic attractor under the replicator dynamic.
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Figure 9.3.2: Sensitive dependence on initial conditions under the replicator dynamic.

.11, .11001). Apparently, the two solutions stay close together through time t = 50 but
diverge thereafter; after time t = 60, the current position of one of the solutions provides
little hint about the current position of the other. §

The scattered payoff entries in the previous example may seem to suggest that chaos
only occurs in “artificial” examples. To dispute this view, we now show that chaotic
behavior can occur in very simple games.

Example 9.3.2. Asymmetric Rock-Paper-Scissors. Suppose that two populations of agents
are randomly matched to play the two-player zero-sum game U = (U1,U2):

II
r p s

R 1
2 ,−

1
2 −1, 1 1,−1

I P 1,−1 1
2 ,−

1
2 −1, 1

S −1, 1 1,−1 1
2 ,−

1
2

U is an asymmetric version of Rock-Paper-Scissors in which a “draw” results in a half-
credit win for player 1.

Figures 9.3.3 and 9.3.4 each present a single solution trajectory of the replicator dynamic
for FU. Since the social state x = (x1, x2) is four-dimensional, we draw it in two pieces,
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with x1 represented on the left hand side of each figure and x2 represented on the right.
Because U is a zero-sum game with Nash equilibrium (( 1

3 ,
1
3 ,

1
3 ), ( 1

3 ,
1
3 ,

1
3 )), each solution of

the replicator dynamic lives within a level set of H (x) = −
∑

p∈P
∑

i∈Sp log xp
i . In Figure

9.3.3, whose initial condition is ((.5, .25, .25), (.5, .25, .25)), the solution trajectory appears to
follow a periodic orbit, much like those in our examples from Section 9.1.1. But in Figure
9.3.4, whose initial condition ((.5, .01, .49), (.5, .25, .25)) is closer to the boundary of X, the
solution trajectory travels around the level set of H in a seemingly haphazard way. Thus,
despite the regularity provided by the constant of motion, the evolution of behavior in
this simple game is complicated indeed. §

9.4 Survival of Dominated Strategies

By now we have thoroughly considered whether the prediction of Nash equilibiurm
play can be justified using evolutionary arguments. On the positive side, Chapters 5
and 6 show that there are many dynamics whose rest points are always identical to the
Nash equilibria of the underlying game, and Chapter 7 shows that convergence to Nash
equilibrium can be assured under many of these dynamics in particular classes of games.
But the final word on this question appears in Section 9.2, which demonstrates that no
evolutionary dynamic can converge to Nash equilibrium in all games.

This negative result leads us to consider a more modest question. Rather than seek
evolutionary support for equilibrium play, we instead turn our attention to a more basic
rationality requirement: namely, the avoidance of strategies that are strictly dominated.

Theorem 7.4.4 seems to bear out the intuition that evolutionary dynamics select against
dominated strategies. But upon further reflection, one finds that there is no a priori reason
to expect dominated strategies to be eliminated. Evolutionary dynamics are built upon
the notion that agents switch to strategies whose current payoffs are reasonably good. But
even if a strategy is dominated, it can have reasonably good payoffs at many population
states. Put differently, domination is a “global” property, depending on payoffs at all
states, while decision making in evolutionary models is “local”, depending only on the
payoffs available at present. By this logic, there is no reason to expect evolutionary
dynamics to eliminate dominated strategies as a general rule.

To turn this intuition into a formal result, we introduce one further condition on
evolutionary dynamics.

(IN) Innovation If x < NE(F), xi = 0, and i ∈ argmax
j∈S

F j(x), then (VF)i(x) > 0.
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Figure 9.3.3: Cycling in asymmetric Rock-Paper-Scissors.
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Figure 9.3.4: Chaos in asymmetric Rock-Paper-Scissors.
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Innovation (IN) requires that when a non-Nash population state includes an unused op-
timal strategy, this strategy’s growth rate must be strictly positive. In other words, if
an unplayed strategy is sufficiently rewarding, some members of the population will
discover it and select it.

We are now in a position to state our survival theorem.

Theorem 9.4.1. Suppose the evolutionary dynamic V(·) satisfies (C), (NS), (PC), and (IN). Then
there is a game F such that under ẋ = VF(x), along solutions from most initial conditions, there is
a strictly dominated strategy played by a fraction of the population bounded away from 0.

Proof. Let H be the hypnodisk game introduced in Section 9.2.4. Let F be the four-
strategy game obtained from H by adding a twin to strategy 3:

Fi(x1, x2, x3, x4) = Hi(x1, x2, x3 + x4) for i ∈ {1, 2, 3};

F4(x) = F3(x).

Strategies 3 and 4 are identical, in that they always yield the same payoff and always have
the same payoff consequences for other strategies. The set of Nash equilibria of F is the
line segment

NE =
{
x∗ ∈ X : x∗1 = x∗2 = x∗3 + x∗4 = 1

3

}
.

Let

I =
{
x ∈ X : (x1 −

1
3 )2 + (x2 −

1
3 )2 + (x3 + x4 −

1
3 )2
≤ r2

}
and

O =
{
x ∈ X : (x1 −

1
3 )2 + (x2 −

1
3 )2 + (x3 + x4 −

1
3 )2
≤ R2

}
be concentric cylindrical regions in X surrounding NE, as pictured in Figure 9.4.1. By
construction, we have that

F(x) = C̃x =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 1



x1

x2

x3

x4

 .
at all x ∈ I, so under any dynamic satisfying (PC) and (NS), solutions starting in I − NE
ascend the potential function f C̃(x) = 1

2 ((x1)2 + (x2)2 + (x3 + x4)2) until leaving the set I. At
states outside the set O, we have that F(x) = −C̃x, so solutions starting in X − O ascend
f −C̃(x) = − f C̃(x) until entering O. In summary:
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1
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4

Figure 9.4.1: Regions O, I, and D = O − I.

Lemma 9.4.2. Suppose that V(·) is an evolutionary dynamic that satisfies conditions (C), (NC)
and (PC), and let F be the “hypnodisk with a twin” game. Then every solution to ẋ = VF(x) other
than the stationary solutions in NE enter region D = O − I and never leave.

Define the flow from the set U ⊆ X under the dynamic VF by

φt(U) = {ξ ∈ X : there is a solution {xs} to ẋ = VF(x) with x0 ∈ U and xt = ξ.}

In words, φt(U) contains the time t positions of solutions to VF whose initial conditions
are in U.

Since solutions to VF starting in I − NE ascend the function f C̃ until leaving the set I,
the reverse time flow is well-defined from all such states, and NE is a repellor under VF.
This means that all backward-time solutions to VF that begin in some neighborhood U of
NE converge to NE uniformly over time, or, equivalently, that NE is an attractor of the
time-reversed equation ẏ = −VF(y) (see Appendix 9.B). The dual attractor A of the repellor
NE is the forward-time limit of the flow of VF starting from the complement of cl(U):

A =
⋂
t≥0

φt(X − cl(U)).
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A is nonempty, compact, and (both forward and backward) invariant under VF, and
Lemma 9.4.2 tells us that A ⊂ D.

We now show that the twin strategy is used by a positive mass of agents throughout
the attractor A . Let Z = {x ∈ X : x4 = 0} be the face of X on which the twin strategy is
unused; we prove

Lemma 9.4.3. The attractor A and the face Z are disjoint.

Proof. Since VF is Lipschitz continuous and satisfies (VF)i(x) ≥ 0 whenever xi = 0,
solutions to VF that start in X − Z cannot approach Z more than exponentially quickly,
and in particular cannot reach Z in finite time (see Exercise 9.4.4). Equivalently, backward
solutions to VF starting from states in Z cannot enter int(X).

Now suppose by way of contradiction that there exists a state ξ in A ∩ Z. Then by
our previous arguments, the entire backward orbit from ξ is also contained in A ∩ Z, and
hence in D∩Z. Since the latter set contains no rest points by condition (PC), the Poincaré-
Bendixson Theorem (Theorem 9.A.5) implies that the backward orbit from ξ converges to
a closed orbit γ in D ∩ Z that circumnavigates I ∩ Z.

By construction, the annulus D ∩ Z can be split into three regions: one in which
strategy 1 is the best response, one in which strategy 2 is the best response, and one in
which strategy 3 (and hence strategy 4) is a best response (Figure 9.4.2). Each of these
regions is bounded by a simple closed curve that intersects the inner and outer boundaries
of the annulus. Therefore, the closed orbitγ, on which strategy 4 is unused, passes through
the region in which strategy 4 is optimal. This contradicts innovation (IN). �

Exercise 9.4.4. Use Grönwall’s Inequality (Lemma 4.A.7) to check the initial claim in the
proof of the lemma.

To complete the proof, we now make the twin strategy “feeble”: we uniformly reduce
its payoff by ε, creating the new game

Fε(x) = F(x) − εe4.

Observe that strategy 4 is strictly dominated by strategy 3 in game Fε.
As increasing ε from 0 continuously changes the game from F to Fε, doing so also

continuously changes the dynamic from VF to VFε . Thus, by Theorem 9.B.5 on continuation
of attractors, we have that for small ε, the attractor A of VF continues to an attractor Aε

of VFε on which x4 > 0: thus, the dominated strategy survives throughout Aε. The basin
of the attractor Aε contains all points outside of a thin tube around the set NE of Nash
equilibria of F. This completes the proof of Theorem 9.4.1. �
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Figure 9.4.2: The best response correspondence of the hypnodisk game.

We conclude this chapter with some examples that illustrate and extend the analysis
above.

Example 9.4.5. We use the hypnodisk game as the basis for the proof of Theorem 9.4.1
because it generates cycling under any dynamic that satisfies (NS) and (PC). But the use
of this game is not essential: once we fix the dynamic under consideration, we can find a
simpler game that leads to cycling; then the argument based on the introduction of twin
strategies can proceed as above.

We illustrate this point by constructing an example of survival under the Smith dy-
namic. Figure 9.4.3 contains the phase diagram for the Smith dynamic in the bad Rock-
Paper-Scissors game

G(x) = Ax =


0 −l w
w 0 −l
−l w 0



x1

x2

x3

 ,
where w = 1 and l = 2. Evidently, the unique Nash equilibrium x∗ = (1

3 ,
1
3 ,

1
3 ) is unstable,

and most solution trajectories converge to a cycle located in int(X).
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Figure 9.4.3: The Smith dynamic in bad RPS.

R
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S
T

(i) bad RPS with a twin

R

P

S
T

(ii) bad RPS with a feeble twin

Figure 9.4.4: The Smith dynamic in two games.
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Figure 9.4.4(i) presents the Smith dynamic in “bad RPS with a twin”,

(9.14) F(x) = Ãx =


0 −l w w
w 0 −l −l
−l w 0 0
−l w 0 0



x1

x2

x3

x4

 .
The Nash equilibria of F are the states on line segment NE = {x∗ ∈ X : x∗ = ( 1

3 ,
1
3 , c,

1
3 − c)},

which is a repellor under the Smith dynamic. Furthermore, since Scissors and Twin always
earn the same payoffs (F3(x) ≡ F4(x)), we can derive a simple expression for the rate of
change of the difference between their utilization levels:

ẋ3 − ẋ4 =

∑
j∈S

x j[F3(x) − F j(x)]+ − x3

∑
j∈S

[F j(x) − F3(x)]+

(9.15)

−

∑
j∈S

x j[F4(x) − F j(x)]+ − x4

∑
j∈S

[F j(x) − F4(x)]+


= −(x3 − x4)

∑
j∈S

[F j(x) − F4(x)]+.

Intuitively, strategies lose agents at rates proportional to their current levels of use, but
gain strategies at rates that depend on their payoffs; thus, when the dynamics are not at
rest, the weights x3 and x4 move closer together. It follows that except at Nash equilibrium
states, the dynamic moves toward the plane P = {x ∈ X : x3 = x4} on which the identical
twins receive equal weight (see Exercise 9.4.6).

Figure 9.4.4(ii) presents the Smith dynamic in “bad RPS with a feeble twin”,

(9.16) Fε(x) = Ãεx =


0 −l w w
w 0 −l −l
−l w 0 0
−l − ε w − ε −ε −ε



x1

x2

x3

x4

 ,
where ε = 1

10 . Evidently, the attractor from the previous figure moves slightly to the left,
and the strictly dominated strategy Twin survives. Indeed, since the Nash equilibrium of
“RPS with a twin” on plane P puts mass 1

6 on Twin, when ε is small solutions to the Smith
dynamic in “RPS with a feeble twin” place mass greater than 1

6 on the strictly dominated
strategy Twin infinitely often. This lower bound is driven by the fact that in the game
with an exact twin, solutions converge to plane P; thus, the bound will obtain under any
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(ii) RPS with a feeble twin

Figure 9.4.5: The replicator dynamic in two games.

dynamic that treats different strategies symmetrically. §

Exercise 9.4.6. Show that under the Smith dynamic in “RPS with a twin”, solutions from
states not on the line of Nash equilibria NE converge to the plane P where the weights on
Scissors and Twin are equalized. (Hint: Use equation (9.15) and the Poincaré-Bendixson
Theorem. You may take as given that the set NE is a repellor.)

Example 9.4.7. Theorem 7.4.4 showed that dominated strategies are eliminated along inte-
rior solutions of imitative dynamics. But Theorem 9.4.1 shows that this result is not robust
to small changes in these dynamics.

To understand why, consider evolution under the replicator dynamic in “(standard)
RPS with a twin”. In standard Rock-Paper-Scissors, interior solutions of the replicator
dynamic are closed orbits (see, e.g., Section 9.1.1). When we introduce an exact twin,
equation (7.39) tells us that the ratio xS

xT
is constant along every solution trajectory. This is

evident in Figure 9.4.5(i), which shows that the planes on which the ratio xS
xT

is constant
are all invariant sets. If we make the twin feeble by lowering its payoff uniformly by ε, we
obtain the dynamics pictured in Figure 9.4.5(ii): now the ratio xS

xT
increases monotonically,

and the dominated strategy is eliminated.
The existence of a continuum of invariant hyperplanes under imitative dynamics in

games with identical twins is crucial to this argument. At the same time, dynamics with
a continuum of invariant hyperplanes are structurally unstable. If we fix the game but
slightly alter the agents’ revision protocol, these invariant sets can collapse, overturning
the elimination result.
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(ii) bad RPS with a feeble twin

Figure 9.4.6: The 9
10 replicator + 1

10 Smith dynamic in two games.

To make this argument concrete, suppose that instead of always following an imitative
protocol, agents occasionally use a protocol that requires direct evaluation of payoffs.
Such a situation is illustrated in Figure 9.4.6(i), which contains the phase diagram for
“bad RPS with a twin” (with w = 1 and l = 11

10 ) under a ( 9
10 ,

1
10 ) convex combination of the

replicator and Smith dynamics. While Figure 9.4.5(i) displayed a continuum of invariant
hyperplanes, Figure 9.4.6(i) shows almost all solution trajectories converging to a limit
cycle on the plane where xS = xT. If we make the twin feeble, the limit cycle moves slightly
to the left, as in Figure 9.4.6(ii), and the dominated strategy survives. §

Exercise 9.4.8. Show that an analogue of equation (7.39) holds for the projection dynamic
on int(X). Explain why this does not imply that dominated strategies are eliminated along
all solutions to the projection dynamic starting from interior initial conditions.

Appendix

9.A Three Classical Theorems on Nonconvergent Dynamics

9.A.1 Liouville’s Theorem

Let V : Rn
→ Rn be a C1 vector field, and consider the differential equation ẋ = V(x)

with flow φ : R × Rn
→ Rn. Let the set A ⊂ Rn be measurable with respect to Lebesgue
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measureµon Rn. Liouville’s Theorem concerns the time evolution ofµ(φt(A)), the measure
(or volume) of the time t image of A under φ.

Theorem 9.A.1 (Liouville’s Theorem). d
dtµ(φt(A)) =

∫
φt(A)

tr(DV(x)) dµ(x).

The quantity tr(DV(x)) =
∑

i
∂Vi
∂xi

(x) ≡ divV(x) is known as the divergence of V at x.
According to Liouville’s Theorem, divV governs the local rates of change in volume
under the flow φ of ẋ = V(x). In particular, if divV = 0 on an open set O ⊆ Rn—that is, if
V is divergence-free on this set—then the flow φ conserves volume on O.

Before proceeding with the proof of Liouville’s Theorem, let us note that it extends
immediately to cases in which the law of motion V : X → TX defined on an affine set
X ⊂ Rn with tangent space TX. In this case, µ represents Lebesgue measure on (the affine
hull of) X. The only cautionary note is that the derivative of V at state x ∈ X must be
represented using the derivative matrix DV(x) ∈ Rn×n, which by definition has rows in
TX. We showed how to compute this matrix in Appendix 3.B.3: if V̂ : Rn

→ Rn is a C1

extension of V, then DV(x) = DV̂(x)PTX, where PTX ∈ Rn×n is the orthogonal projection of
Rn onto the subspace TX.

Proof. Using the standard multivariate change of variable, we express the measure of
the set φt(A) as

(9.17) µ(φt(A)) =

∫
φt(A)

1 dµ(xt) =

∫
A

∣∣∣det(Dφt(x0))
∣∣∣ dµ(x0).

The derivative matrix Dφt(x0) in equation (9.17) captures changes in φt(x0), the time t
position of the solution to ẋ = V(x) from initial condition x0, as this initial condition is
varied. It follows from arguments below that det(Dφt(x0)) > 0, so that the absolute value
taken in equation (9.17) is unnecessary. Taking the time derivative of this equation and
then differentiating under the integral sign thus yields

(9.18) d
dtµ(φt(A)) =

∫
A

d
dt det(Dφt(x0)) dµ(x0).

Evaluating the right hand side of equation (9.18) requires two lemmas. The first of
these is stated in terms of the time inhomogeneous linear equation

(9.19) ẏt = DV(xt)yt,

where {xt} is the solution to ẋ = V(x) from initial condition x0. Equation (9.19) is known as
the (first) variation equation associated with ẋ = V(x).
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Lemma 9.A.2. The matrix trajectory {Dφt(x0)}t≥0 is the matrix solution to the first variation
equation from initial condition Dφ0(x0) = I ∈ Rn×n. More explicitly,

(9.20) d
dtDφt(x0) = DV(φt(x0)) Dφt(x0).

In words, Lemma 9.A.2 tells us that the column trajectories of {Dφt(x0)}t≥0 are the solutions
to the first variation equation whose initial conditions are the standard basis vectors
e1, . . . , en ∈ Rn.

Proof. By definition, the time derivative of the flow from x0 satisfies d
dtφt(x0) = V(φt(x0)).

Differentiating with respect to x0 and then reversing the order of differentiation yields
(9.20). �

Lemma 9.A.3 provides two basic matrix identities, the first of which is sometimes
called Liouville’s formula.

Lemma 9.A.3. Let M ∈ Rn×n. Then
(i) det(exp(M)) = exp(tr(M)).
(ii) d

dt det(exp(Mt))
∣∣∣
t=0

= tr(M).

Proving part (i) of the lemma is not difficult, but the intuition is clearest when M is a
diagonal matrix:

det

exp

 λ1 ··· 0
.
.
.

. . .
.
.
.

0 ··· λn

 = det

 eλ1 ··· 0
.
.
.

. . .
.
.
.

0 ··· eλn

 =
∏

i

eλi = exp

∑
i

λi

 = exp

tr

 λ1 ··· 0
.
.
.

. . .
.
.
.

0 ··· λn

 .
Part (ii) follows from part (i) by replacing M with Mt and differentiating.

Lemmas 9.A.2 and 9.A.3(ii) enable us to evaluate equation (9.18). First, note that
Lemma 9.A.2 and the linearity of the first variation equation imply that

Dφt(x0) ≈ exp(DV(x0)t)

when t is close to 0. Combining this observation with Lemma 9.A.3(ii) shows that

d
dt det(Dφt(x0)))

∣∣∣
t=0
≈

d
dt det(exp(DV(x0)t)) = tr(DV(x0)).

By substituting this equality into of equation (9.18) and noting that our focus on time t = 0
has been arbitrary, we obtain Liouville’s Theorem. �

Liouville’s Theorem can be used to prove the nonexistence of asymptotically stable
sets. Since solutions in a neighborhood of such a set all approach the set, volume must

351



be contracted in this neighborhood. It follows that a region in which divergence is
nonnegative cannot contain an asymptotically stable set.

Theorem 9.A.4. Suppose divV ≥ 0 on the open set O ⊆ Rn, and let A ⊂ O be compact. Then A
is not asymptotically stable under ẋ = V(x).

Theorem 9.A.4 does not rule out the existence of Lyapunov stable sets. In fact, the example
of the replicator dynamic in standard Rock-Paper-Scissors shows that such sets are not
unusual when V is divergence-free.

9.A.2 The Poincaré-Bendixson and Bendixson-Dulac Theorems

We now present two classical results concerning differential equations on the plane.
The celebrated Poincaré-Bendixson Theorem characterizes the possible long run behav-

iors of such dynamics, and provides a simple way of establishing the existence of periodic
orbits. Recall that a periodic (or closed) orbit of a differential equation is a nonconstant
solution {xt}t≥0 such that xT = x0 for some T > 0.

Theorem 9.A.5 (The Poincaré-Bendixson Theorem). Let V : R2
→ R2 be Lipschitz continu-

ous, and consider the differential equation ẋ = V(x).
(i) Let x ∈ R2. If ω(x) is compact, nonempty, and contains no rest points, then it is a periodic

orbit.
(ii) Let Y ⊂ R2. If Y is nonempty, compact, forward invariant, and contains no rest points,

then it contains a periodic orbit.

Theorem 9.A.5 tells us that in planar systems, the only possible ω-limit sets are rest
points, sequences of trajectories leading from one rest point to another (called heteroclinic
orbits where there are multiple rest points in the sequence and homoclinic orbits when there
is just one), and periodic orbits. In part (i) of the theorem, the requirement that ω(x) be
compact and nonempty are automatically satisfied when the dynamic is forward invariant
on a compact set—see Proposition 7.A.1.

The next result, the Bendixson-Dulac Theorem, provides a method of ruling out the
existence of closed orbits in planar systems. To state this theorem, we recall that a set
Y ⊂ R2 is simply connected if it contains no holes: more precisely, if every closed curve in
Y can be continuously contracted within Y to a single point.

Theorem 9.A.6 (The Bendixson-Dulac Theorem). Let V : R2
→ R2 be C1, and consider the

differential equation ẋ = V(x). If divV , 0 throughout the simply connected set Y, then Y does
not contain a closed orbit.
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Proof. If γ is a closed orbit in Y, then the region R bounded by γ is invariant under φ.
Thus

d
dtµ(φt(R)) =

∫
φt(R)

divV(x) dµ(x)

by Liouville’s Theorem. Since divV is continuous and nonzero throughout Y, its sign must
be constant throughout Y. If this sign is negative, then the volume of R contracts under
φ; if it is positive, then the volume of R expands under φ. Either conclusion contradicts
the invariance of R under φ. �

Both of the results above extend to dynamics defined on two-dimensional affine spaces
in the obvious way.

9.B Attractors and Continuation

9.B.1 Attractors and Repellors

Letφ be a semiflow on the compact set X ⊂ Rn: that is, φ : [0,∞)×X→ X is a continuous
map with φ0(x) = x that satisfies the group property φt(φs(x)) = φt+s(x) for all s, t ≥ 0 and
x ∈ X. We call the set A ⊆ X forward invariant under φ if φt(A) = A for all t ≥ 0. Note
that in this case, the sets {φt(A)}t≥0 are nested. We call A invariant under φ if φt(A) = A
for all t ∈ R. It is implicit in this definition that on the set A we have not only a semiflow,
but also a flow: on A , we can extend the map φ to be well-defined and satisfy the group
property not just for times in [0,∞), but also for times in (−∞,∞).

A set A ⊆ X is an attractor of φ if it is nonempty, compact, and invariant under φ, and
if there is a neighborhood U of A such that

(9.21) lim
t→∞

sup
x∈U

dist(φt(x),A) = 0.

The set B(A) = {x ∈ X : ω(x) ⊆ A} is called the basin of A .
The supremum operation in condition (9.21) ensures that states in the neighborhood

U are attracted to A uniformly in time. This uniformity is important: without it, the
rest point in the flow on the circle from Example 7.A.3 would be an attractor. Because of
the uniformity requirement, attractors differ from asymptotically stable sets (defined in
Appendix 7.A.2) only in that the latter need not be invariant.

Attractors can be defined in a number of equivalent ways. In the following proposition,
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the ω-limit of the set U ⊆ X is defined as

ω(U) =
⋂
t≥0

cl

⋃
s≥t

φs(U)

 .
Proposition 9.B.1. The following statements are equivalent:

(i) A is an attractor of φ.
(ii) A = ω(U) for some neighborhood U of A .
(iii) A =

⋂
t≥0 φt(O) for some open set O that satisfies φT(cl(O)) ⊂ O for some T > 0.

(iv) A =
⋂

t≥0 φt(O) for some open, forward invariant set O that satisfies φT(cl(O)) ⊂ O for
some T > 0.

(v) A =
⋂

t≥0 φt(O) for some open, forward invariant set O that satisfies φt(cl(O)) ⊂ O for all
t > 0.

In parts (iii), (iv), and (v), the set O is known as a weak trapping region, a trapping region,
and a strongly forward invariant trapping region, respectively.

Now suppose that φ : (−∞,∞) ×X→ X is a flow on X with attractor A , and let U be a
trapping region for A . The set A∗ =

⋂
t≤0 φt(X −U) is known as the dual repellor of A . A∗

is the α-limit of of a neighborhood of itself (i.e., it is the ω-limit of a neighborhood of itself
under the time-reversed version of φ); it is also nonempty, compact, and invariant under
φ.

The set C (A ,A∗) = X − (A ∪ A∗) is called the set of connecting orbits of the attractor-
repellor pair (A ,A∗). Theorem 9.B.2 shows that the behavior of the flow on this set is very
simple: it admits a strict Lyapunov function.

Theorem 9.B.2. Let (A ,A∗) be an attractor-repellor pair of the flow φ on the compact set X. Then
there exists a continuous function L : X→ [0, 1] with L−1(0) = A∗ and L−1(1) = A such that L is
strictly decreasing on C (A ,A∗) under φ.

If φ is only a semiflow, one can still find a continuous Lyapunov function L : X → [0, 1]
with L−1(1) = A that is strictly decreasing on C (A ,A∗).

Interestingly, the notion of chain recurrence introduced in Appendix 7.A.1 can be char-
acterized in terms of attractor-repellor pairs. In particular, the set CR of chain recurrent
states of the flow φ consists of those states found in every attractor-repellor pair of φ:

Theorem 9.B.3. CR =
⋂

(A ,A∗)(A ∪A∗).

By combining Theorems 9.B.2 and 9.B.3 with the fact that the number of attractor-repellor
pairs of φ is countable, one can establish the Fundamental Theorem of Dynamical Systems:
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Theorem 9.B.4. Let φ be a flow on a compact metric space X. Thenφ admits a Lyapunov function
L : X→ R that is strictly decreasing off CR and such that L(CR ) is a nowhere dense subset of R.

9.B.2 Continuation of Attractors

Consider now a one-parameter family of differential equations ẋ = Vε(x) in Rn with
unique solutions xt = φεt (x0) such that (ε, x) 7→ Vε(x) is continuous. Then (ε, t, x) 7→ φεt (x)
is continuous as well. Suppose that X ⊂ Rn is compact and forward invariant under the
semi-flows φε. For ε = 0 we omit the superscript in φ.

The following continuation theorem for attractors is part of the folklore of dynamical
systems.

Theorem 9.B.5. Let A be an attractor for φ with basin B(A). Then for each small enough
ε > 0 there exists an attractor Aε of φε with basin B(Aε), such that the map ε 7→ Aε is upper
hemicontinuous and the map ε 7→ B(Aε) is lower hemicontinuous.

Upper hemicontinuity cannot be replaced by continuity in this result. Consider the
family of differential equations ẋ = (ε + x2)(1 − x) on the real line. The semi-flow φ

corresponding to ε = 0 admits A = [0, 1] as an attractor, but when ε > 0 the unique
attractor of φε is Aε = {1}. This example shows that perturbations can cause attractors to
implode; the theorem shows that perturbations cannot cause attractors to explode.

Theorem 9.B.5 is a direct consequence of the following lemma.

Lemma 9.B.6. Let A be an attractor for φ with basin B(A), and let U1 and U2 be open sets
satisfying A ⊂ U1 ⊆ U2 ⊆ cl(U2) ⊆ B(A). Then for each small enough ε > 0 there exists an
attractor Aε of φε with basin B(Aε), such that Aε

⊂ U1 and U2 ⊂ B(Aε).

In this lemma, one can always set U1 = {x : dist(x,A) < δ} and U2 = {x ∈ B(A) :
dist(x,X − B(A)) > δ} for some small enough δ > 0.

Proof of Lemma 9.B.6. Since A is an attractor and ω(cl(U2)) = A , there is a T > 0 such
that φt(cl(U2)) ⊂ U1 for t ≥ T. By the continuous dependence of the flow on the parameter
ε and the compactness of φT(cl(U2)), we have that φεT(cl(U2)) ⊂ U1 ⊆ U2 for all small
enough ε. Thus, U2 is a weak trapping region for the semi-flow φε, and so Aε

≡ ω(U2)
is an attractor for φε. In addition, Aε

⊂ U1 (since Aε = φεT(Aε) ⊆ φεT(cl(U2)) ⊂ U1) and
U2 ⊂ B(Aε). �
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9.N Notes

Section 9.1. The conservative properties of dynamics studied in this chapter—the
existence of a constant of motion and the preservation of volume—are basic properties
of Hamiltonian systems. For more on this connection, see Akin and Losert (1984) and
Hofbauer (1995a, 1996); for a general introduction to Hamiltonian systems, see Marsden
and Ratiu (2002). Exercises 9.1.4 and 9.1.5 are due to Schuster et al. (1981b,c). Theorem
9.1.7 is due to Akin and Losert (1984) and Hofbauer (1995a), while Theorem 9.1.8 is due to
Hofbauer and Sigmund (1988) and Ritzberger and Weibull (1995) (also see Weibull (1995)).

Section 9.2. Circulant games were introduced by Hofbauer and Sigmund (1988), who
call them “cyclically symmetric games”; also see Schuster et al. (1981c). The hypercycle
system was proposed by Eigen and Schuster (1979) to model of cyclical catalysis in a
collection of polynucleotides during prebiotic evolution. That the boundary of the simplex
is repelling under the hypercycle system when n ≥ 5, a property known as permanence,
was established by Hofbauer et al. (1981); the existence of stable limit cycles in this context
was proved by Hofbauer et al. (1991).

Monocyclic games are studied in the context of the replicator dynamic by Hofbauer
and Sigmund (1988), who call them “essentially hypercyclic” games. The uniqueness of
the interior Nash equilibrium in Example 9.2.5 follows from the fact that the replicator dy-
namic is permanent in this game: see Theorems 19.5.1 and 20.5 of Hofbauer and Sigmund
(1988) (or Theorems 13.5.1 and 14.5.1 of Hofbauer and Sigmund (1998)). The analysis
of the best response dynamic in this example is due to Hofbauer (1995b), Gaunersdor-
fer and Hofbauer (1995), and Benaı̈m et al. (2006a). Lahkar (2007), building on work of
Hopkins and Seymour (2002), employs these results to establish the dynamic instability
of dispersed price equilibria in Burdett and Judd’s (1983) model of equilibrium price dis-
persion. Proposition 9.2.7 is due to Hofbauer and Swinkels (1996); also see Hofbauer and
Sigmund (1998, Section 8.6).

The Mismatching Pennies game was introduced by Jordan (1993), and was inspired
by a 3 × 3 example due to Shapley (1964); see Sparrow et al. (2008) for a recent analysis of
Shapley’s (1964) example. The analyses of the replicator and best response dynamics in
Mismatching Pennies are due to Gaunersdorfer and Hofbauer (1995). Proposition 9.2.11
is due to Hart and Mas-Colell (2003). The hypnodisk game is introduced in Hofbauer and
Sandholm (2006).

Section 9.3. For introductions to chaotic differential equations, see Hirsch et al. (2004)
at the undergraduate level or Guckenheimer and Holmes (1983) at the graduate level.
Example 9.3.1 is due to Arneodo et al. (1980), who introduce it in the context of the Lotka-
Volterra equations; also see Skyrms (1992). The attractor in this example is known as a
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Shilnikov attractor; see Hirsch et al. (2004, Chapter 16). Example 9.3.2 is due to Sato et al.
(2002).

Section 9.4. This section follows Hofbauer and Sandholm (2006). That paper builds on
the work of Berger and Hofbauer (2006), who establish that strictly dominated strategies
can survive under the BNN dynamic. For a survival result for the projection dynamic, see
Sandholm et al. (2008).

Section 9.A. For further details on Liouville’s Theorem, see Sections 4.1 and 5.3 of
Hartman (1964). Theorem 9.A.4 in the text is Proposition 6.6 of Weibull (1995). For
treatments of the Poincaré-Bendixson Theorem, see Hirsch and Smale (1974) and Robinson
(1995).

Section 9.B. The definition of attractor we use is from Benaı̈m (1999). Definition (ii)
in Proposition 9.B.1 is from Conley (1978), and definitions (iii), (iv), and (v) are from
Robinson (1995). Theorems 9.B.2, 9.B.3, and 9.B.4 are due to Conley (1978).

Theorem 9.B.5 is part of the folklore of dynamical systems theory; compare Proposition
8.1 of Smale (1967). The analysis presented here is from Hofbauer and Sandholm (2006).

357



358



Part IV

Stochastic Evolutionary Models
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CHAPTER

TEN

Stochastic Evolution and Deterministic Approximation

10.0 Introduction

In Parts II and III of this book, we investigated the evolution of aggregate behavior
under deterministic dynamics. We provided foundations for these dynamics in Chapter
4: there we showed that given any revision protocol ρ and population game F, we can
derive a mean dynamic ẋ = VF(x). This differential equation describes expected motion
under the stochastic process that ρ and F implicitly define. We justified our focus on this
deterministic equation through an informal appeal to a law of large numbers: since all of
the randomness in our evolutionary model is idiosyncratic, it should be averaged away
in the aggregate so long as the population size is sufficiently large.

Our goal in this chapter is to make this argument rigorous. To do so, we explicitly
derive a stochastic evolutionary process—a Markov process—from a given population
game F, revision protocol ρ, and finite population size N. Our main result in this chapter,
Theorem 10.2.3, is a finite horizon deterministic approximation theorem. Building on
our earlier intuition, the theorem shows that over any finite time span, the behavior of
the stochastic evolutionary process is indeed nearly deterministic: if the population size
is large enough, the stochastic process closely follows a solution trajectory of the mean
dynamic with probability close to one.

The Markov process we introduce in this chapter provides a precise description of
the stochastic evolution of aggregate behavior. Theorem 10.2.3 tells us that over time
horizons of moderate length, we can do without studying this Markov process directly,
as the deterministic approximation is adequate to address most questions of interest.
But if we want to understand behavior in a society over very long time spans, then the

361



deterministic approximation theorem no longer applies, and we must study the Markov
process directly. This infinite horizon analysis is the subject of our final chapter.

The remaining three chapters employ a variety of techniques from the theory of prob-
ability and stochastic processes. These techniques are reviewed in Appendices 10.A and
10.B and in the appendices to Chapters 11 and ??. In all of these chapters, we will only
consider single-population models in order to reduce the amount of notation. All of the
results we present can be extended to multipopulation models with little difficulty.

10.1 The Stochastic Evolutionary Process

We begin by developing the model of stochastic evolution introduced in Section 4.1.
We consider a population of agents who recurrently play a population game F : X → Rn

with pure strategy set S = {1, . . . ,n}. The agents’ choice procedure is described by a
revision protocol ρ : Rn

× X → Rn×n
+ that takes current payoffs and population states as

inputs and returns collections of conditional switch rate ρi j (F(x), x) as outputs.
To set the stage for our limiting analysis, we suppose now that the population size is

large but finite, with N members. The feasible social states therefore lie in the discrete
grid X N = X ∩ 1

N Zn = {x ∈ X : Nx ∈ Zn
}.

The stochastic process {XN
t } generated by F, ρ, N is described as follows. Each agent in

the society is equipped with a rate R Poisson alarm clock, where R < ∞ is an upper bound
on the row sums of ρ:

(10.1) R ≥ max
x,i

∑
j∈S

ρi j(F(x), x).

We will see that subject to satisfying this constraint, the choice of R is irrelevant to our
approximation results.

The ringing of a clock signals the arrival of a revision opportunity for the clock’s
owner: if the owner is currently playing strategy i ∈ S, he switches to strategy j , i
with probability ρi j/R. (Remember that the diagonal elements of ρ, though sometimes
useful as placeholders (see equation (4.1)), play no formal role in the model.) Finally, the
model respects independence assumptions that ensure that “the future is independent of
the past except through the present”: different agents’ clocks ring independently of one
another, strategy choices are made independently of the timing of the clocks’ rings, and
as evolution proceeds, the clocks and the agents are only influenced by the history of the
process by way of the current value of the social state.

In Chapter 4, we argued informally that the stochastic process described above is well
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approximated by solutions to the mean dynamic

(M) ẋi =
∑
j∈S

x jρ ji(F(x), x) − xi

∑
j∈S

ρi j(F(x), x).

The rest of this chapter provides a formal defense of this approximation result.
We begin by giving a more formal account of the stochastic evolutionary process {XN

t }.
The independence assumptions above ensure that {XN

t } is a continuous-time Markov
process on the finite state space X N. To describe this process explicitly, it is enough to
specify its jump rates {λN

x }x∈X N and transition probabilities {PN
xy}x,y∈X N (see Appendix 10.B).

If the current social state is x ∈ X N, then Nxi of the N agents are playing strategy
i ∈ S. Since agents receive revision opportunities independently at exponential rate R,
the basic properties of the exponential distribution (see Proposition 10.A.1) imply that
revision opportunities arrive in the society as a whole at exponential rate NR.

When an agent playing strategy i ∈ S receives a revision opportunity, he switches to
strategy j , i with probability ρi j/R. Since this choice is independent of the arrivals of
revision opportunities, the probability that the next revision opportunity goes to an agent
playing strategy i who then switches to strategy j is

Nxi

N
×
ρi j

R
=

xiρi j

R
.

This switch decreases the number of agents playing strategy i by one and increases the
number playing j by one, shifting the state by 1

N (e j − ei).
Summarizing this analysis yields the following observation, which specifies the pa-

rameters of the Markov process {XN
t }.

Observation 10.1.1. A population game F, a revision protocol ρ, and a population size N define
a Markov process {XN

t } on the state space X N. This process is described by some initial state
XN

0 = xN
0 , the jump rates λN

x = NR, and the transition probabilities

PN
x,x+z =



xiρi j(F(x), x)
R

if z = 1
N (e j − ei), i, j ∈ S, i , j,

1 −
∑
i∈S

∑
j,i

xiρi j(F(x), x)
R

if z = 0,

0 otherwise.
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10.2 Finite Horizon Deterministic Approximation

In the previous section, we formally defined the Markov process {XN
t } generated by a

population game F, a revision protocol ρ, and a population size N. Earlier, we introduced
the mean dynamic (M), an ordinary differential equation that captures the expected motion
of this process; solutions {xt} of (M) are continuous paths through the set of social states.
Can we say more precisely how the stochastic and deterministic processes are linked?

The main result in this chapter, Theorem 10.2.3, shows that when the population size N
is sufficiently large, the Markov process {XN

t } is well approximated over finite time spans
by the deterministic trajectory {xt}.

10.2.1 Kurtz’s Theorem

To begin, we state a general result on the convergence of a sequence {{XN
t }}
∞

N=N0
of

Markov processes with decreasing step sizes. We suppose that the process indexed by
N takes values in the state space X N = {x ∈ X : Nx ∈ Zn

}, and we let λN
∈ RX N

+ and
PN
∈ RX N

×X N

+ denote the jump rate vector and transition matrix of this process.
To simplify the definitions to follow, we let ζN

x be a random variable (defined on an
arbitrary probability space) whose distribution describes the stochastic increment of {XN

t }

from state x:

(10.2) P(ζN
x = z) = P

(
XN
τk+1

= x + z
∣∣∣XN

τk
= x

)
,

where τk is the time of the process’s kth jump. We then define the functions VN : X N
→ TX,

AN : X N
→ R, and AN

δ : X N
→ R by

VN(x) = λN
x Eζ

N
x ,

AN(x) = λN
x E

∣∣∣ζN
x

∣∣∣ ,
AN
δ (x) = λN

x E
∣∣∣∣ζN

x 1
{|ζN

x |>δ}

∣∣∣∣ .
VN(x), the product of the jump rate at state x and the expected increment per jump at x,
represents the expected increment per time unit from x under {XN

t }. VN is thus an alternate
definition of the mean dynamic of {XN

t }. In a similar vein, AN(x) is the expected absolute
displacement per time unit, while AN

δ (x) is the expected absolute displacement per time
unit due to jumps traveling further than δ.

With these definitions in hand, we can state the basic approximation result.

364



Theorem 10.2.1 (Kurtz’s Theorem). Let V : X → TX be a Lipschitz continuous vector field.
Suppose that for some sequence {δN

}
∞

N=N0
converging to 0, we have

lim
N→∞

sup
x∈X N

∣∣∣VN(x) − V(x)
∣∣∣ = 0,(10.3)

sup
N

sup
x∈X N

AN(x) < ∞, and(10.4)

lim
N→∞

sup
x∈X N

AN
δN (x) = 0,(10.5)

and that the initial conditions XN
0 = xN

0 converge to x0 ∈ X. Let {xt}t≥0 be the solution to the mean
dynamic

(M) ẋ = V(x)

starting from x0. Then for each T < ∞ and ε > 0, we have that

lim
N→∞

P

 sup
t∈[0,T]

∣∣∣XN
t − xt

∣∣∣ < ε = 1.

Fix a finite time horizon T < ∞ and an error bound ε > 0. Kurtz’s Theorem tells us that
when the index N is large, nearly all sample paths of the Markov process {XN

t } stay within
ε of a solution of the mean dynamic (M) through time T. By making N large enough, we
can ensure that with probability close to one, XN

t and xt differ by no more than ε for all t
between 0 and T (Figure 10.2.1).

What conditions do we need to reach this conclusion? Condition (10.3) demands that
as N grows large, the expected displacements per time unit VN converge uniformly to a
Lipschitz continuous vector field V. Lipschitz continuity of V ensures the existence and
uniqueness of solutions of the mean dynamic ẋ = V(x). Condition (10.4) requires that
the expected absolute displacement per time unit is bounded. Finally, condition (10.5)
demands that jumps larger than δN make vanishing contributions to the motion of the
processes, where {δN

}
∞

N=N0
is a sequence of constants that approaches zero.

The intuition behind Kurtz’s Theorem can be explained as follows. At each revision
opportunity, the increment in the process {XN

t } is stochastic. However, the expected
number of revision opportunities that arrive during the brief time interval I = [t, t + dt]
is of order λN

x dt. Whenever it does not vanish, this quantity grows without bound as
the population size N becomes large. Conditions (10.4) and (10.5) ensure that when N is
large, each increment in the state is likely to be small. This ensures that the total change
in the state during time interval I is small, so that jump rates and transition probabilities
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Figure 10.2.1: Kurtz’s Theorem.

vary little during this interval. Since during I there are a very large number of revision
opportunities, each generating nearly the same expected increment, intuition from the law
of large numbers suggests that the change in {XN

t } during the interval should be almost
completely determined by the expected motion of {XN

t }. This expected motion is captured
by the limiting mean dynamic V, whose solutions approximate the stochastic process {XN

t }

over finite time spans with probability close to one.

Exercise 10.2.2. Suppose that {XN
t } is a Markov process on X N = {0, 1

N , 2
N , . . . , 1} with

λN
x ≡ N. To ensure that 1

2 is always a state, restrict attention to even N. Give examples of
sequences of transition probabilities from state 1

2 that
(i) satisfy condition (10.3) of Kurtz’s Theorem, but not conditions (10.4) or (10.5);
(ii) satisfy conditions (10.3) and (10.5), but not condition (10.4);
(iii) satisfy conditions (10.3) and (10.4), but not condition (10.5).

(Hint: it is enough to consider transition probabilities under which VN(1
2 ) = 0.)

Guided by your answers to parts (ii) and (iii), explain intuitively what conditions (10.4)
and (10.5) require.

10.2.2 Deterministic Approximation of the Stochastic Evolutionary Pro-
cess

Returning to our model of evolution, we now use Kurtz’s Theorem to show that the
Markov processes {{XN

t }}
∞

N=N0
defined in Section 10.1 can be approximated by solutions to
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the mean dynamic (M) derived in Section 4.1.2.
To begin, we compute the expected increment per time unit VN(x) of the process {XN

t }.
Defining the random variable ζN

x as in equation (10.2) above, we find that

VN(x) = λN
x Eζ

N
x

= NR
∑
i∈S

∑
j,i

1
N

(e j − ei)P
(
ζN

x =
1
N

(e j − ei)
)

= NR
∑
i∈S

∑
j,i

1
N

(e j − ei)
xiρi j

R

=
∑
i∈S

∑
j∈S

(e j − ei) xiρi j

=
∑
j∈S

e j

∑
i∈S

xiρi j −

∑
i∈S

eixi

∑
j∈S

ρi j

=
∑
i∈S

ei

∑
j∈S

x jρ ji − xi

∑
j∈S

ρ ji

.
Thus, the vector field VN = V is independent of N, and is expressed more concisely as

(M) Vi(x) =
∑
j∈S

x jρ ji − xi

∑
j∈S

ρi j,

as we established using a different calculation in Section 4.1.2.
Conditions (10.4) and (10.5) of Kurtz’ Theorem require that the motions of the processes

{XN
t } not be too abrupt. To verify these conditions, observe that since |e j − ei| =

√
2 for any

distinct i, j ∈ Sp, the increments of {XN
t } are always either of length

√
2

N or of length zero. If

we choose δN =
√

2
N , this observation immediately implies condition (10.5):

AN
√

2
N

(x) = λN
x E

∣∣∣∣∣∣ζN
x 1{
|ζN

x |>
√

2
N

}
∣∣∣∣∣∣ = 0.

The observation also helps us verify condition (10.4):

AN(x) = λN
x E

∣∣∣ζN
x

∣∣∣ ≤ RN ×
√

2
N

=
√

2R.

With these calculations in hand, we can present the deterministic approximation theorem.

Theorem 10.2.3 (Deterministic Approximation of {XN
t }). Let {{XN

t }}
∞

N=N0
be the sequence of

stochastic evolutionary processes defined in Observation 10.1.1. Suppose that V = VN is Lipschitz
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continuous. Let the initial conditions XN
0 = xN

0 converge to state x0 ∈ X, and let {xt}t≥0 be the
solution to the mean dynamic (M) starting from x0. Then for all T < ∞ and ε > 0,

lim
N→∞

P

 sup
t∈[0,T]

∣∣∣XN
t − xt

∣∣∣ < ε = 1.

Choose a finite time span T and two small constants δ and ε. Then for all large enough
population sizes N, the probability that the process {XN

t } stays within ε of the deterministic
trajectory {xt} through time T is at least 1 − δ.

A key requirement of Theorem 10.2.3 is that V must be Lipschitz continuous, ensuring
that the mean dynamic (M) admits a unique solution from every initial condition in
X. This requirement is satisfied by members of the families of dynamics (imitative,
excess payoff, pairwise comparison) studied in Chapter 5, as well as the perturbed best
response dynamics from Chapter 6. The best response and projection dynamics, being
discontinuous, are not covered by Theorem 10.2.3, but it seems likely that deterministic
approximation results that apply to these dynamics can be proved (see the Notes).

It is well worth emphasizing that Theorem 10.2.3 is a finite horizon approximation result,
and that it cannot be extended to an infinite horizon result. To see why not, consider the
logit choice protocol (Example 4.2.5). Under this protocol, switches between all pairs of
strategies occur with positive probability regardless of the current state. It follows that the
induced Markov process {XN

t } is irreducible: there is a positive probability path between
each ordered pair of states in X N. As we shall see in Chapter 11, irreducibility implies that
every state in X N is visited infinitely often with probability one. This fact clearly precludes
an infinite horizon analogue of Theorem 10.2.3. Indeed, infinite horizon analysis of {XN

t }

requires a different set of tools, which we present in the next two chapters.

Example 10.2.4. Toss and switch. Suppose that agents play a game with strategy set S = {L,R}
using the constant revision protocol ρ, where ρLL = ρLR = ρRL = ρRR = 1

2 . Under the
simplest interpretation of this protocol, each agent receives revision opportunities at rate
1; upon receiving an opportunity, an agent flips a fair coin, switching strategies if the coin
comes up Heads.

For each population size N, the protocol generates a Markov process {XN
t }with common

jump rate λN
x ≡ N and transition probabilities

PN
x,x+z =


1
2xR if z = 1

N (eL − eR),
1
2xL if z = 1

N (eR − eL),
1
2 if z = 0.
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We can simplify the notation by replacing the vector state variable x = (xL, xR) ∈ X with
the scalar state variable x = xR ∈ [0, 1]. The resulting Markov process has common jump
rate λN

x ≡ N and transition probabilities

PN
x ,x +z =


1
2x if z = − 1

N ,
1
2 (1 − x ) if z = 1

N ,
1
2 if z = 0.

Its mean dynamic is thus

VN(x ) = λN
x Eζ

N
x

= N
(
(− 1

N ·
1
2x ) + ( 1

N ·
1
2 (1 − x ))

)
= 1

2 − x ,

regardless of the population size N. To solve this differential equation, we move the rest
point y = 1

2 to the origin using change of variable υ = x − 1
2 . The equation

υ̇ = ẋ = 1
2 − x = 1

2 − (υ + 1
2 ) = −υ

has the general solution υt = υ0 e−t, implying that

x t = 1
2 + (x 0 −

1
2 ) e−t.

Fix a time horizon T < ∞. Theorem 10.2.3 tells us that when N is sufficiently large, the
evolutionary process is very likely to stay very close to an almost deterministic trajectory;
this trajectory converges to state x = 1

2 , with convergence occurring at exponential rate 1.
If we instead fix the population size N and look at behavior over the infinite time

horizon (T = ∞), the process eventually splits off from the deterministic trajectory, visiting
all states in {0, 1

N , . . . , 1} infinitely often. We will consider the infinite horizon behavior of
this process in more detail in Example 11.2.1. §

Exercise 10.2.5. Consider a population playing game F using revision protocol ρ.
(i) Show that the resulting mean dynamic can be expressed as

ẋ = R(x)′x,
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where R(x) ∈ Rn×n is given by

Ri j(x) =

ρi j(x,F(x)) if i , j,

−
∑
k,i
ρik(x,F(x)) if i = j.

Note that when ρ is independent of F(x) and x as in the previous example, the
matrix R is independent of x as well. In this case we obtain the linear dynamic
ẋ = R′x, whose solutions can be expressed in closed form (see Appendix 8.B).

(ii) Suppose that ρi j = 1 for all i and j. Describe the parameters of the resulting
Markov process {XN

t }, and write down the corresponding mean dynamic. Show
that solutions to the mean dynamic take the form xt = x∗ + (x0 − x∗) e−nt, where
x∗ = 1

n1.

10.3 Extensions

10.3.1 Finite-Population Adjustments

In our model of individual choice, the revision protocolρwas defined independently of
the population size. In some cases, it is more appropriate to allow the revision protocol to
depend on N in some vanishing way—for example, to account for the effects of sampling
from a finite population, or for the fact that an agent whose choices are based on imitation
will not imitate himself. If we include these effects, then ρ varies with N, so the normalized
expected increments VN vary with N as well. Fortunately, Kurtz’s Theorem allows for
these sorts of effects so long as they are vanishing in size: examining condition (10.3), we
see that as long as the functions VN converge uniformly to a limiting mean dynamic V,
the finite horizon approximation continues to hold.

Finite population adjustments will play a more important role when we consider
infinite horizon behavior, where these adjustments can greatly simplify our calculations;
see especially Sections 11.3 and 11.4.

10.3.2 Discrete Time Models

It is also possible to prove deterministic approximation results for discrete time models
of stochastic evolution. To do so, we assume that the number of discrete periods that pass
per unit of clock time grows with the population size N. In this situation, one can employ
a discrete time version of Kurtz’s Theorem (Theorem 10.B.5 in Appendix 10.B.7), the
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requirements of which are direct analogues of those from Theorem 10.2.1 above.
So, let us suppose that when the population size is N, each discrete time period is

of duration dN = 1
NR , so that periods begin at times in the set TN = {0, dN, 2dN, . . .}. We

consider two specifications of the discrete time evolutionary process {XN
t }t∈TN .

Exercise 10.3.1. Discrete time model I: One revision opportunity per period. Suppose that during
each period, exactly one agent is selected at random and granted a revision opportunity,
with each agent being equally likely to be chosen. The chosen agent’s choices are then
governed by the conditional switch probabilities ρi j/R. Using Theorem 10.B.5, show that
Theorem 10.2.3 extends to this discrete time model.

Discrete time models can allow a possibility that our continuous time model cannot:
they permit many agents to switch strategies simultaneously. The next exercise shows
that deterministic approximation is still possible even when simultaneous revisions by
many agents are possible, so long as they are sufficiently unlikely.

Exercise 10.3.2. Discrete time model II: Random numbers of revision opportunities in each period.
Suppose that during each period, each agent tosses a coin that comes up heads with
probability 1

N . Every agent who tosses a head receives a revision opportunity; choices
for such agents are again governed by the conditional switch probabilities ρi j/R. Use the
Poisson Limit Theorem (Propositions 10.A.4(ii) and 10.A.5) and Theorem 10.B.5 to show
that Theorem 10.2.3 extends to this model. (Hint: In any given period, the number of
agents whose tosses come up heads is binomially distributed with parameters N and 1

N .)

Appendix

10.A The Exponential and Poisson Distributions

10.A.1 Basic Properties

The random variable T with support [0,∞) has an exponential distribution with rate λ,
denoted T ∼ exponential(λ), if its decumulative distribution is P(T ≥ t) = e−λt, so that its
density function is f (t) = λe−λt. A Taylor approximation shows that for small dt > 0,

(10.6) P(T ≤ dt) = 1 − e−λdt = 0 + λe−λ·0 dt + O
(
(dt)2

)
≈ λ dt.

Exponential random variables are often used to model the random amount of time that
passes before a certain occurrence: the arrival of a customer at a queue, the decay of
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a particle, and so on. We often describe the behavior of exponential random variables
using the rhetorical device of a “stochastic alarm clock” that rings after an exponentially
distributed amount of time has passed.

Some basic properties of the exponential distribution are listed next.

Proposition 10.A.1. Let T1, . . . ,Tn be independent with Ti ∼ exponential(λi). Then
(i) ETi = λ−1

i ;
(ii) P (Ti ≥ u + t |Ti ≥ u ) = P (Ti ≥ t) = e−λit;
(iii) If Mn = min{T1, . . . ,Tn} and In = argmin j T j , then Mn ∼ exponential(

∑n
i=1 λi),

P(In = i) = λi/
∑n

j=1 λ j, and Mn and In are independent.

Property (ii), memorylessness, says that if the time before one’s alarm clock rings is
exponentially distributed, then one’s beliefs about how long from now the clock will ring
do not depend on how long one has already been waiting. Together, this property and
equation (10.6) above tell us that until the time when the clock rings, the conditional
probability that it rings during the next dt times units is proportional to dt:

P (Ti ≤ t + dt |Ti ≥ t ) = P (Ti ≤ dt) ≈ λi dt

The exponential distributions are the only continuous distributions with these properties.
Property (iii) says that given a collection of independent exponential alarm clocks, then

the time until the first clock rings is itself exponentially distributed, the probability that a
particular clock rings first is proportional to its rate, and the time until the first ring and
the ringing clock’s identity are independent random variables. These facts are essential
to the workings of our stochastic evolutionary model.

Proof. Parts (i) and (ii) are easily verified. To establish part (iii), set λ =
∑n

i=1 λi, and
compute the distribution of Mn as follows:

P(Mn ≥ t) = P
(⋂n

i=1
{Ti ≥ t}

)
=

∏n

i=1
P(Ti ≥ t) =

∏n

i=1
e−λit = e−λt.

To prove the remaining claims from part (iii), observe that

P
(⋂

j,i
{Ti ≤ T j} ∩ {Ti ≥ t}

)
=

∫
∞

t

(∏
j,i

∫
∞

ti

λ j e−λ jt j dt j

)
λi e−λiti dti(10.7)

=

∫
∞

t

(∏
j,i

e−λ jti

)
λi e−λiti dti

=

∫
∞

t
λi e−λti dti
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= (λi/λ) e−λt.

Setting t = 0 in equation (10.7) yields P(In = i) = λi/λ, and an arbitrary choice of t shows
that P(Mn ≥ t, In = i) = P(Mn ≥ t)P(In = i). �

A random variable R has a Poisson distribution with rate λ, denoted R ∼ Poisson(λ), if
P(R = r) = e−λλr/r! for all r ∈ {0, 1, 2, . . .}. Poisson random variables are used to model the
number of occurrences of rare events (see Propositions 10.A.3 and 10.A.4). Two of their
basic properties are listed below.

Proposition 10.A.2. If R1, . . . ,Rn are independent with Ri ∼ Poisson(λi), then
(i) E(Ri) = λi;
(ii)

∑n
j=1 R j ∼ Poisson(

∑n
j=1 λ j).

Proof. (i) E(Ri) =

∞∑
r=1

r e−λi
(λi)r

r!
=

∞∑
r=1

λi e−λi
(λi)r−1

(r − 1)!
= λi

∞∑
s=0

e−λi
(λi)s

s!
= λi.

(ii) When n = 2, we can compute that

P(R1 + R2 = r) =

r∑
r1=0

P(R1 = r1)P(R2 = r − r1) =

r∑
r1=0

e−λ1
(λ1)r1

r1!
e−λ2

(λ2)r−r1

(r − r1)!

= e−(λ1+λ2)
r∑

r1=0

(λ1)r1(λ2)r−r1

r1! (r − r1)!
= e−(λ1+λ2) (λ1 + λ2)r

r!
,

where the final equality follows from the binomial expansion

(λ1 + λ2)r =

r∑
r1=0

r!
r1! (r − r1)!

(λ1)r1(λ2)r−r1 .

Iterating yields the general result. �

The exponential and Poisson distributions are fundamentally linked. Let {Ti}
∞

i=1 be a
sequence of i.i.d. exponential(λ) random variables. We can interpret T1 as the first time that
an exponential alarm clock rings, T2 as the interval between the first and second rings,
and Tk as the interval between the (k − 1)st and kth rings. In this interpretation, the sum
Sn =

∑n
k=1 Tk represents the time of the nth ring, while Rt = max{n : Sn ≤ t} represents the

number of rings through time t. Figure 10.A.1 presents a single realization of the ring time
sequence {Sn}

∞

n=1 and the number-of-rings process {Rt}t≥0.
Proposition 10.A.3 derives the distribution of Rt, establishing a key connection between

the exponential and Poisson distributions.
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Figure 10.A.1: Ring times Sn and numbers of rings Rt of an exponential alarm clock.

Proposition 10.A.3. Rt ∼ Poisson(λt).

Proof. To begin, we prove that Sn has density

(10.8) fn(t) = λe−λt (λt)n−1

(n − 1)!
.

This formula is obviously correct when n = 1. Suppose it is true for some arbitrary n.
Then using the convolution formula fX+Y(z) =

∫
∞

−∞
fY(z − x) fX(x) dx, we find that

fn+1(t) =

∫ t

0
fn(t − s) f1(s)ds =

∫ t

0
λ

(λ(t − s))n−1

(n − 1)!
e−λ(t−s)

× λe−λsds = λe−λt (λt)n

n!
.

Next, we show that this equation implies that Sn has cumulative distribution

P(Sn ≤ t) =

∞∑
m=n

e−λt (λt)m

m!
.

Since
∑
∞

m=0
(λt)m

m! = eλt, this statement is equivalent to

P(Sn ≤ t) = 1 −
n−1∑
m=0

e−λt (λt)m

m!
.

Differentiating shows that this expression is in turn equivalent to the density of Sn taking
form (10.8), as established above.

To complete the proof, we express the event that at least n rings have occurred by time
t in two equivalent ways: {Rt ≥ n} = {Sn ≤ t}. This observation and the expression for
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P(Sn ≤ t) above imply that

P(Rt = n) = P(Rt ≥ n) − P(Rt ≥ n + 1) = P(Sn ≤ t) − P(Sn+1 ≤ t) = e−λt (λt)n

n!
. �

10.A.2 The Poisson Limit Theorem

Proposition 10.A.3 shows that the Poisson distribution describes the number of rings
of an exponential alarm clock during a fixed time span. We now establish a discrete
analogue of this result.

The random variable Xp has a Bernoulli distribution with parameter p ∈ [0, 1], denoted
Xp
∼ Bernoulli(p), if P(Xp = 1) = p and P(Xp = 0) = 1 − p. Let {Xp

i }
n
i=1 be a sequence of

i.i.d. Bernoulli(p) random variables (e.g. coin tosses), and let Sp
n =

∑n
i=1 Xp

i denote their sum
(the number of heads in n tosses). Then Sp

n has a binomial distribution with parameters n
and p (Sp

n ∼ binomial(n, p)):

P(Sp
n = s) =

 n
s

 ps(1 − p)n−s for all s ∈ {0, 1, . . . ,n}.

Finally, the random variable Z has a standard normal distribution (Z ∼ N(0, 1)) if its density
function is f (z) = 1

√
2π

exp(− z2

2 ).
Proposition 10.A.4 considers the behavior of the binomial random variables Sp

n when
the number of tosses n becomes large. Recall that the sequence of random variables
{Yn}

∞

n=1 with distribution functions {Fn}
∞

n=1 converges in distribution (or converges weakly)
to the random variable Y with distribution function F (denoted Yn ⇒ Y, or Fn ⇒ F) if
limn→∞ Fn(x) = F(x) at all points x ∈ R at which F is continuous.

Proposition 10.A.4. Let Sp
n ∼ binomial(n, p). Then as n→∞,

(i) Sp
n−np
√

np(1−p)
⇒ Z, where Z ∼ N(0, 1).

(ii) Sλ/nn ⇒ Rλ where Rλ
∼ Poisson(λ).

If we increase the number of tosses n of a coin whose bias p is fixed, the Central Limit
Theorem tells us that the distribution of the number of heads Sp

n approaches a normal
distribution. (In statement (i), we subtract the mean ESp

n = np off of Sp
n and then divide by

the standard deviation SD(Sp
n) =

√
np(1 − p) to obtain convergence to a fixed distribution.)

Suppose instead that as we increase the number of tosses n, we decrease the probability
of heads p in such a way that the expected number of heads np = λ remains fixed. Then
statement (ii), the Poisson Limit Theorem, tells us that the distribution of Sp

n approaches a
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Poisson distribution. The basic calculation needed to prove this is as follows:

P(Sλ/nn = s) =
n!

s!(n − s)!

(
λ
n

)s (
1 −

λ
n

)n−s

=
(
1 −

λ
n

)n λs

s!
×

(
1 −

λ
n

)−s n!
(n − s)! ns

= P(Rλ = s) ×
(1 − λ

n )n

e−λ
×

s−1∏
r=0

n − r
n − λ

→ P(Rλ = s).

The second term of the penultimate expression above is independent of s and is less than
1 (because (1− λ

n )n increases to e−λ), while the final term attains its maximum over s when
s = bλ + 1c and decreases to 1 as n grows large. Together, these observations yield the
following upper bound, which is needed in Exercise 10.3.2.

Proposition 10.A.5. P(Sλ/nn = s) ≤ CλP(Rλ = s) for some Cλ
∈ R independent of n and s.

10.B Countable State Markov Processes

10.B.1 Countable Probability Models

We begin our review of probability theory by discussing probability models with a
countable sample space. A countable probability model is a pair (Ω,P), where the sample
space Ω is a finite or countable set, 2Ω is the set of all subsets of Ω, and P : 2Ω

→ [0, 1]
is a probability measure: that is, a function satisfying P(∅) = 0, P(Ω) = 1, and countable
additivity: if {Ak} is a finite or countable collection of disjoint events (i.e., subsets of Ω), then
P(

⋃
k Ak) =

∑
k P(Ak).

A random variable X is a function whose domain is Ω. The distribution of X is defined
by P(X ∈ A) = P(ω ∈ Ω : X(ω) ∈ A) for all subsets A of the range of X. To define a finite
collection of discrete random variables {Xk}

n
k=1, we specify a probability model (Ω,P) and

then define the random variables as functions on Ω. To interpret this construction, imagine
picking anω at random from the sample space Ω according to the probability distribution
P. The value of ω so selected determines the realizations X1(ω),X2(ω), . . . ,Xn(ω) of the
entire sequence of random variables X1,X2, . . .,Xn.

Example 10.B.1. Repeated rolls of a fair die. Suppose we would like to construct a sequence of
random variables {Xk}

n
k=1, where Xk is to represent the kth roll of a fair die. To accomplish

this, we let R = {1, 2, 3, 4, 5, 6} be the set of possible results of an individual roll, and let
the sample space be the set of n-vectors Ω = Rn, with typical element ω = (ω1, . . ., ωn). To
define the probability measure P, it is enough to let P({ω}) = ( 1

6 )n for all ω ∈ Ω; additivity
then determines the probabilities of all other events in 2Ω.
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The random variables Xk can then be defined as coordinate functions: Xk(ω) = ωk for all
ω ∈ Ω and k ∈ {1, . . .,n}. Observe once again that by randomly selecting an ω ∈ Ω, we
determine the realizations of all n random variables. Since

P(Xk = xk) = P(ω ∈ Ω : Xk(ω) = xk) = P(ω ∈ Ω : ωk = xk) = 1
6

for all xk ∈ R, the random variables Xk have the correct marginal distributions. Moreover,
if Ak ⊆ R for k ∈ {1, . . .,n}, it is easy to confirm that

P

 n⋂
k=1

{Xk ∈ Ak}

 =

n∏
k=1

P(Xk ∈ Ak),

so the Xk are independent, as desired. §

The expected value of a random variable is its integral with respect to the probability
measure P. In the case of the kth die roll,

EXk =

∫
Ω

Xk(ω) dP(ω) =
∑
ω∈Ω

ωk P(ω) =
∑
ωk∈R

ωk

∑
ω−k

P(ωk, ω−k)

 =

6∑
i=1

i × 1
6 = 31

2 .

We can create new random variables out of old ones using functional operations. For
instance, the total of the results of the n die rolls is a new random variable Sn defined by
Sn =

∑n
k=1 Xk, or, more explicitly, by Sn(ω) =

∑n
k=1 Xk(ω) for all ω ∈ Ω.

10.B.2 Uncountable Probability Models and Measure Theory

While the constructions above are sufficient for finite collections of discrete random
variables, they do not suffice when individual random variables take an uncountable
number of values, or when we are interested in infinite numbers of random variables.
To handle these situations, we need the sample space Ω to be uncountable: that is, not
expressible as a sequence of elements.

Unfortunately, uncountable sample spaces introduce a serious new technical difficulty.
As an illustration, suppose we want to construct a random variable representing a uniform
draw from the unit interval. It is natural to choose Ω = [0, 1] as our sample space and to
define our random variable as the identity function on Ω: that is, X(ω) = ω. But then we
encounter a major difficulty: it is impossible to define a countably additive probability
measure P that specifies the probability of every subset of Ω.

To resolve this problem, one chooses a set of subsets F ⊆ 2Ω whose probabilities will
be specified, and then introduces corresponding restrictions on the definition of a random
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variable. A random variable satisfying these restrictions is said to be measurable, and this
general approach to studying functions defined on uncountable domains is known as
measure theory.

To summarize some of the foregoing discussion: an uncountable probability model con-
sists of a triple (Ω,F ,P), where Ω is a sample space, F ⊆ 2Ω is a collection (more specif-
ically, a σ-algebra) of subsets of Ω, and P : F → [0, 1] is a countably additive probability
measure.

Suppose we would like to study a collection of random variables described by some
prespecified joint distributions. How do we know whether it is possible to construct
these random variables on some well-chosen probability space? Happily, as long as
the marginal and joint distributions satisfy certain obviously necessary consistency con-
ditions, existence of the probability space and the random variables is ensured by the
Carathéodory Extension Theorem and the Kolmogorov Extension Theorem.

10.B.3 Distributional Properties and Sample Path Properties

The reader may wonder why we bother with the explicit construction of random
variables. After all, once we specify the joint distributions of the basic random variables
of interest, we also determine the joint distributions of any random variables that can be
derived from our original collection. Why not work entirely in terms of these distributions
and avoid the explicit construction of the random variables altogether?

If we are only interested in distributional properties of our random variables, explicit
construction of the random variables is not essential. However, many key results in
probability theory concern not the distributional properties of random variables, but rather
their sample path properties. These are properties of realization sequences: i.e., the sequences
of values X1(ω),X2(ω),X3(ω), . . . that arise for each choice of ω ∈ Ω. The differences
between the two sorts of properties can be illustrated through a simple example.

Example 10.B.2. Consider the probability model (Ω,P) with sample space Ω = {−1, 1} and
probability measure P({−1}) = P({1}) = 1

2 . Define the sequences of random variables
{Xi}

∞

i=1 and {X̂i}
∞

i=1 as follows:

Xi(ω) = ω;

X̂i(ω) =

−ω if i is odd,

ω if i is even.

If we look only at marginal distributions, {Xi}
∞

i=1 and {X̂i}
∞

i=1 are identical, as both sequences
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Figure 10.B.1: Distributional properties of X and X̂.
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Figure 10.B.2: Sample path properties of X and X̂.

consist of random variables equally likely to have realizations –1 and 1. But from the
sample path point of view, the two sequences are different: for either choice of ω, the
sequence {Xi(ω)}∞i=1 is constant, while the sequence {X̂i(ω)}∞i=1 alternates between 1 and -1
forever.

We illustrate these ideas in Figures 10.B.1 and 10.B.2, which provide graphical repre-
sentations of our two sequences of random variables. In these pictures, the vertical axis
represents the sample space Ω, the horizontal axis represents indices (or “times”) of the
trials, and the interiors of the figures contain the realizations Xi(ω) and X̂i(ω). To focus
on distributional properties of a sequence of random variables, we focus on the collection
of outcomes in each vertical section of the picture (Figure 10.B.1). In this respect, each
Xi is identical to its partner X̂i, and in fact all of the random variables in both sequences
share the same distribution. To focus on sample path properties, we look instead at the
sequences of outcomes in each horizontal slice of each picture (Figure 10.B.2). By doing so,
we see that for each ω, the sample path {Xi(ω)}∞i=1 is quite different from the sample path
{X̂i(ω)}∞i=1. §

Example 10.B.3. Properties of i.i.d. random variables. The distinction between distributional
properties and sample path properties can be used to classify the fundamental theorems
about sequences of i.i.d. random variables. Let {Xi}

∞

i=1 be a sequence of i.i.d. random
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variables, each of which is a function on the (uncountable) probability space (Ω,F ,P).
For simplicity, assume that each Xi has mean zero and variance one. Then the sum
Sn =

∑n
i=1 Xi has mean zero and variance n, while the sample average Xn = Sn/n has mean

zero and variance 1
n .

The laws of large numbers concern the convergence of the sample averages Xn as the
number of trials n grows large. The Weak Law of Large Numbers is a distributional result:
as n goes to infinity, the distributions of the random variables Xn approach a point mass
at 0.

The Weak Law of Large Numbers : For all ε > 0, lim
n→∞

P
(
Xn ∈ [−ε, ε]

)
= 1.

In contrast, the Strong Law of Large Numbers is a sample path result: for almost every choice
of ω ∈ Ω, the sequence of realizations {Xn(ω)}∞n=1 converges to zero.

The Strong Law of Large Numbers: P
(
ω ∈ Ω : lim

n→∞
Xn(ω) = 0

)
= 1.

Note that while the WLLN can be stated directly in terms of distributions, the SLLN only
makes sense if our random variables are defined as functions on a probability space.

A second pair of results focuses on variation. The Central Limit Theorem concerns dis-
tributions: as n goes to infinity, the distributions of the normalized sums Sn/

√
n converge

to the standard normal distribution.

The Central Limit Theorem: lim
n→∞

P

(
Sn
√

n
∈ [a, b]

)
=

∫ b

a

1
√

2π
e−x2/2 dx.

The Law of the Iterated Logarithm looks at variation within individual sample paths:
for almost every choice of ω ∈ Ω, the sequence of realizations {Sn(ω)}∞n=1 exceeds (1 −
ε)

√
2n log log n infinitely often, but exceeds (1 + ε)

√
2n log log n only finitely often.

The Law of the Iterated Logarithm: P

ω ∈ Ω : lim sup
n→∞

Sn(ω)√
2n log log n

= 1

 = 1. §

In Chapter 11, we present distributional and sample path convergence theorems for
Markov processes; these results are the key to describing the evolution of behavior over
infinite time horizons.

10.B.4 Countable State Markov Chains

Markov chains and Markov processes are collections of random variables {Xt}t∈T with
the property that “the future only depends on the past through the present”. We focus on
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settings where these random variables take values in some finite or countable state space
X . (Of course, even if the state space X is countable, the random variables Xt : Ω→ X must
be defined on a probability model with an uncountable sample space Ω if the set of times T is
infinite.) We use the terms “Markov chain” and “Markov process” to distinguish between
the discrete time (T = {0, 1, . . .}) and continuous time (T = [0,∞)) frameworks. (Some
authors use these terms to distinguish between discrete and continuous state spaces.)

The sequence of random variables {Xt} = {Xt}
∞

t=0 is a Markov chain if it satisfies the
Markov property:

P (Xt+1 = xt+1 |X0 = x0, . . . ,Xt = xt ) = P (Xt+1 = xt+1 |Xt = xt )

for all times t ∈ {0, 1, . . .} and all collections of states x0, . . . , xt+1 ∈ X for which the con-
ditional expectations are well defined. We only consider temporally homogeneous Markov
chains, which are Markov chains whose one-step transition probabilities are independent
of time:

P
(
Xt+1 = y |Xt = x

)
= Pxy.

We call the matrix P ∈ RX×X
+ the transition matrix for the Markov chain {Xt}. The vector

π ∈ RX
+ defined by P(X0 = x) = πx is the initial distribution of {Xt}; when π puts all of its

mass on a single state x0, we call x0 the initial condition or the initial state. The vector π and
the matrix P fully determine the joint distributions of {Xt} via

P (X0 = x0, . . . ,Xt = xt) = πx0

t∏
s=1

Pxs−1xs .

Since certain properties of Markov chains do not depend on the initial distribution π, it is
sometimes left unspecified.

Finally, it is easy to verify by induction that the the t step transition probabilities of
{Xt} are given by the entries of the tth power of the transition matrix:

P
(
Xt = y |X0 = x

)
= (Pt)xy.

10.B.5 Countable State Markov Processes: Definition and Construction

A (temporally homogeneous) Markov process on the countable state space X is a collection
of random variables {Xt} = {Xt}t≥0 with continuous time index t. This collection must
satisfy the following three properties:
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(MP) The (continuous time) Markov property:
P

(
Xtk+1 = xtk+1

∣∣∣Xt0 = xt0 , . . . ,Xtk = xtk

)
= P

(
Xtk+1 = xtk+1

∣∣∣Xtk = xtk

)
for all

0 ≤ t0 < . . . < tk+1 and xt0 , . . ., xtk+1 ∈ X with P
(
Xt0 = xt0 , . . . ,Xtk = xtk

)
> 0.

(TH) Temporal homogeneity:
P

(
Xt+u = y |Xt = x

)
= Pxy(u) for all t,u ≥ 0.

(RCLL) Right continuity and left limits:
For every ω ∈ Ω, the sample path {Xt(ω)}t≥0 is continuous from the right

and has left limits. That is, lims↓t Xs(ω) = Xt(ω) for all t ∈ [0,∞), and
lims↑t Xs(ω) exists for all t ∈ (0,∞).

While conditions (MP) and (TH) are restrictions on the (joint) distributions of {Xt}, condi-
tion (RCLL) is a restriction on the sample paths of {Xt}.

Processes satisfying the distributional requirements (MP) and (TH) must take this form:
there must be an initial distribution π ∈ RX

+ , a jump rate vector λ ∈ RX
+ , and a transition

matrix P ∈ RX×X
+ such that

(i) The initial distribution of the process is given by P(X0 = x) = πx.
(ii) When the process is in state x, the random time before the next jump is exponentially

distributed with rate λx.
(iii) The state at which a jump from x lands follows the distribution {Pxy}y∈X. (Note that

the landing state can be x itself if Pxx > 0.)
(iv) Times between and landing states of jumps are independent of each other, and are

also independent of the past conditional on the current state.

The objects π, λ, and P implicitly define the joint distributions of the random variables
{Xt}, so the Kolmogorov Extension Theorem (Section 10.B.2) tells us that a collection of
random variables with these joint distributions exists (i.e., can be defined as functions on
some well chosen probability space). However, Kolmogorov’s Theorem does not ensure
that the random variables so constructed satisfy the sample path continuity property
(RCLL).

Fortunately, it is not too difficult to construct the process {Xt} explicitly. Let {Yk}
∞

k=0 be
a discrete time Markov chain with initial distribution π and transition matrix P, and let
{Tk}

∞

k=1 be a sequence of i.i.d. exponential(1) random variables that are independent of the
Markov chain {Yk}. (Since both of these collections are countable, questions of sample
path continuity do not arise; the existence of these random variables as functions defined
on a common probability space is ensured by Kolmogorov’s Theorem.)
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Define the random jump times {τn}
∞

n=0 by τ0 = 0 and

τn =

n∑
k=1

Tk

λYk−1

, so that τn − τn−1 =
Tn

λYn−1

.

Finally, define the process {Xt}t≥0 by

Xt = Yn when t ∈ [τn, τn+1).

The process {Xt} begins at some initial state X0 = Y0 = y0. It remains there for the random
duration τ1 ∼ exponential(λy0), at which point a transition to some new state Xτ1 = Y1 = y1

occurs; the process then remains at y1 for the random duration τ2 − τ1 ∼ exponential(λy1),
at which point a transition to Xτ2 = Y2 = y2 occurs; and so on. By construction, the sample
paths of {Xt} are right continuous with left limits, and it is easy to check that the joint
distributions of {Xt} are the ones we desire.

Example 10.B.4. The Poisson Process. Consider a Markov process {Xt} with state space
X = Z+, initial condition X0 = 0, jump rates λx = λ > 0 for all x ∈ X , and transition matrix
Pxy = 1{y=x+1} for all x, y ∈ X . Under this process, jumps arrive randomly at the fixed rate
λ, and every jump increases the state by exactly one unit. A Markov process fitting this
description is called a Poisson process.

By the definition of this process,

(P1) The waiting times τn – τn−1 are i.i.d. with τn – τn−1 ∼ exponential(λ)
(n ∈ {1, 2, . . . }).

In fact, it can be shown that under the sample path continuity condition (RCLL), condition
(P1) is equivalent to

(P2) The increments Xtn − Xtn−1 are independent random variables,
and (Xtn − Xtn−1) ∼ Poisson(λ(tn − tn−1)) (0 < t1 < . . . < tn).

Proposition 10.A.3 established part of this result: it showed that if condition (P1) holds,
then Xt ∼ Poisson(λt) for all t > 0. But the present result says much more: a “pure birth
process” whose waiting times are i.i.d. exponentials is not only Poisson distributed at each
time t; in fact, all increments of the process are Poisson distributed, and nonoverlapping
increments are stochastically independent. Conversely, if one begins with the assumption
that the increments of the process are independent and Poisson, then the waits between
jumps must be i.i.d. and exponential. §
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10.B.6 Countable State Markov Processes: Transition Probabilities

The time t transition probabilities of a countable state Markov process can be expressed
in an appealingly simple form. To avoid the use of infinite-dimensional matrices, we focus
here on the case of a finite state space X ; however, versions of the results below also hold
when X is countably infinite.

Let {Xt} be a Markov process with jump rates λ ∈ RX
+ and transition matrix P ∈ RX×X

+ ,
and define

Pxy(t) = P
(
Xt = y |X0 = x

)
,

to be the time t transition probability from state x to state y. (The prevent the notations
for the transition matrix P and the time t transition probabilities P(t) from overlapping,
we always refer the collection of all of the latter as {P(t)}t≥0.) It is clear that P(0) = I, the
identity matrix. Note as well that since {Xt} is a Markov process, we have that

Pxy(s + t) = P
(
Xs+t = y |X0 = x

)
=

∑
z∈X

P (Xs = z |X0 = x )P
(
Xs+t = y |Xs = z

)
=

∑
z∈X

P (Xs = z |X0 = x )P
(
Xt = y |X0 = z

)
.

Expressing this result in matrix form, we conclude that the matrix trajectory {P(t)}t≥0 is a
semigroup:

(10.9) P(s + t) = P(s)P(t) for all s, t ≥ 0.

The key tool for studying the transition probabilities of a Markov process is its generator,

Q = diag(λ)(P − I) ∈ RX×X .

Using the fact that the row sums of P are 1, we can express the entries of Q as

Qxy =

λx Pxy if x , y,

−λx
∑

y,x Pxy if x = y.

Thus, for x , y, Qxy represents the rate of transitions from x to y, while −Qxx represents
the total rate of transitions away from x.
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To put the generator to work, notice that when τ > 0 is small, we have that

Pxy(τ) = P
(
Xτ = y |X0 = x

)
≈

τλx Pxy if x , y,

1 − τλx
∑
z,x

Px,z if x = y.

Expressing this in matrix notation, we obtain

(10.10) P(τ) ≈ I + τQ.

This equation explains why Q is sometimes referred to as the infinitesimal generator of {Xt}.
Using the semigroup property (10.9) and expression (10.10), we can informally derive

an exact expression for the transition probabilities of {Xt}. If we divide the time interval
[0, t] into n subintervals of length t

n , then applying (10.9) and (10.10) in turn yields

(10.11) P(t) = P( t
n t)n
≈

(
I + t

nQ
)n
.

Taking n to infinity, the analogy with the scalar formula limn→∞(1 +
q
n )n = eq suggests that

the right hand side of equation (10.11) should converge to the matrix exponential eQt (see
Appendix 8.B.2). And indeed, one can establish rigorously that the transition probabilities
can be expressed as

(10.12) P(t) = eQt
≡

∞∑
k=0

(Qt)k

k!
.

There are two ways of expressing (10.12) in differential form. Theorem 8.B.4 tells us
that (10.12) is a solution of the backward equation, which is the matrix differential equation
Ṗ(t) = QP(t). At the same time, since the matrices Q and P(t) = eQt commute, we can
rewrite the previous equation as Ṗ(t) = P(t)Q. This is known as the forward equation. The
trajectory P(t) = eQt is the unique solution to each of these linear differential equations
from initial condition P(0) = I.

10.B.7 Kurtz’s Theorem in Discrete Time

To obtain a deterministic approximation theorem for discrete time Markov chains, we
must assume that the length of a period with respect to clock time becomes vanishingly
small as the population size N increases. Let dN be the duration of a period under
the Markov chain {XN

t }, so that this chain is initialized at time 0 and has transitions at
times dN, 2dN, . . . . We can define {XN

t } at all times in [0,∞) by letting XN
t = XN

kdN when
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t ∈ [kdN, (k + 1)dN), making each sample path {XN
t (ω)} = {XN

t (ω)}t≥0 a step function whose
jumps occur at multiples of dN.

Theorem 10.B.5 (Kurtz’s Theorem in Discrete Time). Suppose that limN→∞ dN = 0. Define
the distributions of the random variables ζN

x by

P(ζN
x = z) = P

(
XN

(k+1)dN = x + z
∣∣∣XN

kdN = x
)
,

and define the functions VN,AN, and AN
δ by

VN(x) = 1
dNEζ

N
x , AN(x) = 1

dNE
∣∣∣ζN

x

∣∣∣ , and AN
δ (x) = 1

dNE
∣∣∣∣ζN

x 1
{|ζN

x |>δ}

∣∣∣∣ .
Then the conclusions of Theorem 10.2.1 hold for the sequence of Markov chains {{XN

t }}
∞

N=N0
.

10.N Notes

Section 10.2. Kurtz’s Theorem first appeared in Kurtz (1970). For an advanced textbook
treatment and further references, see Ethier and Kurtz (1986, Chapter 11).

The first formal results in the game theory literature akin to Theorem 10.2.3 focus
on specific revision protocols. Boylan (1995) shows how evolutionary processes based on
random matching schemes converge to deterministic trajectories when the population size
grows large. Binmore et al. (1995), Börgers and Sarin (1997), and Schlag (1998) consider
particular models of evolution that converge to the replicator dynamic. Binmore and
Samuelson (1999) prove a general deterministic approximation result for discrete time
models of evolution under a somewhat restrictive timing assumption. Sandholm (2003)
uses Kurtz’s Theorem to prove a general finite horizon convergence result. This paper also
shows that after spatial normalization, the behavior of {XN

t } near rest points of the mean
dynamic can be approximated by a diffusion. The strongest deterministic approximation
results can be found in Benaı̈m and Weibull (2003, 2008). These authors establish an
exponential bound on the probability of deviations of {XN

t } from solutions of the mean
dynamic. They also establish results relating the infinite horizon behavior of {XN

t } to the
mean dynamic; we introduce these results in Chapter 11.

While the results described above rely on the assumption that the mean dynamic is
Lipschitz continuous, we conjecture that that analogous results can be established in more
general settings—in particular, when the mean dynamic is not a differential equation at
all, but rather a differential inclusion. For related results in a somewhat different context,
see Benaı̈m et al. (2005).
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While we have focused here on the evolution of the distribution of behavior, Tanabe
(2006), building on work of Tanaka (1983) and Shiga and Tanaka (1985), proves results
about the evolution of the strategy profile: i.e., about the joint distribution of individual
agents’ choice trajectories. Suppose that at time 0, the N agents’ choices of strategies from
S are i.i.d. Then as N grows large, each agent’s random choice trajectory converges in
distribution to ν, the distribution of a certain time-inhomogeneous Markov process—a
so-called McKean process—taking values in S. Furthermore, the joint distribution of any
k individuals’ choice trajectories converges to the k-fold product of the measure ν. This
means that the independence of the k individuals’ choices at time 0 persists over any finite
time span, a phenomenon sometimes called propagation of chaos. One can further show that
the empirical distribution of the N agents’ choice trajectories also converges to the measure
ν. (Since ν is the (limiting) distribution of each individual’s stochastic choice trajectory,
this result is a generalization of the Glivenko-Cantelli Theorem (see Durrett (2005)).) Now
the time t marginal of this empirical distribution is none other than our state variable XN

t ,
so Theorem 10.2.3 tells us that the collection of time t marginals of ν is none other than
the solution to our mean dynamic (M). For an overview of the mathematical literature
relevant to this discussion, see Sznitman (1991).

Appendices 10.A and 10.B. Billingsley (1995) and Durrett (2005) are excellent graduate
level probability texts. The former book provides more thorough coverage of the topics
considered in this chapter, and contains an especially clear treatment of the Poisson
process. Norris (1997), Brémaud (1999), and Stroock (2005) are all excellent books on
Markov chains and Markov processes. The first of these is at an undergraduate level, the
last at a graduate level, and the middle one somewhere in between. Section 10.B.7 follows
Kurtz (1970).
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CHAPTER

ELEVEN

Stationary Distributions and Infinite Horizon Behavior

11.0 Introduction

The main result of Chapter 10 showed that over finite time spans, when the popu-
lation size is sufficiently large, the stochastic evolutionary process {XN

t } follows a nearly
deterministic path, closely shadowing a solution trajectory of the corresponding mean
dynamic (M). But if we look at longer time spans—that is, if we fix the population size of
interest and consider the position of the process at large values of t—the random nature
of the process must assert itself. In particular, if the revision protocol always assigns pos-
itive probabilities to transitions to all neighboring states in X N are always possible, then
{XN

t } will visit all states in X N infinitely often. Clearly, an infinite horizon approximation
theorem along the lines of Theorem 10.2.3 cannot hold.

To make predictions about play over very long time spans, we need new techniques for
characterizing infinite horizon behavior. While in the finite horizon context the basic object
of study is the ordinary differential equation (M), in the infinite horizon context it is the
stationary distributionµN of the Markov process {XN

t }. The stationary distribution is defined
by the property that a process {XN

t } run from this distribution will remain in it indefinitely.
But if {XN

t } is generated by a full support revision protocol, then the stationary distribution
describes the infinite horizon behavior of {XN

t } regardless of the initial distribution of
the process. In principle, this fact allows us to use the stationary distribution to form
predictions about very long run behavior that do not require knowledge of initial behavior.
This contrasts sharply with predictions based on deterministic dynamics, which typically
depend on the initial state.

In Section 11.1, we introduce full support revision protocols—protocols ensuring that all
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transition to neighboring states are possible—and the linked notion of irreducibility for
the stochastic evolutionary process {XN

t }. We then define the stationary distribution of
this process, and review the results from probability theory linking this distribution to
the infinite-horizon behavior of the process. For readers seeking additional probabilistic
background, Appendix 11.A offers a detailed presentation on long run behavior of Markov
chains and processes.

The remainder of the chapter focuses on settings in which the stationary distribution
of {XN

t } can be expressed in simple, explicit formulas: two-strategy games (Section 11.2),
and potential games with agents following the logit choice rule (Section 11.4). To obtain
clean results in the latter case, we must slightly alter our definitions of games and revision
protocols to account for finite-population effects; these alterations, which we also rely on
in the next chapter, are presented in Section 11.3.

While the stationary distribution offers a history-independent prediction of infinite-
horizon behavior, this prediction may be rather diffuse, placing significant weight on
many population states. But by considering extreme parameter values—by taking a
noise parameter to zero, or the population size to infinity—we can often ensure that the
stationary distribution places most of its weight near a single population state. Such states,
referred to as stochatically stable, provide us with a prediction behavior is not only unique,
but also tight. Moreover, this limiting analysis is often tractable when computations of the
stationary distribution for fixed parameter values are not. Since this analysis is based on
its own distinct techniques, we defer our presentation of stochastic stability theory until
Chapter ??.

Before proceeding, we should raise a broad critique of the analyses employed in this
chapter and the next. The unique predictions provided by stationary distributions are
only interesting if the time span of interest in the application at hand is long enough for
these predictions to be relevant. In settings where deterministic analyses offer multiple
predictions, the time spans necessary for infinite-horizon predictions to be of use are quite
long. This is all the more true if the noise level in agents’ decisions is very small, or
if the population size is very large, as assumed in analyses of stochastic stability. As
a general rule, deterministic dynamics, and the multiplicity of equilibria they typically
entail, should be the starting point for prediction in most applications involving large
numbers of agents. To the extent that they offer more refined predictions, stationary
distributions and stochastic stability should only be used when modeling interactions of
exceptional durability.
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11.1 Irreducibile Evolutionary Processes

11.1.1 Full Support Revision Protocols

Let us briefly review the construction of the stochastic evolutionary process {XN
t }

presented in Section 10.1, again focusing on the single-population setting. A population
of N agents recurrently plays the population game F : X → Rn. The agents are equipped
with independent rate R Poisson alarm clocks, and employ the revision protocol ρ :
Rn
× X → Rn×n

+ . When an i player’s clock rings, he switches to strategy j , i with
probability ρi j(F(x), x)/R.

This model defines a Markov process {XN
t } on the discrete state space X N = X∩ 1

N Zn =

{x ∈ X : Nx ∈ Zn
}. The process is characterized by the common jump rate λN

x ≡ NR and
the transition probabilities

(11.1) Pxy =



xiρi j(F(x), x)
R

if y = x + 1
N (e j − ei), j , i,

1 −
∑
i∈S

∑
j,i

xiρi j(F(x), x)
R

if y = x,

0 otherwise.

To ensure that transition probabilities are well-defined, we assume that the clock rate
R is an upper bound on the row sums of the revision protocol ρ (see equation (10.1)).
To introduce the possibility of unique infinite-horizon predictions, we now assume in
addition that the conditional switch rates are bounded away from zero: there is a positive
constant R such that

(11.2) ρi j(F(x), x) ≥ R for all i, j ∈ S and x ∈ X.

We refer to a revision protocol that satisfies condition (11.2) as having full support.

Example 11.1.1. Logit choice. Of the revision protocols underlying the six basic dynamics
studied in Chapters 5 and 6, the only one satisfying the full support condition (11.2) is the
logit choice protocol with noise level η > 0, defined by

ρi j(π, x) =
exp(η−1π j)∑

k∈S exp(η−1πk)
. §

In Section 6.2, we derived the logit choice protocol from the assumption that agents
play optimally in response to perturbed payoffs. As an alternative one can perturb the
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choice probabilities directly, using a modeling device is known as mutation.

Example 11.1.2. Best response with mutations. Under best response with mutations at mutation
rate η > 0, called BRM(η) for short, a revising agent switches to his current best response
with probability 1 − η, but chooses a strategy uniformly at random (or mutates) with
probability η > 0.

To complete the specification of the protocol, one must specify what happens when
there are multiple optimal strategies. A common setup has agents stick with their current
strategy if it is optimal, and choose at random among the optimal strategies otherwise. §

As the parameter η approaches zero, both the logit(η) and BRM(η) protocols come
to resemble the exact best response protocol, the protocol underlying the deterministic
best response dynamic (Section 6.1). But this similarity masks a fundamental qualitative
difference between the two protocols. Under best response with mutations, the probability
of choosing a particular suboptimal strategy is independent of the payoff consequences of
doing so: mutations do not favor alternative strategies with higher payoffs over those with
lower payoffs. In contrast, since the logit protocol is defined using payoff perturbations
that are symmetric across strategies, more costly “mistakes” are less likely to be made.

The probabilities of suboptimal choices under both of these protocols are small when
η is small, and one might expect the precise specification of these probabilities to be of
little consequence. If our interest is in finite-horizon behavior, so that the mean dynamic
(M) forms the basis for our predictions, this impression is largely correct (see, for instance,
Theorem 9.B.5). But as we shall see in Section 11.2.3 and throughout Chapter ??, predic-
tions of infinite horizon behavior hinge on the relative probabilities of rare events, so that
seemingly insignificant differences in choice probabilities can lead to entirely different
predictions of behavior.

While mutations are commonly employed in combination with a best response rule,
they are an equally natural complement to imitative rules.

Example 11.1.3. Imitation of success with mutations. The revision protocol

ρi j(π, x) = x j(π j − K) + 1
n η

supplements imitation of success (Example 4.2.3) with mutations that occur with prob-
ability η. When modeling with this protocol, it is convenient to choose K to be strictly
smaller than any feasible payoff, so that switch rates to all strategies currently in use are
positive even in the absence of mutations—see Section ??. §
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Exercise 11.1.4. Compute the mean dynamics corresponding to the protocols from the
previous two examples. (For the BRM protocol, focus on states at which the best response
is unique.) ‡

11.1.2 Stationary Distributions and Infinite Horizon Behavior

The full support assumption (11.2) ensures that at each revision opportunity, every
strategy in S has a positive probability of being chosen by the revising agent. Therefore,
there is a positive probability that the process {XN

t } will transit from any given current
state x to any other given state y within a finite number of periods. A Markov process
with this property is said to be irreducible.

Below we summarize some basic results on the infinite-horizon behavior of irreducible
Markov processes. These results provide the foundation for all of our subsequent analyses.
A detailed presentation of the relevant theory is offered in Appendix 11.A.

Suppose that {Xt}t≥0 is an irreducible Markov process on the finite state space X , where
the process has equal jump rates λx ≡ l and transition matrix P. Theorem 11.A.11 shows
that there is a unique probability vector µ ∈ RX

+ satisfying

(11.3)
∑
x∈X

µxPxy = µy for all y ∈ X .

The vector µ is called the stationary distribution of the process {Xt}. Equation (11.3) tells us
that if we run the process {Xt} from initial distribution µ, then at the random time of the
first jump, the distribution of the process is also µ. Moreover, if we use the notation Pπ(·)
to represent {Xt} being run from initial distribution π, then equation (11.25) shows that

(11.4) Pµ (Xt = x) = µx for all x ∈ X and t ≥ 0.

In other words, if the process starts off in its stationary distribution, it remains in this
distribution at all subsequent times t.

While equation (11.4) tells us what happens if {Xt} starts off in its stationary distribution,
our main interest is in what happens to this process in the very long run if it starts in an
arbitrary initial distribution π. Theorem 11.A.12 shows that as t grows large, the time t
distribution of {Xt} converges to µ:

(11.5) lim
t→∞

Pπ(Xt = x) = µx for all x ∈ X .

Thus, looking at the process {Xt} from the ex ante point of view, the probable locations of
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the process at sufficiently distant future times are essentially determined by µ.
To describe long run behavior from an ex post point of view, we need to consider the

behavior of the process’s sample paths. Here again, the stationary distribution plays the
central role. Theorem 11.A.15 states that along almost every sample path, the proportion
of time spent at each state in the long run is described by µ:

(11.6) lim
t→∞

Pπ

(
lim
t→∞

1
t

∫ t

0
1{Xs=x} ds

)
= µx for all x ∈ X .

We can also summarize equation (11.6) by saying that the limiting empirical distribution
of {Xt} is almost surely equal to µ.

In applying equations (11.5) and (11.6), one should be careful to bear in mind that
the information they provide concern the limiting behavior of the stochastic process. As
we noted above, evolutionary analyses that select among multiple stable equilibria turn
on the relative probabilities of rare transitions between these equilibria. If “mistake”
probabilities are small, or if the population size is large (so that many “mistakes” are
needed for a transition to occur), then the time required before the stationary distribution
becomes a useful for predictions will be extremely large. In these cases, a finite horizon
analysis via the mean dynamic (M) is often preferable. See Appendix 11.A.7 for formal
results on rates of convergence for Markov chains, and see the Notes for references to
work on waiting times from the literature on stochastic evolution.

11.1.3 Reversibility

In general, computing the stationary distribution of a Markov process means finding
an eigenvector of a matrix, a task that is computationally daunting unless the state space,
and hence the dimension of the matrix, is small. But there is a special class of Markov
processes whose stationary distributions are easy to compute. A constant jump rate
Markov process {Xt} is said to be reversible if admits a reversible distribution: a probability
distribution µ on X that satisfies the detailed balance conditions:

(11.7) µxPxy = µyPyx for all x, y ∈ X .

A process satisfying this condition is called reversible because it “looks the same” whether
time is run forward or backward; see Appendix 11.A.4 for a discussion. Since summing
the equality in (11.7) over x yields condition (11.3), a reversible distribution is also a
stationary distribution.

While in general reversible Markov processes are rather special, in the present context
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there are two classes of examples that fit this description. First, if the agents are playing a
two-strategy game, so that the state space X N is linearly ordered, then {XN

t } is reversible.
Second, if agents play a potential game using the logit choice rule, then {XN

t } is again
reversible. These two situations are studied in Sections 11.2 and 11.4, respectively. The
latter case requires some adjustments to our basic model that account for finite population
effects. These adjustments, which will also be useful in the next chapter, are handled in
Section 11.3.

11.2 Stationary Distributions for Two-Strategy Games

When the population plays a game with just two strategies, the state space X N is a
grid in the simplex in R2, and so is linearly ordered. In this case, regardless of the (full
support) revision protocol the agents employ, we can compute the stationary distribution
of the process {XN

t } explicitly. After deriving this distribution in Theorem 11.2.3, we apply
it to a few examples, providing a preview of the equilibrium selection results that are the
focus of Chapter ??.

Let F : X→ R2 be a two strategy game with strategy set S = {0, 1}, let ρ : R2
×X→ R2×2

be a full support revision protocol, and let N be a finite population size. As we saw in
Section 11.1, these objects define a Markov process {XN

t } on the state space X N.
While population states in this game are elements of X = {x ∈ R2

+ : x0 + x1 = 1}, the
simplex in R2, it is convenient to identify state x with the weight x ≡ x1 that it places
on strategy 1. Under this notational device, the state space of the Markov process {XN

t }

becomes X N = {0, 1
N , . . . , 1}, a uniformly-spaced grid in the unit interval. We will also

write F(x ) for F(x) and ρ(π, x ) for ρ(π, x) whenever it is convenient to do so.

11.2.1 Birth and Death Processes

Because agents in our model switch strategies sequentially, transitions of the process
{XN

t } are always between adjacent states. Since in addition states are linearly ordered, {XN
t }

falls into a class of Markov processes called birth and death processes. These processes
are quite amenable to explicit calculations, as we now illustrate by deriving a simple
expression for the stationary distribution µN.

A constant jump rate Markov process {XN
t } on the state space X N = {0, 1

N , . . . , 1} is a
birth and death process if the only positive probability transitions move one step to the right,
move one step to the left, or remain still. This implies that there are vectors p, q ∈ RX with
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p1 = q0 = 0 such that the transition matrix of {XN
t } takes the form

Px y ≡



px if y = x + 1
N ,

qx if y = x − 1
N ,

1 − px − qx if y = x ,
0 otherwise.

Clearly, the process {XN
t } is irreducible if px > 0 for x < 1 and qx > 0 for x > 0, as we

henceforth assume.
Because of their simple transition structure, birth and death chains are reversible. For

the transition matrix above, the reversibility conditions (11.7) reduce to

µN
x qx = µN

x −1/N px −1/N for x ∈ { 1
N , . . . ,N}.

Applying this formula inductively, we find that the stationary distribution of {XN
t } satisfies

(11.8) µN
x =

 Nx∏
j=1

p( j−1)/N

q j/N

 µ0 for x ∈ { 1
N , . . . ,N}.

Since the weights in µN must sum to one, we can compute µ0 as

(11.9) µN
0 =

1 +

N∑
i=1

i∏
j=1

p( j−1)/N

q j/N


−1

.

Example 11.2.1. Toss and switch revisited. In Example 10.2.4, we considered a population
of size N whose members are equipped with rate 1 Poisson alarm clocks. Each agent
responds to the ringing his clock by flipping a fair coin, switching strategies if the coin
comes up Heads. The resulting Markov process {XN

t } is irreducible, with constant jump
rate λx ≡ N and positive transition probabilities px = 1

2 (1 − x ) and qx = 1
2x .

In Example 10.2.4, we showed that the mean dynamic of this process is ẋ = 1
2 − x .

Solutions of this dynamic are of the form x t = 1
2 + (x 0 −

1
2 ) e−t, so the dynamic is an

exponential contraction toward the central state x ∗ = 1
2 . Now suppose we fix a time

horizon T < ∞ and an error bound ε > 0. Then Theorem 10.2.3 tells us that if the
population size N is large enough, the value of the random variable XN

t will stay within ε
of x t = 1

2 + (x 0 −
1
2 ) e−t for all times t in the interval [0,T] with probability at least 1− ε (see

Figure 10.2.1).
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Figure 11.2.1: Mean dynamics and stationary distributions for Toss and Switch.
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Now suppose instead that we fix the population size N and consider the behavior of the
process {XN

t } over a very long time horizon. As discussed in Section 11.1.2, the limiting
distribution and the limiting empirical distribution of {XN

t } are given by its stationary
distribution µN. Using formulas (11.8) and (11.9), it is easy to show that this distribution
is given by

µN
x =

1
2N

 N
Nx

 for all x ∈ X N = {0, 1
N , . . . , 1}.

In words,µN describes a binomial distribution with parameters N and 1
2 , but with outcomes

(in X N) representing the proportion rather than the number of successful trials.
If N is not small, the Central Limit Theorem tells us that µN is approximately normal

with mean 1
2 and variance 1

4N . Figure 11.2.1 illustrates µN for population sizes N = 100
and N = 10,000. If the population is not too small and if enough time has passed, all states
in X N will have been visited many times, but the vast majority of periods will have been
spent at states where the two strategies are used in nearly proportions. §

Exercise 11.2.2. (i) Suppose that in the previous example, revising agents flip a coin
that comes up Heads with probability h ∈ (0, 1), switching strategies when Heads
occurs. What are the mean dynamic of {XN

t } and the stationary distribution of {XN
t }

in this case?
(ii) Now suppose that revising agents flip a coin that comes up Heads with probability

h ∈ (0, 1), choosing strategy 1 when Heads occurs and strategy 0 otherwise. What
are the mean dynamic of {XN

t } and the stationary distribution of {XN
t } now? ‡

11.2.2 The Stationary Distribution of the Evolutionary Process

Let us now use formulas (11.8) and (11.9) to compute the stationary distribution of our
stochastic evolutionary process, maintaining the assumption that the process is generated
by a full support revision protocol. Referring back to Section 11.1, we find that the process
{XN

t } has constant jump rates λx = NR, and that its upward and downward transition
probabilities are given by

px = (1 − x ) · 1
Rρ01(F(x ), x ) and(11.10)

qx = x · 1
Rρ10(F(x ), x ).(11.11)
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Substituting formulas (11.10) and (11.11) into equation (11.8), we see that for x ∈ { 1
N ,

2
N , . . . , 1},

we have

µN
x =

 Nx∏
j=1

p( j−1)/N

q j/N

µN
0 =

 Nx∏
j=1

(1 − j−1
N )

j
N

·

1
R ρ01(F( j−1

N ), j−1
N )

1
R ρ10(F( j

N ), j
N )

µN
0 .

Simplifying this expression and introducing equation (11.9) yields the following result.

Theorem 11.2.3. Suppose that a population of N agents plays the two-strategy game F using the
full support revision protocol ρ. Then the stationary distribution for the evolutionary process {XN

t }

on X N is

µN
x =

 Nx∏
j=1

(N − j + 1)
j

·
ρ01(F( j−1

N ), j−1
N )

ρ10(F( j
N ), j

N )

µN
0 for x ∈ { 1

N ,
2
N , . . . , 1},(11.12)

µN
0 =

1 +

N∑
i=1

i∏
j=1

(N − j + 1)
j

·
ρ01(F( j−1

N ), j−1
N )

ρ10(F( j
N ), j

N )


−1

.(11.13)

11.2.3 Examples

A fundamental idea of stochastic stability analysis is that in a typical coordination
game, under most full support revision protocols, at either low noise levels or large
population sizes, the stationary distribution of {XN

t } will place most of its mass in the
vicinity of a single equilibrium, selecting this equilibrium as the unique prediction of
infinite horizon behavior. We now illustrate this idea by computing some stationary
distributions for two-strategy coordination games under the BRM and logit rules. In all
cases, we find that these distributions place most of their weight near a single equilibrium.
But we also find that the two rules need not select the same equilibrium.

Example 11.2.4. Stag Hunt. The following symmetric normal form game is known as Stag
Hunt:

A =

h h
0 s

 xH

xS

 .
We assume that s > h > 0, so that both pure strategies constitute symmetric Nash equilib-
ria. By way of interpretation, we imagine that each agent in a match must decide whether
to hunt for hare or for stag. Hunting for hare ensures a payoff of h regardless of the match
partner’s choice; hunting for stag can generate a payoff of s if the opponent does the same,
but results in a zero payoff otherwise. Since s > h, coordinating on Stag yields higher
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Figure 11.2.2: Stationary distribution weights µx for Stag Hunt (h = 2, s = 3, N = 100).
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payoffs than coordinating on Hare. At the same time, the payoff to Hare is certain, while
the payoff to Stag depends on the choice of one’s partner in the match.

Now suppose that a population of agents is repeatedly randomly matched to play game
A. If we let x denote the proportion of agents playing Stag, then with our usual abuse
of notation, the payoffs in the resulting population game are FH(x ) = h and FS(x ) = sx .
This population game has three Nash equilibria: the two pure equilibria, and the mixed
equilibrium x ∗ = h

s . We henceforth suppose that h = 2 and s = 3, so that the mixed
equilibrium places mass x ∗ = 2

3 on Stag.
Suppose that agents follow the best response with mutations protocol, with mutation

rate η = .10. The resulting mean dynamic,

ẋ =


η
2 − x if x < 2

3 ,

(1 − η
2 ) − x if x > 2

3 ,

has stable rest points at x = .05 and x = .95. The basins of attraction of these rest points
meet at the mixed equilibrium x ∗ = 2

3 . Note that the rest point that approximates the
all-Hare equilibrium has the larger basin of attraction.

In Figure 11.2.2(i), we present this mean dynamic underneath the stationary distribu-
tion µN for N = 100. While the mean dynamic has two stable equilibria, nearly all of the
mass in the stationary distribution is concentrated at states where between 88 and 100
agents choose Hare, this despite the fact that all-Hare equilibrium is inefficient.

Suppose instead that agents use the logit rule with noise level η = .25. The mean
dynamic is then the logit dynamic,

ẋ =
exp(3x η−1)

exp(2η−1) + exp(3x η−1)
− x ,

which has stable rest points at x = .0003 and x = .9762, and an unstable rest point at
x = .7650. In this case, the basin of attraction of the rest point near the all-Hare state is
larger still. Examining the stationary distribution in Figure 11.2.2(ii), we see that virtually
all of the mass in the stationary distribution is on states where either 99 or 100 agents
choose Hare, in rough agreement with the result for the BRM(.10) rule. §

The reason that the mass in the stationary distribution becomes concentrated around
just one equilibrium can be explained in the following way. In general, the stochastic
evolutionary process tends to move in the direction indicated by the mean dynamic. If the
process begins in the basin of attraction of a rest point or other attractor of this dynamic,
its initial evolution is typically toward that attractor. Nevertheless, since the process
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is irreducible, the process ultimately but visit and then depart from every equilibrium
infinitely often. What matters, then, is the relative difficulties of these rare but inevitable
transitions between equilibria.

In the examples above, it the transitions from the Stag rest point to the Hare rest point
and from the Hare rest point to the Stag rest point are both very unlikely events. But for
purposes of determining the stationary distribution, what matters is that in relative terms,
the former transitions are much more likely than the latter. This enables us to conclude
that over very long time spans, the evolutionary process will spend most periods at states
where most agents play Hare.

Example 11.2.5. A nonlinear Stag Hunt. Next we consider a Stag Hunt game with nonlinear
payoffs. With our usual abuse of notation, we define payoffs in this game by FH(x ) = h
and FS(x ) = sx 2, where x again represents the proportion of agents playing Stag. The
population game F has three Nash equilibria: the pure equilibria x = 0 and x = 1, and
the mixed equilibrium x ∗ =

√
h/s. We focus on the case in which h = 2 and s = 7, so that

x ∗ =
√

2/7 ≈ .5345.
Suppose that agents play this game using the BRM(.10) rule. In Figure 11.2.3(i) we

present resulting the mean dynamic, as well as the stationary distribution µ100. The
mean dynamic has rest points at x = .05, x = .95, and x ∗ ≈ .5345, so the rest point near
the inefficient all-Hare state again has the larger basin of attraction. As in the previous
example, the stationary distribution under the BRM(.10) rule places nearly all of its mass
on states where at least 88 agents choose Hare.

Figure 11.2.3(ii) presents the mean dynamic and the stationary distribution µ100 for the
logit(.25) rule. The rest points of the logit(η) dynamic are x = .0003, x = 1, and x = .5398,
so the rest point near all-Hare once again has the larger basin of attraction. Nevertheless,
the stationary distribution µ100 places virtually all of its mass on the state in which all 100
agents choose Stag.

To summarize, our prediction for very long run behavior under the BRM(.10) rule is
inefficient coordination on Hare, while our prediction under the logit(.25) rule is efficient
coordination on Stag. §

For the intuition behind this example, recall the basic difference between the logit
and BRM protocols discussed in Section 11.1.1: under logit choice, the probability of a
“mistake” depends on its payoff consequences, while under BRM, it does not. As we
shall see in Chapter ??, the latter observation implies that under BRM, the probabilities of
escaping from the basins of attraction of stable equilibria, and hence the identities of the
stochastically stable states, depend only on the size and the shapes of the basins.
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Figure 11.2.3: Stationary distribution weights µx for a nonlinear Stag Hunt (h = 2, s = 7, N = 100).
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On the contrary, the probability of escaping a stable equilibrium under logit choice
depends not only on the size of its basin, but also on the payoff differences that must be
overcome during the journey. In the nonlinear Stag Hunt game, the basin of the (almost)
all-Stag equilibrium is smaller than that of the all-Hare equilibrium. But because the
payoff advantage of Stag over Hare in the former’s basin tends to be much larger than the
payoff advantage of Hare over Stag in the latter’s, it is more difficult for the population to
escape the all-Stag equilibrium than the all-Hare equilibrium.

We can compare the process of escaping from the basin of a stable rest point to an
attempt to swim upstream. Under BRM, the stream is steady, so the difficulty of a given
excursion is proportional to distance. Under logit choice, the strength of the stream is
variable, so the difficulty of an excursion depends on how this strength varies over the
distance travelled.

Our conclusions about equilibrium selection in the previous examples were somewhat
informal in nature. For instance, our conclusion that the BRM(.05) rule selects the all-
Hare equilibrium in the nonlinear Stag Hunt game was based on Figure 11.2.3(i), which
shows most of the mass in the stationary distribution accreting on the left side of the
picture. In pursuing stochastic stability analysis in Chapter ??, we obtain crisper results
by taking limiting values of parameters—taking the noise level to zero, or the population
size to infinity—ensuring that at least in many simple cases, all of the mass in the limiting
stationary distribution will approach a single point.

11.3 Model Adjustments for Finite Populations

This chapter is the first to focus directly on behavior in populations of a finite size N,
without taking N to infinity. This means that individual agents are no longer negligible:
a change in strategy by a single agent alters the population state.

In this section, we modify our earlier definitions of games and revision protocols
in order to account for finite population effects. For some purposes, these changes are
a matter of convenience: by having each agent account for his own presence in the
population, some results that would otherwise require the assumption of a large enough
population size instead hold for any population size. In other cases—most notably, that
of logit evolution in potential games, the topic of Section 11.4—these modifications are
needed for the analysis to be tractable. Still, there is a sense in which this section is less
concerned with introducing important new concepts than with accurate bookkeeping,
leading us to push many of the details into examples and exercises.
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11.3.1 Finite-Population Games

When there are N agents in the population choosing strategies from the set S =

{1, . . . ,n}, the population state is an element of the set X N = {x ∈ X : Nx ∈ Zn
}, a uni-

form grid in the simplex in Rn. We can therefore identify an N agent finite-population game
with its payoff function FN : X N

→ Rn, where as usual, FN
i (x) ∈ R is the payoff to strategy

i when the population state is x ∈ X N. Notice that only the values that FN
i takes on the

set X N
i = {x ∈ X N : xi > 0} are of consequence, since at the remaining states strategy i is

unplayed.

Example 11.3.1. Random matching without self-matching. In Example 2.2.1, we defined the
population game F generated by random matching in the symmetric normal form game
A ∈ Rn×n by Fi(x) =

∑
j∈S Ai jx j = (Ax)i, so that F(x) = Ax. When agents are infinitesimal,

this is the only definition that makes sense. But when there are only a finite number of
agents, this definition implicitly assumes that agents can be matched against themselves.
To specify payoffs without self-matching, observe that when the population state is x, each
strategy i player faces Nx j opponents playing strategy j , i, but only Nxi − 1 opponents
playing strategy i, making the effective population state 1

N−1 (Nx− ei). The expected payoff

to a strategy i player at population state x is therefore

(11.14) FN
i (x) = 1

N−1 (A(Nx − ei))i = (Ax)i + 1
N−1 ((Ax)i − Aii)) . §

To be able to say that a continuous-population game is close to a large finite-population
game, we require a notion of convergence. We say that the sequence of finite-population
games {FN

}
∞

N=N0
converges at rate 1

N to the population game F if

(11.15) max
x∈X N

∣∣∣FN(x) − F(x)
∣∣∣ ≤ C

N

for some C > 0 independent of N. For instance, equation (11.14) implies that the sequence
of finite games {FN

} generated by random matching without self-matching in A converges
at rate 1

N to the limit game F(x) = Ax.

11.3.2 Finite-Population Potential Games

Our definitions and characterizations of continuous-population potential games in
Chapter 3 rely on tools from calculus. It is equally fitting for our definitions of potential
games for finite-population settings to be discrete in nature. In this section, we introduce
definitions of full potential games and potential games for finite populations, and establish
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basic connections with the definitions from Chapter 3 by means of convergence results.
In Section 3.1, we introduced the notion of a full potential function, a function whose

partial derivatives equal the payoffs of the underlying game. To ensure the existence of
these partial derivatives, the full potential function was defined on the positive orthant, a
full-dimensional set in Rn.

To define full potential games for finite populations, we introduce a discrete analogue of
this device. We define the set of diminished population states by X N

−
= {x− ∈ Rn

+ :
∑

i∈S(x−)i =
N−1

N and Nx− ∈ Zn
}. Each diminished population state describes the behavior of the

opponents of one member of a population of size N. We then call a finite-population
game FN : X N

→ Rn a full potential game if admits a full potential function: a function
f N : X N

∪ X N
−
→ R such that

(11.16) FN
i (x) = f N(x) − f N(x − 1

N ei) for all x ∈ X N
i and i ∈ S.

One can describe condition (11.16) as requiring the payoff to strategy i to be determined
by the ith “discrete partial derivative” of the function 1

N f N.

Exercise 11.3.2. Verify this last statement.

Exercise 11.3.3. Random matching in common interest games. Let the symmetric normal form
game A ∈ Rn×n be a common interest game (i.e., A = A′). In Example 3.1.2, we saw that
when an infinite population is randomly matched to play A, the resulting population
game F(x) = Ax is a full potential game with full potential function f (x) = 1

2x′Ax.

(i) Let FN(x) = Ax be the finite-population game obtained via random matching with
self-matching. Verify that FN is a full potential game with full potential function

f N(x) = 1
2

(
N x′Ax +

∑
k∈S

Akkxk

)
.

(ii) Now let FN be the finite-population game obtained via random matching without
self-matching, as defined in equation (11.14). Verify that this FN is also a full
potential game, but with full potential function

f N(x) = 1
2

N
N−1

(
N x′Ax −

∑
k∈S

Akkxk

)
.

Note that in each case, the functions 1
N f N converge to f as N grows large. ‡

Exercise 11.3.4. Congestion games. In Example 2.2.5, we defined a continuous-population
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congestion game F : Rn
+ → R by

Fi(x) = −
∑
φ∈Φi

cφ(uφ(x)).

where Φi is the set of facilities (or links) used by strategy (or path) i, cφ : R+ → R is the
cost function of facility φ, and uφ =

∑
i∈S:φ∈Φi

xi is the utilization level of facility φ. Example
3.1.4 showed that this game is a a full potential game with full potential function

f (x) = −
∑
φ∈Φ

∫ uφ(x)

0
cφ(z) dz.

Apart from the change in domain, the definition of the finite-population congestion
game FN : X N

→ Rn is identical to that of F. Show that FN is also a full potential game,
with full potential function

f N(x) = −
∑
φ∈Φi

Nuφ(x)∑
k=1

cφ( k
N ). ‡

The continuous-population definition of a potential game from Section 3.2 uses a
potential function that is only defined on the original set of population states, and that
only determines the game’s relative payoffs. Extending this notion to the present setting,
we call a finite-population game FN : X N

→ Rn a potential game if it admits a potential
function: in this case, a function f N : X N

→ R such that

(11.17) FN
j (x + 1

N (e j − ei)) − FN
i (x) = f N(x − 1

N (e j − ei)) − f N(x) for all x ∈ X N
i and i ∈ S.

Equation (11.17) requires that when an agent switches from strategy i to strategy j, the
change in his payoff is equal to the change in potential. This definition closely resembles
the definition of normal form potential games from Exercise 3.2.10. We investigate this
connection in Exercise 11.4.2(ii) below.

Exercise 11.3.5. Equilibrium and evolutionary dynamics for finite-population potential games.

(i) State an appropriate notion of Nash equilibrium for the finite population game FN.
(ii) Suppose that FN is a potential game with potential function f N. Show that x ∈ X N

is a Nash equilibrium of FN if and only x is a local maximizer of f N. (Be sure to
define what it means to be a “local maximizer of f N”.

(iii) Argue that if agents in a finite-population potential game FN switch to better-
performing strategies sequentially, the population state will converge to a Nash
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equilibrium of FN after a finite number of switches. ‡

Theorem 3.2.12 showed that despite first appearances, the continuous-population def-
initions of full potential games and potential games are essentially equivalent. Theorem
11.3.6 shows that this equivalence persists when populations are finite. Fortunately, the
proof in this discrete setting requires much less effort.

Theorem 11.3.6. Let FN be a potential game with potential function f N : X N
→ R. Then there

is an extension of f N to X N
∪ X N

−
that is a full potential function for FN. In other words, every

potential game is a full potential game.

Proof. For each x− ∈ X N
−

, define f N(x−) by

(11.18) f N(x−) = f N(x− + 1
N e1) − FN

1 (x− + 1
N e1).

Rearranging this expression shows that the condition (11.16) holds when i = 1. To verify
that it holds for an arbitrary strategy i, use equations (11.17) and (11.18) (with x− = x− 1

N ei)
to compute as follows:

FN
i (x) = FN

1 (x + 1
N (e1 − ei)) − f N(x − 1

N (e1 − ei)) + f N(x)

=
(

f N(x + 1
N (e1 − ei)) − f N(x − 1

N ei)
)
− f N(x − 1

N (e1 − ei)) + f N(x)

= f N(x) − f N(x − 1
N ei). �

All of the developments in this section suggest that the finite-population and continuous-
population definitions of potential games are different expressions of the same idea. The
next two exercises formalize this point by showing that the latter definitions are limiting
cases of the former ones.

Exercise 11.3.7. Let {FN
}
∞

N=N0
be a sequence of finite-population full potential games with

full potential functions { f N
}
∞

N=N0
. Let the function f : Rn

+ → R be C1. For each N ≥ N0,
define the function dN : X N

∪X N
−
→ R by dN(x) = 1

N f N(x)− f (x). We say that the sequence
of full potential functions { f N

} converges merrily to f if there is a constant C > 0 such that
each function dN is Lipschitz continuous with Lipschitz constant C

N .
(i) Show that if { f N

} converges merrily to f , then there is a sequence of constants cN

such that 1
N f N(x) − cN converges to f at rate 1

N :

max
x∈X N

∣∣∣( 1
N f N(x) − cN) − f (x)

∣∣∣ ≤ C′

N

for some C′ independent of N. (Hint: Choose cN = 1
N f N(e1) − f (e1).)
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(ii) Show that the converse of part (i) is false. (Hint: Suppose that f N(e1) = 1 and that
f N(x) = 0 for x ∈ X N

− {e1}.)
(iii) Define F : X → Rn by F(x) = ∇ f (x). Show that if { f N

} converges merrily to f , then
{FN
} converges at rate 1

N to F, as specified in equation (11.15). (Hint: Use the fact
that for each N, f (x) − f (x − ei

N ) = 1
N
∂ f
∂xi

(yN) for some yN on the line segment from x
to x − ei

N . This is a consequence of the Mean Value Theorem.) ‡

Exercise 11.3.8. Consider a sequence {FN
}
∞

N=N0
be a sequence of finite-population potential

games with potential functions { f N
}
∞

N=N0
. Let f : X → R be C1, and define F : X → TX

by F(x) = ∇ f (x). Show that if { f N
} converges merrily to f : X → R (as defined in the

previous exercise), and if each FN is Lipschitz continuous with a Lipschitz contant that is
independent of N, then the projected payoff functions ΦFN converge at rate 1

N to F. ‡

11.3.3 Clever Payoff Evaluation

If a population has N members, an agent who switches from strategy i to strategy j
when the state is x changes the state to x + 1

N (e j − ei). If this agent wants to compare his
current payoff FN

i (x) to the payoff he will obtain after switching, the relevant comparison
is not to FN

j (x), but rather to FN
j (x + 1

N (e j − ei)). Agents who account for this change when
deciding whether to switch strategies are said to use clever payoff evaluation, while those
who do not are said to use simple payoff evaluation.

To formalize this idea, define the function F̆N
i : X N

i → Rn by

F̆N,i
j (x) = FN

j (x + 1
N (e j − ei)).

Now suppose that agents use revision protocol ρ. Under simple payoff evaluation, the
conditional switch rate from strategy i to strategy j is ρi j(FN(x), x); under clever payoff

evaluation, it is ρi j(F̆N,i(x), x)

Example 11.3.9. Consider the symmetric normal form game with strategy set S = {0, 1}
and payoff matrix

A =

a b
c d

 .
Suppose that a population of N agents are randomly matched without self-matching to
play A, as in Example 11.3.1. If we follow our convention from Section 11.2 by writing
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x ≡ x1 = 1 − x0, we can express the strategies’ expected payoffs as

FN
0 (x ) = 1

N−1

(
Nx (b − a) + (N − 1)a

)
,

FN
1 (x ) = 1

N−1

(
Nx (d − c) + Nc − d

)
.

Under simple payoff evaluation, agents should prefer strategy 1 to strategy 0 whenever
FN

1 (x ) exceeds FN
0 (x ), which is true when

Nx (a − b − c + d) + N(c − a) + (a − d) > 0.

Under clever payoff evaluation, an agent currently playing strategy 0 should switch
to strategy 1 whenever F̆N,0

1 (x ) = FN
1 (x + 1

N ) exceeds F̆N,0
0 (x ) = FN

0 (x ), which is true when

Nx (a − b − c + d) + (N − 1)(c − a) > 0.

Similarly, a clever agent playing strategy 1 should switch to strategy 0 whenever

(Nx − 1)(a − b − c + d) + (N − 1)(c − a) < 0.

Comparing the last two inequalities, we see that the comparison made by a clever player
of strategy 0 at state x is the same one made by a clever player of strategy 1 at state x + 1

N :
in each case, the player has N(1 − x ) − 1 opponents playing strategy 0 and Nx playing
strategy 1. §

For any fixed game A, the difference between simple and clever payoff evaluation
becomes inconsequential when the population size N is large enough. But the exercises
to follow show that for any given N, there are games in which simple and clever payoff

evaluation always lead to opposing conculsions.

Exercise 11.3.10. (i) Let A be a symmetric two-strategy normal form game in which
strategy 0 strictly dominates strategy 1 (a > c and b > d). Show that under random
matching without self-matching, clever agents always want to switch from strategy
1 to strategy 0, and never want to switch from strategy 0 to strategy 1.

(ii) Now suppose that agents are playing the game

A =

 3N 1
3N − 2 0

 .
How will simple agents behave in this game? Provide intuition for your result. ‡
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Exercise 11.3.11. Suppose that agents are randomly matched with self-matching in the
following Prisoner’s Dilemma game

A =

3N + 2 1
3N 0

 .
What happens in this game if agents use simple payoff evaluation? What if they use clever
payoff evaluation? Provide intuition for your results. ‡

These exercises notwithstanding, the distinction between simple and clever payoff

evaluation is rarely consequential when N is large, in which case our choice between the
two is largely a matter of convenience.

11.4 Logit Choice in Potential Games

We conclude this chapter by providing an exact formula for the stationary distribution
of the stochastic evolutionary process when agents play a potential game using the logit
choice rule. This is a case in which our finite-population adjustments are essential: to
ensure reversibility, we must use the finite-population definition of potential games, and
assume that agents employ clever payoff evaluation.

Theorem 11.4.1. Let FN be a finite-population potential game with potential function f N, and
suppose that agents employ the logit(η) choice rule with clever payoff evaluation. Then the process
{XN

t } is reversible with stationary distribution

(11.19) µN(x) =
1

KN

N!∏
k∈S

(Nxi)!
exp(η−1 f N(x)) for x ∈ X N,

where KN =
∑

x∈X N
N!∏

k∈S(Nxk)! exp(η−1 f N(x)).

The stationary distribution weight µN(x) is proportional to the product of two terms.
The first term is a multinomial coefficient, and represents the number of ways of assigning
the N agents to strategies in S so that each strategy i is played by precisely xi agents. The
second term is an exponential function of the value of potential at state x. Thus, the value
of µN

x balances the value of potential at state x with the likelihood that state x would arise
were agents assigned to strategies at random.

Proof of Theorem 11.4.1. To verify the reversibility condition (11.7), it is enough to check
that the equality µN

x Pxy = µN
y Pyx holds for pairs of states that are adjacent, in the sense that
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y = x + 1
N (e j − ei). Note that in this case, if we set x− = x − 1

N ei ∈ X N
−

, then we also have
y = x− + 1

N e j.
By Theorem 11.3.6, we can assume that f N is a full potential function for F in the sense

of condition (11.16). Observing that conditional switch rates are given by

ρi j(F̆N,i(x), x) =
exp(η−1F̆N,i

j (x))∑
k∈S exp(η−1F̆N,i

k (x))
=

exp(η−1FN
j (x + 1

N (e j − ei)))∑
k∈S exp(η−1FN

k (x + 1
N (ek − ei)))

we can compute as follows:

µN
x Pxy = µN

x · xi ρi j(F̆N,i(x), x)

=
1

KN

N!∏
k∈S

(Nxk)!
exp

(
η−1 f N(x)

)
· xi

exp
(
η−1FN

j (y)
)

∑
k∈S

exp
(
η−1FN

k (x + 1
N (ek − ei))

)
=

1
KN

(N − 1)!∏
k∈S

(N(x−)k)!
exp

(
η−1 f N(x)

)
·

exp
(
η−1 ( f N(y) − f N(x−)

))∑
k∈S

exp
(
η−1

(
f N(x− + 1

N ek) − f N(x−)
))

=
1

KN

(N − 1)!∏
k∈S

(N(x−)k)!
exp

(
η−1 f N(y)

)
·

exp
(
η−1 ( f N(x) − f N(x−)

))∑
k∈S

exp
(
η−1

(
f N(x− + 1

N ek) − f N(x−)
))

=
1

KN

N!∏
k∈S

(Nyk)!
exp

(
η−1 f N(y)

)
· y j

exp
(
η−1FN

i (y)
)

∑
k∈S

exp
(
η−1FN

k (y + 1
N (ek − e j))

)
= µN

y · y j ρ ji(F̆N, j(y), y)

= µN
y Pyx. �

Exercise 11.4.2. This exercise provides an alternate proof of Theorem 11.4.1 by way of
normal form potential games. Recall from Exercise 3.2.10 that the N player normal form
game U = (U1, . . . ,UN) with strategy sets S1, . . . ,SN is a potential game if it admits a
potential function V :

∏
p Sp
→ R, which is a function satisfying

Up(ŝp, s−p) −Up(s) = V(ŝp, s−p) − V(s) for all s ∈
∏

p Sp, ŝp
∈ Sp, and p ∈ P .

(i) Define a stochastic evolutionary process {YN
t } on the set of pure strategy profiles∏

p Sp by assuming that each of the N players receives revision opportunities at
rate 1, and that each follows the logit(η) choice rule when such opportunities arise.
Show that if U is a normal form potential game with potential function V, then
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the process {YN
t } is reversible, and that its stationary distribution νN is defined by

νN(s) ∝ exp(η−1V(s)).
Now suppose that players in the game U are indistinguishable: all N players share the

same strategy set Sp = S ≡ {1, . . . ,n}, and each player’s payoffs are defined by the same
function of the player’s own strategy and the overall distribution of strategies ξ(s) ∈ X N,
defined by ξi(s) = #{p ∈ {1, . . . ,N} : sp = i}/N. This means that there is a finite-population
game FN : X N

→ Rn that represents U, in the sense that Up(s) = FN
sp(ξ(s)) for all s ∈ S.

(ii) Suppose again that U is a normal form potential game with potential function V.
Show that if players in U are indistinguishable, then V is measurable with respect
to X N, in the sense that V(ŝ) = V(s) whenever ξ(ŝ) = ξ(s). Furthermore, show that
the finite-population game FN introduced above is a potential game, and that its
potential function f N : X N

→ R is given by f N(x) = V(s), where s is any strategy
profile in ξ−1(x).

(iii) Let {YN
t } be the evolutionary process on X N defined in part (i). Show that under

the assumptions of part (ii), the process {ξ(YN
t )} is a Markov process on X N with

the same jump rates and transition probabilities as the process {XN
t } from Theorem

11.4.1. Finally, using part (i), prove directly that the stationary distribution of
{ξ(YN

t )} is given by equation (11.19). ‡

In Chapter ??, we turn our attention to stochastic stability analysis, which studies the
limiting stationary distribution of the stochastic evolutionary process as the noise level
becomes small or the population size becomes large. In the case of logit choice in potential
games, where formula (11.19) provides an explicit formula for the stationary distribution,
the limiting stationary distribution can be computed directly as well. For instance, if we
take the noise level η to zero, equation (11.19) shows that µN becomes concentrated on
states that maximize the value of the potential function f N.

But apart from the cases considered in this chapter, simple expressions for stationary
distributions are not known. We will therefore require new techniques to determine
stochastically stable states.
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Appendix

11.A Long Run Behavior of Markov Chains and Processes

In Appendix 10.B, we defined (discrete-time) Markov chains and (continuous-time)
Markov processes on a countable state space, and showed how to construct them on an
appropriate probability space (Ω,F ,P). In the present appendix, we turn to the long run
behavior of Markov chains and processes that take values in a finite state space. Apart from
the issue of periodicity, which is particular to the discrete-time setting, the discrete-time
and continuous-time theories are quite similar, although certain concepts have somewhat
different formulations in the two cases.

In the remainder of this section, {Xt}
∞

t=0 denotes a Markov chain with transition matrix
P ∈ RX×X on the finite state space X , while {Xt}t≥0 denotes a Markov process on X with
transition matrix P ∈ RX×X and jump rate vector λ ∈ RX . The shorthand {Xt} is used
to refer to both cases. When we need to refer to initial conditions, we use the notations
Px( · ) ≡ P( · |X0 = x) and Pπ( · ) ≡

∑
x∈X πxP( · |X0 = x) to describe the behavior of {Xt}

when it is run from initial state x ∈ X or from initial distribution π ∈ RX
+ .

11.A.1 Communication, Recurrence, and Irreducibility

To begin our study of long run behavior of the Markov chains and processes, we
introduce a partial order on the finite set X that describes feasible multi-step transitions
under the transition matrix P. We say that state y is accessible from state x, and write x y,
if for some n ≥ 0 there is a sequence of states x = x0, x1, . . . , xn = y such that Pxi−1,xi > 0 for
all i ∈ {1, . . . ,n}. We allow n = 0 to ensure that each state is accessible from itself. We write
x! y to indicate that x and y are mutually accessible, in the sense that x y and y x.

Accessibility defines a partial order on the set X . The equivalence classes under this
order, referred to as communication classes, are the maximal sets of (pairwise) mutually
accessible states.

To identify the states which {Xt} can visit in the long run, we first define a set of states
C ⊆ X to be closed if the process cannot leave it:

[x ∈ C, x y]⇒ y ∈ C.

If we assume that C is a communciation class, then C is closed if and only if it is minimal
under the partial order (where we view this order as “pointing downward”). Once
{Xt} enters a closed communication class, it remains in the class forever.
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Figure 11.A.1: Feasible transitions between the states of a Markov chain. Members of the same
communication class are the same color. Members of recurrent classes are shades of blue.

Example 11.A.1. Suppose that {Xt} has state space X = {1, 2, 3, 4, 5, 6, 7, 8, 9} and transition
matrix

P =



.4 .3 .2 .1 0 0 0 0 0

.5 .1 0 0 .3 .1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 .8 .1 .1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 .9 0 .1



.

The feasible transitions of {Xt} are represented in Figure 11.A.1. {Xt}has six communication
classes: {1, 2}, {3}, {4, 5}, {6}, and {7, 8, 9}. Of these, {3}, {4, 5}, and {7, 8, 9} are closed. §

If the process {Xt} begins in a communication class that is not closed (for example, the
class {1, 2} in Example 11.A.1), it is possible for it to remain in this class for an arbitrarily
long finite amount of time. But with probability 1, the process will leave the class after
some finite amount of time, and once it leaves it it can never return. Of course, once {Xt}

enters a closed communication class, it remains in the class forever.
To express these ideas more precisely, call state x transient ifPx({t : Xt = x is unbounded})

= 0, and call state x recurrent if Px({t : Xt = x is unbounded}) = 1. Then we have

Theorem 11.A.2. Let {Xt} be a Markov chain or Markov process on a finite set X . Then
(i) Every state in X is either transient or recurrent.
(ii) A state is recurrent if and only if it is a member of a closed communication class.
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In light of this result, closed communication classes are often called recurrent classes.
By virtue of Theorem 11.A.2, we can understand the infinite horizon behavior of the

process {Xt} by focusing on cases in which the entire state space X forms a single recurrent
class. (In effect, we are focusing on the behavior of our original process after it enters a
recurrent class.) When all of X forms a single recurrent class, {Xt} is said to be irreducible.

In Section 11.1, we introduced the notion of a full support revision protocol in order
to ensure that under the stochastic evolutionary process {XN

t }, every population state in X
is accessible from every other. Put differently, the full support condition ensures that the
stochastic evolutionary process is irreducible.

11.A.2 Periodicity

In the discrete-time case, the behavior of the Markov chain {Xt}
∞

t=0 within a recurrent
class depends on the period structure of that class. The period of the recurrent state x is
defined as gcd({t ≥ 1 : Px(Xt = x) > 0}): that is, it is the greatest common divisor of the set
times at which the chain can revisit x if it is run from x. It can be shown that states from
the same recurrence class have the same period, and so it makes sense to speak of the
period of the class itself.

Example 11.A.3. The Markov chain defined in Example 11.A.1 has three recurrent classes:
{3}, {4, 5}, and {7, 8, 9}. Clearly, the period of state 3 is 1, and the period of states 4 and 5 is
2. Since P99 > 0, a process run from initial state 9 can remain there for any finite number
of periods; thus state 9 has period 1, as do the other states in its class. §

This example illustrates a simple and useful fact: if any state x in a recurrent class has
Pxx > 0, then all states in this class are of period 1.

If the Markov chain {Xt} is irreducible, then all of its states are of the same period. If
this common period is greater than 1, we say that {Xt} is periodic; if instead the common
period is 1, {Xt} is aperiodic.

Theorem 11.A.4 describes how periodicity constrains the t step transition probabilities
of an irreducible Markov chain. Part (i) of the theorem observes that the state space can be
partitioned into sets that the chain must pass through sequentially. Part (ii) of the theorem
implies that any t step transition not forbidden by part (i) will have positive probability if
t is large enough.

Theorem 11.A.4. Let {Xt}
∞

t=0 be an irreducible Markov chain with period d. Then there is a
partition C0,C1, . . . ,Cd−1 of X such that (i) [x ∈ Ci and Pt

xy > 0] implies that y ∈ C(i+t) mod d; and
(ii) x, y ∈ Ci implies that Pn·d

xy > 0 for all n large enough.
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Let us emphasize once more that periodicity is a discrete-time phenomenon: since
the jump times of continuous-time Markov processes follow exponential distributions,
periodic behavior is impossible.

11.A.3 The Perron-Frobenius Theorem

To this point, our discussion of the behavior of Markov chains and processes has been
“qualitative”, focusing only on the possibility or impossibility of transitions between given
pairs of states over various lengths of time. We now turn to the “quantitative” analysis of
these processes, which addresses the probabilities of these transitions.

Many of the basic results in the theory of finite-state Markov chains can be viewed
as consequences of the Perron-Frobenius Theorem, a basic result from matrix analysis. To
present this theorem in its usual language, we refer to a transition matrix P ∈ RX×X (i.e., a
nonnegative row matrix with row sums equal to 1) as a stochastic matrix, and call such a
matrix irreducible or periodic according to whether the induced Markov chain has these
properties. Nonnegative matrices that are both irreducible and aperiodic are sometimes
referred to as primitive.

Theorem 11.A.5 (Perron-Frobenius).
Suppose that the matrix P ∈ RX×X is stochastic and irreducible. Then:

(i) 1 is an eigenvalue of P of algebraic multiplicity 1, and no eigenvalue of P has modulus
greater than 1.

(ii) The vector 1 is a right eigenvector of P corresponding to eigenvalue 1. That is, P1 = 1.
(iii) There is a probability vector µ with positive components that is a left eigenvector of P

corresponding to eigenvalue 1; thus, µ′P = µ′.
Suppose in addition that P is aperiodic, and hence primitive. Then:

(iv) All eigenvalues of P other than 1 have modulus less than 1.
(v) The matrix powers Pt converge to the matrix 1µ′ as t approaches infinity.
(vi) Indeed, let λ2 be the eigenvalue of P with the second-largest modulus, and let r ∈ (|λ2| , 1).

Then for some c > 0, we have that

max
i j

∣∣∣(Pt
− 1µ′)i j

∣∣∣ ≤ c rt for all t ≥ 1.

If P is (real or complex) diagonalizable, this statement remains true when r = |λ2|.

In Sections 11.A.4 and 11.A.7, we will interpret of all of these statements in the context of
Markov chains.
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11.A.4 Stationary Distributions for Markov Chains

This section and the next consider stationary distributions for discrete-time Markov
chains. We will see in Section 11.A.6 that the basic formulas for the continuous-time case
are identical to those for the discrete-time case when the jump rates λx are the same for
each state, as is the case for the stochastic evolutionary process studied in the text.

Let {Xt}
∞

t=0 be a Markov chain with finite state space X and transition matrix P. We call
a probability distribution µ ∈ RX a stationary distribution of {Xt}

∞

t=0 if

(11.20) µ′P = µ′.

More explicitly, µ is a stationary distribution if

(11.21)
∑
x∈X

µxPxy = µy for all y ∈ X .

To interpret these conditions, decompose the probability of the chain being at state y at
time 1 as follows:∑

x∈X
P(X0 = x)P(X1 = y |X0 = x) = P(X1 = y).

Comparing the previous two equations, we see that if X0 is distributed according to the
stationary distribution µ, then X1 is also distributed according to µ, and so, by the Markov
property, is every subsequent Xt.

In general, a finite Markov chain may admit many stationary distributions. For in-
stance, if the transition matrix P is the identity matrix, so that each state defines its own
recurrent class, then every probability distribution on X is a stationary distribution. But
if a Markov chain is irreducible, definition (11.20) and Theorem 11.A.5(i) and (iii) imply
that its stationary distribution is unique.

Theorem 11.A.6. If the Markov chain {Xt} is irreducible, it admits a unique stationary distribu-
tion.

Example 11.A.7. Focusing on the three irreducible closed sets from Example 11.A.1, we
can define three irreducible Markov chains with transition matrices

P = ( 1 ) , P =

0 1
1 0

 , and P =


0 1 0
0 0 1
.9 0 .1

 .
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In the first case the stationary distribution is trivial, in the second case it is µ = ( 1
2 ,

1
2 ), and

in the final case it is µ = ( 9
28 ,

9
28 ,

10
28 ). §

If the Markov chain {Xt} is not irreducible, then we can find a unique stationary
distribution µC corresponding to each of the chain’s recurrent classes C, and the set of
stationary distributions of {Xt} is the convex hull of these µC. Intuitively, by specifying
the weight placed on µC in the convex combination, we choose the probability that the
process begins in recurrent class C; to maintain stationarity, the relative weights on states
in C must be in the proportions given by µC.

One can interpret the stationary distribution weights of irreducible Markov chains in
terms of expected return times. We define the hitting time of state x under the Markov
chain {Xt} to be the random variable Tx = inf {t ≥ 1 : Xt = x} . When {Xt} is run from initial
condition x, Tx is called the return time of state x. (Note that if X1 = x, then the return time
is 1, even though the chain has not actually left state x.) If {Xt} is irreducible, then it can be
shown that the expected return time ExTx is equal to µ−1

x . Thus, the higher is the weight
on x in the stationary distribution, the less time we expect will pass before a chain starting
at x returns to this state.

11.A.5 Reversible Markov Chains

In general, computing the stationary distribution of an irreducible Markov chain means
finding an eigenvector of its transition matrix, a task that is computationally demanding
when the state space is large. Fortunately, there are many interesting examples in which
the stationary distribution satisfies a property that is both stronger and easier to check.
We say that the Markov chain {Xt} is reversible if it admits a reversible distribution: that is, a
probability distribution µ that satisfies the detailed balance conditions

(11.22) µxPxy = µyPyx for all x, y ∈ X .

If we sum this equation over x ∈ X , we obtain equation (11.21), so a reversible distribution
is also a stationary distribution.

To understand why reversibility is so named, imagine running the Markov chain {Xt}

from initial distribution µ, and observing two consecutive frames from a film of the chain.
Suppose that these frames display the realizations x and y. According to equation (11.22),
the probability that the chain is first at state x and next at state y, µxPxy, is equal to the
probability that the chain is first at state y and next at state x, µyPyx. Put differently, the
probability of observing (x, y) is the same whether the film is running forward or backward.
It is easy to verify that this property extends to any finite sequence of realizations.
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Example 11.A.8. In Example 11.A.7, the first two Markov chains are reversible, but the
third is not: if the states are labeled 7, 8, and 9 and our film shows state 7 and then state
8, then we can conclude that it is running forward: compare Figure 11.A.1. §

Example 11.A.9. Random walks on graphs. Let G = (X ,E ) be a connected undirected graph
with node set X and edge set E ⊆ { {x, y} : x, y ∈ X , x , y}. Let dx = #{E ∈ E : x ∈ E} be the
degree of node x (i.e., the number of edges containing x), and let D =

∑
x∈X dx. Let {Xt} be a

Markov process on X with constant jump rate λx ≡ 1 and transition probabilities

Pxy =

1/dx if {x, y} ∈ E ,
0 otherwise.

Evidently, {Xt} is irreducible and reversible with stationary distribution µx = dx/D. §

The next example is fundamental to the study of evolution in two-strategy games.

Example 11.A.10. Birth and death chains. A birth and death chain is a Markov chain on the
state space X = {0, 1, . . . ,N} (or some other finite set endowed with a linear order) under
which all transitions move the state one step to the right, move the state one step to the left,
or leave the state unchanged. It follows that there are vectors p, q ∈ RX with pN = q0 = 0
such that

Pi j =


pi if j = i + 1,
qi if j = i − 1,
1 − pi − qi if j = i.

so a birth and death chain is a Markov chain with a tridiagonal transition matrix. Irre-
ducibility requires that pk > 0 for k < N and that qk > 0 for k > 0.

Because of their simple transition structure, birth and death chains are reversible.
Since only adjacent transitions are possible, the detailed balance conditions (11.22) reduce
to µkqk = µk−1pk−1 for k ∈ {1, . . . ,N}. Applying this formula inductively and noting that
stationary distribution weights sum to 1, we obtain an explicit formula for this distribution:

µk =
p0 · · · pk−1

q1 · · · qk
µ0 for k ∈ {1, . . . ,N};

µ0 =

1 +

N∑
k=1

p0 · · · pk−1

q1 · · · qk


−1

. §
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11.A.6 Stationary Distributions and Reversibility for Markov Processes

The notions of stationarity and reversibility are equally important in the continuous-
time setting, where they are most easily studied using the generator of the Markov process.
In Section 10.B.6, we described the transition probabilities of the Markov process {Xt}t≥0

using the matrix semigroup {P(t)}t≥0, where Pxy(t) = P
(
Xt = y |X0 = x

)
. The generator of

{Xt}t≥0 is the matrix Q = diag(λ)(P − I), where λ ∈ RX
+ and P ∈ RX×X

+ are the vector of
jump rates and the transition matrix of the Markov process, respectively. Equation (10.12)
showed that the generator and the transition probabilities are related by

(11.23) P(t) = eQt
≡

∞∑
k=0

(Qt)k

k!
.

With these preliminaries in hand, we call the probability distribution µ a stationary
distribution of {Xt}t≥0 if

(11.24) µ′Q = 0.

Equation (11.23) implies that µ is a stationary distribution if and only if µ′P(t) = µ′ for all
t ≥ 0. The latter statement can be expressed more explicitly as

(11.25) Pµ (Xt = x) = µx for all x ∈ X and t ≥ 0.

Equation (11.25) says that if {Xt} is run from initial distribution µ, then it continues to
follow distribution µ at all times t ≥ 0.

To obtain a condition that more closely resembles the discrete-time stationarity condi-
tion (11.20), one can substitute the definition of Q into equation (11.24) to obtain

(11.26) (µ • λ)′P = (µ • λ),

where • denotes componentwise products: (µ • λ)i = µiλi. Notice that if the jump rate
vector λ is constant, then equation (11.26) reduces to the discrete-time condition µ′P = µ′

from equation (11.20).
Equation (11.26) suggests that the basic properties of the stationary distribution in the

continuous-time setting should parallel those in the discrete-time setting so long as the
jump rates are accounted for correctly. Suppose, for instance, that the Markov process {Xt}

is irreducible. If we fix α ∈ (0, (maxx λx)−1], it is easy to see that αQ + I is an irreducible
stochastic matrix. Theorem 11.A.5(iii) then tells us that there is a unique probability vector
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µ satisfying µ′(αQ + I) = µ′, or, equivalently, µ′Q = 0. We therefore have

Theorem 11.A.11. If the Markov process {Xt} is irreducible, it admits a unique stationary distri-
bution.

To link stationary distribution weights and expected return times, define the hitting
time of state x as Tx = inf {t ≥ τ1 : Xt = x}, where τ1 is the first jump time of the process
{Xt}t≥0. (Notice again that the state need not actually change at time τ1). If the Markov
process {Xt}t≥0 is irreducible, then it can be shown that ExTx = (µxλx)−1.

Finally, we say that a Markov process is reversible if it admits a reversible distribution µ,
which here means that

(11.27) µxλxPxy = µyλyPyx for all x, y ∈ X .

Summing this equation over x yields the stationarity condition (11.26). Again, equation
(11.27) reduces to the discrete-time condition µxPxy = µyPyx from equation (11.22) if jump
rates are constant.

11.A.7 Convergence in Distribution

The fundamental results of the theory of finite state Markov chains and processes
establish various senses in which the infinite-horizon behavior of irreducible processes is
independent of initial conditions, and characterizable in terms of the process’s stationary
distribution. As with the basic theorems about i.i.d. random variables (see Appendix
10.B.3), there are two types of results, those that concern distributional properties and so
consider the process from the ex ante point of view, and those on sample path properties,
which consider the process from the ex post point of view. We consider the former results
here, and the latter in Appendix 11.A.8.

The basic distributional result, Theorem 11.A.12, provides conditions under which the
time t distributions of a Markov chain or process converge to its stationary distribution.
In the continuous-time setting, irreducibility is sufficient for convergence in distribution;
in the discrete-time setting, aperiodicity is also required.

Theorem 11.A.12 (Convergence in Distribution). Suppose that {Xt} is either an irreducible
aperiodic Markov chain or an irreducible Markov process, and that its stationary distribution is µ.
Then for any initial distribution π, we have that

Pπ(Xt = x) = µx for all x ∈ X .
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In the discrete-time case, Theorem 11.A.12 is an immediate consequence of Theorem
11.A.5(v):

lim
t→∞

Pπ(Xt = x) = lim
t→∞

(π′Pt)x = (π′1µ′)x = µx.

Theorem 11.A.12 shows that the after a long enough time has passed, the time t
distribution of {Xt} will be close to its stationary distribution. But it does not tell us how
long we must wait before this limit result becomes relevant. The answer to this question
can be found in Theorem 11.A.5(vi), which shows that the rate of convergence to the
stationary distribution is determined by the second-largest eigenvalue modulus of the
transition matrix P. Rather than restate this point formally, we illustrate this conclusion
and build intuition by way of two examples.

Example 11.A.13. Consider the two-state Markov chain {Xt}with transition matrix

P =

1 − a a
b 1 − b

 ,
To ensure that this chain is irreducible and aperiodic, we suppose that a, b > 0 and that
a + b < 2. The eigenvalues of P are λ1 = 1 and λ2 = 1 − a − b, and the associated left
eigenvectors are

µ ≡

 b
a+b

a
a+b

 and

−1
1


respectively. Of course, since µ′P = µ′, µ is the stationary distribution of {Xt}.

Now let

L =

 b
a+b

a
a+b

−1 1


be the matrix whose rows are the left eigenvectors of P, and let Λ = diag(λ). Then
the matrix form of the left eigenvector equation for P is LP = ΛL. Since L is invertible,
P = L−1ΛL is diagonalizable. In fact, since PL−1 = L−1Λ, the columns of

R ≡ L−1 =

1 −a
a+b

1 b
a+b


are the right eigenvectors of P.

The t step transitions of the Markov chain are described by the tth power of P, which
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we can evaluate as follows:

Pt = (RΛL)t(11.28)

= RΛtL

=

1 −
a

a+b

1 b
a+b

 (λ1)t 0
0 (λ2)t

  b
a+b

a
a+b

−1 1


= (λ1)t1µ′ + (λ2)t

 −a
a+b

b
a+b

 (−1 1
)

= 1µ′ + (λ2)t

 a
a+b

−a
a+b

−
b

a+b
b

a+b

 .
Thus, if the chain begins at initial distribution π, its time t distribution is

π′Pt = µ′ + (λ2)t
(
π1a−π2b

a+b
−π1a+π2b

a+b

)
.

We conclude that the distribution of the Markov chain converges to the stationary distri-
bution µ at geometric rate |λ2| = |1 − a − b|. §

Some simple observations about matrix multiplication will be useful in the next exam-
ple. For any matrices A,B ∈ Rn×n, we can write

(11.29) AB = AIB =

n∑
k=1

A(eke′k)B =

n∑
k=1

(Aek)(e′kB).

In words, to compute the product AB, we take the “outer product” of the kth column of A
and the kth row of B, and then sum over k. (For a different derivation of (11.29), recall that
the i jth term of AB is

∑
k AikBkj; (11.29) expresses this fact in matrix form.) If we interpose

a diagonal matrix D = diag(d) between A and B, we can obtain a similar expression, used
implicitly in (11.28):

(11.30) ADB =

n∑
k=1

dk(Aek)(e′kB).

Example 11.A.14. Let P be the transition matrix of an irreducible aperiodic Markov chain,
and suppose that P is (real or complex) diagonalizable. Then, as in the previous example,
we can write P = RΛL = R diag(λ)L, where λ is the vector of eigenvalues of P, the rows
of L are left eigenvectors, and the columns of R = L−1 are right eigenvectors. As before,
we can write the t step transition probabilities as Pt = RΛtL, which we can rewrite using
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equation (11.30) as

(11.31) Pt = RΛtL =

n∑
k=1

(λk)t(Rek)(e′kL).

The Perron-Frobenius Theorem tells us that 1 is an eigenvalue of P with algebraic
multiplicity 1, and that all other eigenvalues of P have modulus less than 1. Moreover, the
left and right eigenvectors corresponding to eigenvalue 1 are the stationary distribution µ
and the constant vector 1. Thus, if we order the eigenvectors so that 1 = λ1 > |λ2| ≥ |λ3| ≥

. . . ≥ |λn| > −1, then e′1L = µ′ and Re1 = 1. (To see that Re1 is 1 rather than some multiple
of 1, note that LR = I, implying that µ′Re1 = e′1LRe1 = I11 = 1.)

Using these observations, we can rewrite equation (11.31) as

Pt = 1µ′ +
n∑

k=2

(λk)t(Rek)(e′kL).

Evidently, the rate of convergence of {Xt} to its stationary distribution is determined by
the second largest eigenvalue modulus of P. §

11.A.8 Ergodicity

Having considered the distributional properties, we turn to sample path properties,
which describe behavior from the ex post point of view. Theorem 11.A.15 shows that if
{Xt} is an irreducible Markov chain or process, then for almost all realizations ofω ∈ Ω, the
proportion of time spent in each state x converges to the weight µx placed on this state in
the stationary distribution µ. If {Xt} is an i.i.d. process, with each Xt having distribution µ,
this conclusion follows from the Strong Law of Large Numbers. Theorem 11.A.15 reveals
that Markov dependence is enough for this implication to hold.

Theorem 11.A.15 (Ergodicity).

(i) Suppose that {Xt} is an irreducible Markov chain with stationary distribution µ. Then for
any initial distribution π, we have that

Pπ

 lim
T→∞

1
T

T−1∑
t=0

1{Xt=x} = µx

 = 1 for all x ∈ X .

(ii) Suppose that {Xt} is an irreducible Markov process with stationary distribution µ. Then
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for any initial distribution π, we have that

Pπ

(
lim
T→∞

1
T

∫ T

0
1{Xt=x} dt = µx

)
= 1 for all x ∈ X .

11.N Notes

Section 11.1. The best response with mutations model is introduced in Kandori et al.
(1993). Models of imitation with mutations are considered by Binmore and Samuelson
(1997) and Fudenberg and Imhof (2006). See the Notes to Chapter ?? for further references.

For formal analyses of waiting times in stochastic evolutionary models, see, for exam-
ple, Ellison (1993, 2000), Binmore et al. (1995), Benaı̈m and Weibull (2003), and Benaı̈m
and Sandholm (2007). Ellison (1993, 2000) shows that waiting times can be significantly
reduced in models of local interaction, in which agents live in fixed locations and only
interact with neighbors. For further work on local interaction models, see Nowak and
May (1992, 1993), Blume (1993, 1995), Morris (2000), Nowak (2006), Szabó and Fáth (2007),
Alós-Ferrer and Weidenholzer (2008), and the references therein.

Section 11.2. Stationary distributions for models of stochastic evolution in two-strategy
games are studied by Binmore et al. (1995), Binmore and Samuelson (1997), Blume (2003),
Benaı̈m and Weibull (2003), and Sandholm (2007c). The “swimming upstream” analogy
following Example 11.2.5 appears in related contexts in Fudenberg and Harris (1992),
Kandori (1997), and Binmore and Samuelson (1997).

Section 11.3. The definition of finite-population full potential games and Exercise 11.3.7
are due to Sandholm (2001). The distinction between simple and clever payoff evaluation
is noted in Sandholm (1998). Exercise 11.3.10(ii) is due to Rhode and Stegeman (1996).

Section 11.4. Exercise 11.4.2(i) is due to Blume (1997), which builds on the definition
of normal form potential games from Monderer and Shapley (1996). Theorem 11.4.1 is
presented in Benaı̈m and Sandholm (2007).

Appendix 11.A. The material presented here can all be found in standard references
on Markov chains and processes; see Norris (1997), Brémaud (1999), and Stroock (2005).
Durrett (2005, Chapter 5) also offers a clear presentation of Markov chains. For more on
the Perron-Frobenius Theorem, see Seneta (1981) or Horn and Johnson (1985).
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manuscript, Université de Neuchâtel and University of Wisconsin.

Benaı̈m, M. and Weibull, J. W. (2003). Deterministic approximation of stochastic evolution
in games. Econometrica, 71:873–903.

Benaı̈m, M. and Weibull, J. W. (2008). Deterministic approximation of stochastic evolution
in games: A generalization. Unpublished manuscript, Université de Neuchâtel and
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