Population Games and Evolutionary Dynamics
 William H. Sandholm
 January 21, 2009

Chaos under the replicator dynamic

CONTENTS

1 Introduction 1
I Population Games 3
2 Population Games 5
2.0 Introduction 5
2.1 Population Games 6
2.1.1 Populations, Strategies, and States 6
2.1.2 Payoffs 6
2.1.3 Best Responses and Nash Equilibria 7
2.1.4 Prelude to Evolutionary Dynamics 8
2.2 Examples 8
2.2.1 Random Matching in Normal Form Games 8
2.2.2 Congestion Games 10
2.2.3 Two Simple Externality Models 11
2.3 The Geometry of Population Games and Nash Equilibria 12
2.3.1 Drawing Two-Strategy Games 12
2.3.2 Displacement Vectors and Tangent Spaces 14
2.3.3 Orthogonal Projections 17
2.3.4 Drawing Three-Strategy Games 19
2.3.5 Tangent Cones and Normal Cones 22
2.3.6 Normal Cones and Nash Equilibria 23
2.A Affine Spaces, Tangent Spaces, and Orthogonal Projections 27
2.A. 1 Affine Spaces 27
2.A. 2 Affine Hulls of Convex Sets 28
2.A. 3 Orthogonal Projections 29
2.B The Moreau Decomposition Theorem 33
2.N Notes 34
3 Potential Games, Stable Games, and Supermodular Games 35
3.0 Introduction 35
3.1 Full Potential Games 36
3.1.1 Full Population Games 36
3.1.2 Definition and Characterization 36
3.1.3 Examples 38
3.1.4 Nash Equilibria of Full Potential Games 41
3.1.5 The Geometry of Nash Equilibrium in Full Potential Games 47
3.1.6 Efficiency in Homogeneous Full Potential Games 49
3.1.7 Inefficiency Bounds for Congestion Games 51
3.2 Potential Games 54
3.2.1 Motivating Examples 54
3.2.2 Definition, Characterizations, and Examples 55
3.2.3 Potential Games and Full Potential Games 59
3.2.4 Passive Games and Constant Games 61
3.3 Stable Games 62
3.3.1 Definition 63
3.3.2 Examples 65
3.3.3 Invasion 69
3.3.4 Global Neutral Stability and Global Evolutionary Stability 70
3.3.5 Nash Equilibrium and Global Neutral Stability in Stable Games 74
3.4 Supermodular Games 78
3.4.1 Definition 78
3.4.2 Examples 81
3.4.3 Best Response Monotonicity in Supermodular Games 83
3.4.4 Nash Equilibria of Supermodular Games 84
3.A Multivariate Calculus 85
3.A. 1 Univariate Calculus 85
3.A. 2 The Derivative as a Linear Map 85
3.A. 3 Differentiation as a Linear Operation 88
3.A. 4 The Product Rule and the Chain Rule 88
3.A. 5 Homogeneity and Euler's Theorem 90
3.A. 6 Higher Order Derivatives 91
3.A. 7 The Whitney Extension Theorem 92
3.A. 8 Vector Integration and the Fundamental Theorem of Calculus 92
3.A. 9 Potential Functions and Integrability 93
3.B Affine Calculus 94
3.B. 1 Linear Forms and the Riesz Representation Theorem 94
3.B. 2 Dual Characterizations of Multiples of Linear Forms 95
3.B. 3 Derivatives of Functions on Affine Spaces 97
3.B. 4 Affine Integrability 99
3.N Notes 101
II Deterministic Evolutionary Dynamics 105
4 Revision Protocols and Evolutionary Dynamics 107
4.0 Introduction 107
4.1 Revision Protocols and Mean Dynamics 108
4.1.1 Revision Protocols 108
4.1.2 Mean Dynamics 110
4.1.3 Target Protocols and Target Dynamics 112
4.2 Examples 113
4.3 Evolutionary Dynamics 117
4.A Ordinary Differential Equations 119
4.A. 1 Basic Definitions 119
4.A. 2 Existence, Uniqueness, and Continuity of Solutions 120
4.A. 3 Ordinary Differential Equations on Compact Convex Sets 123
4.N Notes 125
5 Deterministic Dynamics: Families and Properties 127
5.0 Introduction 127
5.1 Principles for Evolutionary Modeling 128
5.2 Desiderata for Revision Protocols and Evolutionary Dynamics 130
5.2.1 Limited Information 130
5.2.2 Incentives and Aggregate Behavior 132
5.3 Families of Evolutionary Dynamics 135
5.4 Imitative Dynamics 140
5.4.1 Definition 140
5.4.2 Examples 141
5.4.3 Biological Derivations of the Replicator Dynamic 145
5.4.4 Extinction and Invariance 147
5.4.5 Monotone Percentage Growth Rates and Positive Correlation 149
5.4.6 Rest Points and Restricted Equilibria 151
5.5 Excess Payoff Dynamics 152
5.5.1 Definition and Interpretation 152
5.5.2 Incentives and Aggregate Behavior 154
5.6 Pairwise Comparison Dynamics 156
5.6.1 Definition 156
5.6.2 Incentives and Aggregate Behavior 157
5.6.3 Desiderata Revisited 159
5.7 Multiple Revision Protocols and Combined Dynamics 159
5.N Notes 161
6 Best Response and Projection Dynamics 165
6.0 Introduction 165
6.1 The Best Response Dynamic 166
6.1.1 Definition and Examples 166
6.1.2 Construction and Properties of Solution Trajectories 168
6.1.3 Incentive Properties 173
6.2 Perturbed Best Response Dynamics 174
6.2.1 Revision Protocols and Mean Dynamics 175
6.2.2 Perturbed Optimization: A Representation Theorem 176
6.2.3 Logit Choice and the Logit Dynamic 179
6.2.4 Perturbed Incentive Properties via Virtual Payoffs 184
6.3 The Projection Dynamic 186
6.3.1 Definition 186
6.3.2 Solution Trajectories 187
6.3.3 Incentive Properties 190
6.3.4 Revision Protocols and Connections with the Replicator Dynamic 190
6.A Differential Inclusions 193
6.A. 1 Basic Theory 193
6.A. 2 Differential Equations Defined by Projections 195
6.B The Legendre Transform 196
6.B. 1 Legendre Transforms of Functions on Open Intervals 197
6.B. 2 Legendre Transforms of Functions on Multidimensional Domains 200
6.C Perturbed Optimization 201
6.C. 1 Proof of the Representation Theorem 201
6.C. 2 Additional Results 204
6.N Notes 205
III Convergence and Nonconvergence 209
7 Global Convergence of Evolutionary Dynamics 211
7.0 Introduction 211
7.1 Potential Games 213
7.1.1 Potential Functions as Lyapunov Functions 213
7.1.2 Gradient Systems for Potential Games 219
7.2 Stable Games 223
7.2.1 The Projection and Replicator Dynamics in Strictly Stable Games 223
7.2.2 Integrable Target Dynamics 226
7.2.3 Impartial Pairwise Comparison Dynamics 237
7.2.4 Summary 239
7.3 Supermodular Games 240
7.3.1 The Best Response Dynamic in Two-Player Normal Form Games 242
7.3.2 Stochastically Perturbed Best Response Dynamics 245
7.4 Dominance Solvable Games 249
7.4.1 Dominated and Iteratively Dominated Strategies 250
7.4.2 The Best Response Dynamic 250
7.4.3 Imitative Dynamics 251
7.A Limit and Stability Notions for Deterministic Dynamics 253
7.A. 1ω-Limits and Notions of Recurrence 253
7.A. 2 Stability of Sets of States 254
7.B Stability Analysis via Lyapunov Functions 255
7.B. 1 Lyapunov Stable Sets 255
7.B. $2 \quad \omega$-Limits and Attracting Sets 256
7.B. 3 Asymptotically Stable and Globally Asymptotically Stable Sets 258
7.C Cooperative Differential Equations 258
7.N Notes 261
8 Local Stability under Evolutionary Dynamics 263
8.0 Introduction 263
8.1 Non-Nash Rest Points of Imitative Dynamics 264
8.2 Local Stability in Potential Games 265
8.3 Evolutionarily Stable States 267
8.3.1 Single-Population Games 268
8.3.2 Multipopulation Games 273
8.3.3 Regular Taylor ESS 274
8.4 Local Stability via Lyapunov Functions 275
8.4.1 The Replicator and Projection Dynamics 275
8.4.2 Target and Pairwise Comparison Dynamics: Interior ESS 276
8.4.3 Target and Pairwise Comparison Dynamics: Boundary ESS 278
8.5 Linearization of Imitative Dynamics 282
8.5.1 The Replicator Dynamic 283
8.5.2 General Imitative Dynamics 287
8.6 Linearization of Perturbed Best Response Dynamics 289
8.6.1 Deterministically Perturbed Best Response Dynamics 289
8.6.2 The Logit Dynamic 290
8.A Matrix Analysis 292
8.A. 1 Rank and Invertibility 292
8.A. 2 Eigenvectors and Eigenvalues 293
8.A. 3 Similarity, (Block) Diagonalization, and the Spectral Theorem 295
8.A. 4 Symmetric Matrices 297
8.A. 5 The Real Jordan Canonical Form 298
8.A. 6 The Spectral Norm and Singular Values 299
8.A. 7 Hines's Lemma 300
8.B Linear Differential Equations 301
8.B. 1 Examples 302
8.B. 2 Solutions 304
8.B. 3 Stability and Hyperbolicity 305
8.C Linearization of Nonlinear Differential Equations 307
8.N Notes 309
9 Nonconvergence of Evolutionary Dynamics 313
9.0 Introduction 313
9.1 Conservative Properties of Evolutionary Dynamics 314
9.1.1 Constants of Motion in Null Stable Games 314
9.1.2 Preservation of Volume 319
9.2 Games with Nonconvergent Evolutionary Dynamics 321
9.2.1 Circulant Games 322
9.2.2 Continuation of Attractors for Parameterized Games 325
9.2.3 Mismatching Pennies 328
9.2.4 The Hypnodisk Game 332
9.3 Chaotic Evolutionary Dynamics 336
9.4 Survival of Dominated Strategies 339
9.A Three Classical Theorems on Nonconvergent Dynamics 349
9.A. 1 Liouville's Theorem 349
9.A. 2 The Poincaré-Bendixson and Bendixson-Dulac Theorems 352
9.B Attractors and Continuation 353
9.B. 1 Attractors and Repellors 353
9.B. 2 Continuation of Attractors 355
9.N Notes 356
IV Stochastic Evolutionary Models 359
10 Stochastic Evolution and Deterministic Approximation 361
10.0 Introduction 361
10.1 The Stochastic Evolutionary Process 362
10.2 Finite Horizon Deterministic Approximation 364
10.2.1 Kurtz's Theorem 364
10.2.2 Deterministic Approximation of the Stochastic Evolutionary Process 366
10.3 Extensions 370
10.3.1 Finite-Population Adjustments 370
10.3.2 Discrete Time Models 370
10.A The Exponential and Poisson Distributions 371
10.A. 1 Basic Properties 371
10.A. 2 The Poisson Limit Theorem 375
10.B Countable State Markov Processes 376
10.B. 1 Countable Probability Models 376
10.B. 2 Uncountable Probability Models and Measure Theory 377
10.B. 3 Distributional Properties and Sample Path Properties 378
10.B. 4 Countable State Markov Chains 380
10.B.5 Countable State Markov Processes: Definition and Construction 381
10.B.6 Countable State Markov Processes: Transition Probabilities 384
10.B. 7 Kurtz's Theorem in Discrete Time 385
10.N Notes 386
11 Stationary Distributions and Infinite Horizon Behavior 389
11.0 Introduction 389
11.1 Irreducibile Evolutionary Processes 391
11.1.1 Full Support Revision Protocols 391
11.1.2 Stationary Distributions and Infinite Horizon Behavior 393
11.1.3 Reversibility 394
11.2 Stationary Distributions for Two-Strategy Games 395
11.2.1 Birth and Death Processes 395
11.2.2 The Stationary Distribution of the Evolutionary Process 398
11.2.3 Examples 399
11.3 Model Adjustments for Finite Populations 404
11.3.1 Finite-Population Games 405
11.3.2 Finite-Population Potential Games 405
11.3.3 Clever Payoff Evaluation 409
11.4 Logit Choice in Potential Games 411
11.A Long Run Behavior of Markov Chains and Processes 414
11.A. 1 Communication, Recurrence, and Irreducibility 414
11.A. 2 Periodicity 416
11.A. 3 The Perron-Frobenius Theorem 417
11.A. 4 Stationary Distributions for Markov Chains 418
11.A. 5 Reversible Markov Chains 419
11.A. 6 Stationary Distributions and Reversibility for Markov Processes 421
11.A. 7 Convergence in Distribution 422
11.A. 8 Ergodicity 425
11.N Notes 426
Bibliography 427

Frequently Used Definitions

Classes of games

(3.23) $\quad \Sigma y \geq \Sigma x$ implies that $\tilde{\Sigma}^{\prime} F(y) \geq \tilde{\Sigma}^{\prime} F(x)$
supermodular game
79

General equations for mean dynamics

$$
\begin{align*}
& \boldsymbol{\Phi} F(x)=\nabla f(x)(\equiv \boldsymbol{\Phi} \nabla f(x)) \tag{3.9}\\
& (y-x)^{\prime}(F(y)-F(x)) \leq 0 \tag{3.15}
\end{align*}
$$

potential game
stable game 63

$$
\begin{align*}
\dot{x}_{i}^{p} & =\sum_{j \in S^{p}} x_{j}^{p} \rho_{j i}^{p}\left(F^{p}(x), x^{p}\right)-x_{i}^{p} \sum_{j \in S^{p}} \rho_{i j}^{p}\left(F^{p}(x), x^{p}\right) & \text { mean dynamic } & 111 \tag{M}\\
\dot{x}_{i}^{p} & =m^{p} \tau_{i}^{p}\left(F^{p}(x), x^{p}\right)-x_{i}^{p} \sum_{j \in S^{p}} \tau_{j}^{p}\left(F^{p}(x), x^{p}\right) & \text { target dynamic } & 112 \\
\dot{x}^{p} & =m^{p} \sigma^{p}\left(F^{p}(x), x^{p}\right)-x^{p} . & \text { exact target dynamic } & 113 \tag{4.3}
\end{align*}
$$

Properties of evolutionary dynamics

(NS) $\quad V_{F}(x)=\mathbf{0}$ if and only if $x \in N E(F)$
Nash stationarity 132
(PC) $\quad V_{F}^{p}(x) \neq \mathbf{0}$ implies that $V_{F}^{p}(x)^{\prime} F^{p}(x)>0$
positive correlation 132

Six fundamental evolutionary dynamics
(R) $\quad \dot{x}_{i}^{p}=x_{i}^{p} \hat{F}_{i}^{p}(x)$
replicator dynamic
(BNN) $\quad \dot{x}_{i}^{p}=m^{p}\left[\hat{F}_{i}^{p}(x)\right]_{+}-x_{i}^{p} \sum_{j \in S^{p}}\left[\hat{F}_{j}^{p}(x)\right]_{+}$
BNN dynamic
154 $\dot{x}_{i}^{p}=\sum_{j \in S^{P}} x_{j}^{p}\left[F_{i}^{p}(x)-F_{j}^{p}(x)\right]_{+}-x_{i}^{p} \sum_{j \in S^{p}}\left[F_{j}^{p}(x)-F_{i}^{p}(x)\right]_{+}$

Smith dynamic 157 $\dot{x}^{p} \in m^{p} M^{p}\left(F^{p}(x)\right)-x^{p}$ best response dynamic 167
(L) $\quad \dot{x}_{i}^{p}=m^{p} \frac{\exp \left(\eta^{-1} F_{i}^{p}(x)\right)}{\sum_{j \in S^{p}} \exp \left(\eta^{-1} F_{j}^{p}(x)\right)}-x_{i}^{p}$ $\operatorname{logit}(\eta)$ dynamic 179
(P) $\quad \dot{x}=\Pi_{T X(x)}(F(x))$
projection dynamic 186

Introduction

Part I

Population Games

Population Games

2.0 Introduction

Population games are used to model strategic interactions with these five traits:
(i) The number of agents is large.
(ii) Individual agents are small: Any one agent's behavior has little or no effect on other agents' payoffs.
(iii) The number of roles is finite: Each agent is a member of one of a finite number of populations. Members of a population choose from the same set of strategies, and their payoffs are identical functions of own behavior and opponents' behavior.
(iv) Agents interact anonymously: Each agent's payoffs only depend on opponents' behavior through the distribution of opponents' choices.
(v) Payoffs are continuous: The dependence of each agent's payoffs on the distribution of opponents' choices is continuous.

Applications fitting this description can be found in a variety of disciplines, including economics (externalities, macroeconomic spillovers, centralized markets), biology (animal conflict, genetic natural selection), transportation science (highway network congestion, mode choice), and computer science (selfish routing of Internet traffic). Population games provide a unified framework for studying these and other topics, helping us to identify the forces that drive parallel conclusions in seemingly disparate fields.

The most convenient way to define population games is to assume that the set of agents forms a continuum, as doing so enables us to study these games using tools from analysis. Of course, real populations are finite. Still, the continuum assumption is appropriate when the effects of individuals' choices on opponents' payoffs are small, or, more generally, when
individuals ignore these effects when deciding how to act. In subsequent chapters we will draw explicit links between the finite and continuous models.

2.1 Population Games

2.1.1 Populations, Strategies, and States

Let $\mathcal{P}=\{1, \ldots, p\}$, be a society consisting of $p \geq 1$ populations of agents. Agents in population p form a continuum of mass $m^{p}>0$. (Thus, p is the number of populations, while p is an arbitrary population.)

The set of strategies available to agents in population p is denoted $S^{p}=\left\{1, \ldots, n^{p}\right\}$, and has typical elements i, j, and (in the context of normal form games) s^{p}. We let $n=\sum_{p \in \mathcal{P}} n^{p}$ equal the total number of pure strategies in all populations.

During game play, each agent in population p selects a (pure) strategy from S^{p}. The set of population states (or strategy distributions) for population p is $X^{p}=\left\{x^{p} \in \mathbf{R}_{+}^{n^{p}}: \sum_{i \in S^{p}} x_{i}^{p}=\right.$ $\left.m^{p}\right\}$. The scalar $x_{i}^{p} \in \mathbf{R}_{+}$represents the mass of players in population p choosing strategy $i \in S^{p}$. Elements of X_{v}^{p}, the set of vertices of X^{p}, are called pure population states, since at these states all agents choose the same strategy.

Elements of $X=\prod_{p \in \mathcal{P}} X^{p}=\left\{x=\left(x^{1}, \ldots, x^{p}\right) \in \mathbf{R}_{+}^{n}: x^{p} \in X^{p}\right\}$, the set of social states, describe behavior in all p populations at once. The elements of $X_{v}=\prod_{p \in \mathcal{P}} X_{v}^{p}$ are the vertices of X, and are called the pure social states.

When there is just one population $(p=1)$, we assume that its mass is 1 , and we omit the superscript p from all of our notation: thus, the strategy set is $S=\{1, \ldots, n\}$, the state space is $X=\left\{x \in \mathbf{R}_{+}^{n}: \sum_{i \in S} x_{i}=1\right\}$, the simplex in \mathbf{R}^{n}, and the set of pure states $X_{v}=\left\{e_{i}: i \in S\right\}$ is the set of standard basis vectors in \mathbf{R}^{n}.

2.1.2 Payoffs

We generally take the sets of populations and strategies as fixed and identify a game with its payoff function. A payoff function $F: X \rightarrow \mathbf{R}^{n}$ is a continuous map that assigns each social state a vector of payoffs, one for each strategy in each population. $F_{i}^{p}: X \rightarrow \mathbf{R}$ denotes the payoff function for strategy $i \in S^{p}$, while $F^{p}: X \rightarrow \mathbf{R}^{n^{p}}$ denotes the payoff functions for all strategies in S^{p}.

While our standing assumption is that F is continuous, we often impose the stronger requirements that F be Lipschitz continuous or continuously differentiable (C^{1}). These additional assumptions will be made explicit whenever we use them.

We define

$$
\bar{F}^{p}(x)=\frac{1}{m^{p}} \sum_{i \in S^{p}} x_{i}^{p} F_{i}^{p}(x)
$$

to be the (weighted) average payoff obtained by members of population p at social state x. Similarly, we let

$$
\bar{F}(x)=\sum_{p \in \mathcal{P}} \sum_{i \in S^{p}} x_{i}^{p} F_{i}^{p}(x)=\sum_{p \in \mathcal{P}} m^{p} \bar{F}^{p}(x)
$$

denote the aggregate payoff achieved by the society as a whole.

2.1.3 Best Responses and Nash Equilibria

To describe optimal behavior, we define population p^{\prime} s pure best response correspondence, $b^{p}: X \Rightarrow S^{p}$, which specifies the strategies in S^{p} that are optimal at each social state x :

$$
b^{p}(x)=\underset{i \in S^{p}}{\operatorname{argmax}} F_{i}^{p}(x) .
$$

Let $\Delta^{p}=\left\{y^{p} \in \mathbf{R}_{+}^{n^{p}}: \sum_{i \in S^{p}} y_{i}^{p}=1\right\}$ denote the simplex in $\mathbf{R}^{n^{p}}$. The mixed best response correspondence for population $p, B^{p}: X \Rightarrow \Delta^{p}$ is given by

$$
B^{p}(x)=\left\{y^{p} \in \Delta^{p}: y_{i}^{p}>0 \Rightarrow i \in b^{p}(x)\right\} .
$$

In words, $B^{p}(x)$ is the set of probability distributions in Δ^{p} whose supports only contain pure strategies that are optimal at x. Geometrically, $B^{p}(x)$ is the convex hull of the vertices of Δ^{p} corresponding to elements of $b^{p}(x)$.

Social state $x \in X$ is a Nash equilibrium of the game F if each agent in every population chooses a best response to x :

$$
N E(F)=\left\{x \in X: x^{p} \in m^{p} B^{p}(x) \text { for all } p \in \mathcal{P}\right\} .
$$

We will see in Section 2.3.6 that the Nash equilibria of a population game can also be characterized in a purely geometric way.

Nash equilibria always exist:
Theorem 2.1.1. Every population game admits at least one Nash equilibrium.
Theorem 2.1.1 can be proved by applying Kakutani's Theorem to the profile of best response correspondences. But we will see that in each of the three classes of games we
focus on in Chapter 3-potential games (Sections 3.1 and 3.2), stable games (Section 3.3), and supermodular games (Section 3.4)—existence of Nash equilibrium can be established without recourse to fixed point theorems.

2.1.4 Prelude to Evolutionary Dynamics

In traditional game-theoretic analyses, it is usual to assume that players follow some Nash equilibrium of the game at hand. But because population games involve large numbers of agents, the equilibrium assumption is quite strong, making it more appealing to rely on less demanding assumptions. Therefore, rather than assume equilibrium play, we suppose that individual agents gradually adjust their choices to their current strategic environment. We then ask whether or not the induced behavior trajectories converge to Nash equilibrium. When they do, the Nash prediction can be justified; when they do not, the Nash prediction may be unwarranted.

The question of convergence to equilibrium is a central issue in this book. We will see later on that in the three classes of games studied in Chapter 3, convergence results can be established in some generality-that is, without being overly specific about the exact nature of the agents' revision protocols. But in this chapter and the next, we confine ourselves to introducing population games and studying their equilibria.

2.2 Examples

To fix ideas, we offer four examples of population games. These examples and many more will be developed and analyzed through the remainder of the book.

2.2.1 Random Matching in Normal Form Games

Let us begin with the canonical example of evolutionary game theory.
Example 2.2.1. Random matching in a single population to play a symmetric game. A symmetric two player normal form game is defined by a strategy set $S=\{1, \ldots, n\}$ and a payoff matrix $A \in \mathbf{R}^{n \times n} . A_{i j}$ is the payoff a player obtains when he chooses strategy i and his opponent chooses strategy j; this payoff does not depend on whether the player in question is called player I or player II. Below is the bimatrix corresponding to A when $n=3$.

Player II

	1			2

To obtain a population game from this normal form game, we suppose that agents in a single (unit mass) population are randomly matched to play A. Assuming that agents evaluate probability distributions over payoffs by taking expectations (i.e., that the entries of the matrix A are von Neumann-Morgenstern utilities), the payoff to strategy i when the population state is x is $F_{i}(x)=\sum_{j \in S} A_{i j} x_{j}$. It follows that the population game associated with A is described by the linear map $F(x)=A x$. §

Example 2.2.2. Random matching in two populations. A (possibly asymmetric) two player game is defined by two strategy sets, $S^{1}=\left\{1, \ldots, n^{1}\right\}$ and $S^{2}=\left\{1, \ldots, n^{2}\right\}$, and two payoff matrices, $U^{1} \in \mathbf{R}^{n^{1} \times n^{2}}$ and $U^{2} \in \mathbf{R}^{n^{1} \times n^{2}}$. The corresponding bimatrix when $n^{1}=2$ and $n^{2}=3$ is as follows.

Player I

	Player II		
	1	2	3
1	U_{11}^{1}, U_{11}^{2}	U_{12}^{1}, U_{12}^{2}	U_{13}^{1}, U_{13}^{2}
2	U_{21}^{1}, U_{21}^{2}	U_{22}^{1}, U_{22}^{2}	U_{23}^{1}, U_{23}^{2}

To define the corresponding population game, we suppose that there are two unit mass populations, one corresponding to each player role. One agent from each population is drawn at random and matched to play the game $\left(U^{1}, U^{2}\right)$. The payoff functions for populations 1 and 2 are given by $F^{1}(x)=U^{1} x^{2}$ and $F^{2}(x)=\left(U^{2}\right)^{\prime} x^{1}$, so the entire population game is described by the linear map

$$
F(x)=\binom{F^{1}(x)}{F^{2}(x)}=\left(\begin{array}{cc}
0 & U^{1} \\
\left(U^{2}\right)^{\prime} & 0
\end{array}\right)\binom{x^{1}}{x^{2}}=\binom{U^{1} x^{2}}{\left(U^{2}\right)^{\prime} x^{1}} \cdot \S
$$

Example 2.2.3. Random matching in p populations. To generalize the previous example, we define a p player normal form game. Let $S^{p}=\left\{1, \ldots, n^{p}\right\}$ denote player p^{\prime} s strategy set and $S=\prod_{q \in \mathcal{P}} S^{q}$ the set of pure strategy profiles; player p^{\prime} s payoff function U^{p} is a map from S to \mathbf{R}.

In the population game, agents in p unit mass populations are randomly matched to play the normal form game $U=\left(U^{1}, \ldots, U^{p}\right)$, with one agent from each population p
being drawn to serve in player role p. This procedure yields a population game with the multilinear (i.e., linear in each x^{p}) payoff function

$$
F_{s^{p}}^{p}(x)=\sum_{s^{-p} \in S^{-p}} U^{p}\left(s^{1}, \ldots, s^{p}\right) \prod_{r \neq p} x_{s^{r}}^{r}, \text { where } S^{-p}=\prod_{q \neq p} S^{q} . \S
$$

We conclude with an observation relating the Nash equilibria of population games generated by random matching to those of the underlying normal form games.

Observation 2.2.4. (i) In the single population case (Example 2.2.1), the Nash equilibria of F are the symmetric Nash equilibria of the symmetric normal form game $U=\left(A, A^{\prime}\right)$.
(ii) In the multipopulation cases (Examples 2.2.2 and 2.2.3), the Nash equilibria of F are the Nash equilibria of the normal form game $U=\left(U^{1}, \ldots, U^{p}\right)$.

2.2.2 Congestion Games

Because of the linearity of the expectation operator, random matching in normal form games generates population games with linear or multilinear payoffs. Moreover, when $p \geq 2$, each agent's payoffs are independent of the behavior of other members of his population. Outside of the random matching context, neither of these properties need hold. Our next class of example provides a case in point.

Example 2.2.5. Congestion games. Consider the following model of highway congestion. A collection of towns is connected by a network of links (Figure 2.2.1). For each ordered pair of towns there is a population of agents, each of whom needs to commute from the first town in the pair (where he lives) to the second (where he works). To accomplish this, the agent must choose a path connecting the two towns. The payoff the agent obtains is the negation of the delay on the path he takes. The delay on the path is the sum of the delays on its constituent links, while the delay on a link is a function of the number of agents who use that link.

Congestion games are used to study not only highway congestion, but also more general settings involving "symmetric" externalities. To define a congestion game, we begin with a finite collection of facilities (e.g., links in a highway network), denoted Φ. Every strategy $i \in S^{p}$ requires the use of some collection of facilities $\Phi_{i}^{p} \subseteq \Phi$ (e.g., the links in route i). The set $\rho^{p}(\phi)=\left\{i \in S^{p}: \phi \in \Phi_{i}^{p}\right\}$ contains those strategies in S^{p} that require facility ϕ.

Each facility ϕ has a cost function $c_{\phi}: \mathbf{R}_{+} \rightarrow \mathbf{R}$ whose argument is the facility's utilization

Figure 2.2.1: A highway network.
level u_{ϕ}, the total mass of agents using the facility:

$$
u_{\phi}(x)=\sum_{p \in \mathcal{P}} \sum_{i \in \rho^{p}(\phi)} x_{i}^{p} .
$$

Payoffs in the congestion game are obtained by summing the appropriate facility costs and multiplying by -1 .

$$
F_{i}^{p}(x)=-\sum_{\phi \in \Phi_{i}^{p}} c_{\phi}\left(u_{\phi}(x)\right) .
$$

Since driving on a link increases the delays experienced by other drivers on that link, cost functions in models of highway congestion are increasing; they are typically convex as well. On the other hand, when congestion games are used to model settings with positive externalities (e.g., consumer technology choice), cost functions are decreasing. Evidently, payoffs in congestion games depend on own-population behavior, and need only be linear if the underlying cost functions are linear themselves.

Congestion games are the leading examples of potential games (Sections 3.1 and 3.2; congestion games with increasing cost functions are also stable games (Section 3.3). §

2.2.3 Two Simple Externality Models

We conclude this section with two simpler models of externalities.
Example 2.2.6. Asymmetric negative externalities. Agents from a single population choose from a set of n activities. There are externalities both within and across activities; the
increasing C^{1} function $c_{i j}:[0,1] \rightarrow \mathbf{R}$ represents the cost imposed on agents who choose activity i by agents who choose activity j. Payoffs in this game are described by

$$
F_{i}(x)=-\sum_{j \in S} c_{i j}\left(x_{j}\right)
$$

If "own activity" externalities are strong, in the sense that the derivatives of the cost functions satisfy

$$
2 c_{i i}^{\prime}\left(x_{i}\right) \geq \sum_{j \neq i}\left(c_{i j}^{\prime}\left(x_{j}\right)+c_{j i}^{\prime}\left(x_{i}\right)\right),
$$

then F is a stable game (Section 3.3 of Chapter 3). \S
Example 2.2.7. Search with positive externalities. Consider this simple model of macroeconomic spillovers. Members of a single population choose levels of search effort from the set $S=\{1, \ldots, n\}$. Stronger efforts increase the likelihood of finding trading partners, so that payoffs are increasing both in own search effort and in aggregate search effort. In particular, payoffs are given by

$$
F_{i}(x)=m(i) b(a(x))-c(i),
$$

where $a(x)=\sum_{k=1}^{n} k x_{k}$ represents aggregate search effort, the increasing function $b: \mathbf{R}_{+} \rightarrow \mathbf{R}$ represents the benefits of search as a function of aggregate effort, the increasing function $m: S \rightarrow \mathbf{R}$ is the benefit multiplier, and the arbitrary function $c: S \rightarrow \mathbf{R}$ captures search costs. In Section 3.4, we will show that F is a supermodular game. §

2.3 The Geometry of Population Games and Nash Equilibria

In low-dimensional cases, we can present the payoff vectors generated by a population game in pictures. Doing so provides a way of visualizing the strategic forces at work; moreover, the geometric insights we obtain can be extended to games that we cannot draw.

2.3.1 Drawing Two-Strategy Games

The population games that are easiest to draw are two-strategy games: i.e., games played by a single population of agents who choose between a pair of strategies. When drawing a two-strategy game, we represent the simplex as a subset of \mathbf{R}^{2}. We synchronize the

Figure 2.3.1: Payoffs in 12 Coordination.
drawing with the layout of the payoff matrix by using the vertical coordinate to represent the mass on the first strategy and the horizontal coordinate to represent the mass on the second strategy. We then select a group of states spaced evenly through the simplex; from each state x, we draw an arrow representing the payoff vector $F(x)$ that corresponds to x. (Actually, we draw scaled-down versions of the payoff vectors in order to make the diagrams easier to read.)

In Figures 2.3.1 and 2.3.2, we present the payoff vectors generated by the two-strategy coordination game $F^{C 2}$ and the Hawk-Dove game $F^{H D}$:

$$
F^{C 2}(x)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{x_{1}}{2 x_{2}} ; \quad F^{H D}(x)=\left(\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right)\binom{x_{H}}{x_{D}}=\binom{2 x_{D}-x_{H}}{x_{D}}
$$

Let us focus on the coordination game $F^{C 2}$. At the pure state $e_{1}=(1,0)$ at which all agents play strategy 1 , the payoffs to the two strategies are $F_{1}^{\mathrm{C} 2}\left(e_{1}\right)=1$ and $F_{2}^{\mathrm{C} 2}\left(e_{1}\right)=0$; hence, the arrow representing $F^{C 2}\left(e_{1}\right)$ points directly upward from state e_{1}. At the interior Nash equilibrium $x^{*}=\left(x_{1}^{*}, x_{2}^{*}\right)=\left(\frac{2}{3}, \frac{1}{3}\right)$, each strategy earns a payoff of $\frac{2}{3}$, so the arrow representing payoff vector $F^{C 2}\left(x^{*}\right)=\left(\frac{2}{3}, \frac{2}{3}\right)$ is drawn at a right angle to the simplex at x^{*}. Similar logic explains how the payoff vectors are drawn at other states, and how the Hawk-Dove figure is constructed as well.

The diagrams of $F^{C 2}$ and $F^{H D}$ help us visualize the incentives faced by agents playing these games. In the coordination game, the payoff vectors "push outward" toward the

Figure 2.3.2: Payoffs in the Hawk-Dove game.
two axes, reflecting an incentive structure that drives the population toward the two pure Nash equilibria. In contrast, payoff vectors in the Hawk-Dove game "push inward", away from the axes, reflecting forces leading the population toward the interior Nash equilibrium $x^{*}=\left(\frac{1}{2}, \frac{1}{2}\right)$.

2.3.2 Displacement Vectors and Tangent Spaces

To draw games with more than two strategies we need to introduce two new objects: $T X$, the tangent space of the state space X; and $\boldsymbol{\Phi}$, the orthogonal projection of \mathbf{R}^{n} onto TX. We summarize the relevant concepts in this subsection and the next; for a fuller treatment, see the Appendix.

To start, let us focus on a single-population game F. Imagine that the population is initially at state x, and that a group of agents of mass ε switch from strategy i to strategy j. These revisions move the state from x to $x+\varepsilon\left(e_{j}-e_{i}\right)$: the mass of agents playing strategy i goes down by ε, while the mass of agents playing strategy j goes up by ε. Vectors like $\varepsilon\left(e_{j}-e_{i}\right)$, which represent the effects of such strategy revisions on the population state, are called displacement vectors. (Since these vectors are tangent to the state space X, we also call them tangent vectors-more on this below.)

In Figure 2.3.3, we illustrate displacement vectors for two-strategy games. In this setting, displacement vectors can only point in two directions: when agents switch from strategy 1 to strategy 2 , the state moves in direction $e_{2}-e_{1}$, represented by an arrow

Figure 2.3.3: Displacement vectors for two-strategy games.
pointing southeast; when agents switch from strategy 2 to strategy 1 , the state moves in direction $e_{1}-e_{2}$, represented by an arrow pointing northwest. Both of these vectors are tangent to the state space X.
(Two clarifications are in order here. First, remember that a vector is characterized by its direction and its length, not where we position its base. When we draw an arrow representing the vector z, we use the context to determine an appropriate position x for the arrow's base; the arrow takes the form of a directed line segment from x to $x+z$. Second, since we are mainly interested in displacement vectors' relative sizes, we rescale them before drawing them, just as we did with payoff vectors in Figures 2.3 .1 and 2.3.2.)

Now consider a three-strategy game: a game with one population and three strategies, whose state space X is thus the simplex in \mathbf{R}^{3}. A "three-dimensional" picture of X is provided in Figure 2.3.4, where X is situated within the plane in \mathbf{R}^{3} that contains it. This plane is called the affine hull of X, and is denoted by $\operatorname{aff}(X)$ (see Appendix 2.A.2). For future reference, note that displacement vectors drawn from states in X are situated in the plane $\operatorname{aff}(X)$.

Instead of representing the state space X explicitly in \mathbf{R}^{3}, it is more common to present it as a two-dimensional equilateral triangle (Figure 2.3.5). When we follow this approach, our sheet of paper itself represents the affine hull aff (X), and so arrows drawn on the paper represent displacement vectors. Figure 2.3 .5 presents arrows describing the $3 \times 2=6$ displacement vectors of the form $e_{j}-e_{i}$, which correspond to switches between distinct ordered pairs of strategies. Each of these arrows is parallel to some edge of the simplex.

Figure 2.3.4: The simplex in \mathbf{R}^{3}.

Figure 2.3.5: Displacement vectors for three-strategy games.

For purposes of orientation, note that if we resituate the simplex from Figure 2.3 .5 in three-dimensional space (i.e., in Figure 2.3.4), then each of these six arrows is obtained by subtracting one standard basis vector from another.

Switches between pairs of strategies are not the only ways of generating displacement vectors-they can also come from switches involving three or more strategies, and, in multipopulation settings, from switches occurring within more than one population. The set of all displacement vectors from states in X forms a subspace of \mathbf{R}^{n}; this subspace is called the tangent space TX.

To formally define $T X$, let us first consider population $p \in \mathscr{P}$ in isolation. The state space for population p is $X^{p}=\left\{x^{p} \in \mathbf{R}_{+}^{n^{p}}: \sum_{i \in S^{p}} x_{i}^{p}=m^{p}\right\}$. The tangent space of X^{p}, denoted $T X^{p}$, is the smallest subspace of $\mathbf{R}^{n^{p}}$ that contains all vectors describing motions between points in X^{p}. In other words, if $x^{p}, y^{p} \in X^{p}$, then $y^{p}-x^{p} \in T X^{p}$, and $T X^{p}$ is the span of all vectors of this form. It is not hard to see that $T X^{p}=\mathbf{R}_{0}^{n^{p}} \equiv\left\{z^{p} \in \mathbf{R}^{n^{p}}: \sum_{i \in S^{p}} z_{i}^{p}=0\right\}$: that is, $T X^{p}$ contains exactly those vectors in $\mathbf{R}^{n^{p}}$ whose components sum to zero. The restriction on the sum embodies the fact that changes in the population state leave the population's mass constant.

The definition above is sufficient for studying single population games. What if there are multiple populations? In this case, any change in the social state $x \in X=\prod_{p \in \mathcal{P}} X^{p}$ is a combination of changes occurring within the individual populations. Therefore, the grand tangent space $T X$ is just the product of the tangent spaces for each set X^{p} : in other words,$T X=\prod_{p \in \mathcal{P}} T X^{p}$.

2.3.3 Orthogonal Projections

Suppose we would like to draw a diagram representing a three-strategy game F. One possibility is to draw a "three-dimensional" representation of F in the fashion of Figure 2.3.4. We would place more modest demands on our drafting skills if we instead represented F in just two dimensions. But this simplification comes at a cost: since threedimensional payoff vectors $F(x) \in \mathbf{R}^{3}$ will be presented as two-dimensional objects, some of the information contained in these vectors will be lost.

From a geometric point of view, the most natural way to proceed is pictured in Figure 2.3.6: instead of drawing an arrow from state x corresponding to the vector $F(x)$ itself, we instead draw the arrow closest to $F(x)$ among those that lie in the plane aff (X). This arrow represents a vector in the tangent space $T X$: namely, the orthogonal projection of $F(x)$ onto TX.

Let Z be a linear subspace of \mathbf{R}^{n}. The orthogonal projection of \mathbf{R}^{n} onto Z is a linear map that sends each $\pi \in \mathbf{R}^{n}$ to the closest point to π in Z. Each orthogonal projection can be

Figure 2.3.6: Projected payoff vectors for three-strategy games.
represented by a matrix $P_{Z} \in \mathbf{R}^{n \times n}$ via the map $\pi \mapsto P_{Z} \pi$, and it is common to identify the projection with its matrix representation. We treat orthogonal projections in some detail in Appendix 2.A.3; here we focus only on the orthogonal projections we need.

First consider population $p \in \mathcal{P}$ in isolation. The orthogonal projection of $\mathbf{R}^{n^{p}}$ onto the tangent space $T X^{p}$, denoted $\Phi \in \mathbf{R}^{n^{p} \times n^{p}}$, is defined by $\Phi=I-\frac{1}{n^{p}} \mathbf{1} \mathbf{1}^{\prime}$, where $\mathbf{1}=(1, \ldots, 1)^{\prime}$ is the vector of ones; thus $\frac{1}{n^{p}} \mathbf{1 1}^{\prime}$ is the matrix whose entries are all $\frac{1}{n^{p}}$.

If π^{p} is a payoff vector in $\mathbf{R}^{n^{p}}$, the projection of π^{p} onto $T X^{p}$ is

$$
\Phi \pi^{p}=\pi^{p}-\frac{1}{n^{p}} \mathbf{1} \mathbf{1}^{\prime} \pi^{p}=\pi^{p}-\mathbf{1}\left(\frac{1}{n^{p}} \sum_{k \in S^{p}} \pi_{k}^{p}\right) .
$$

The i th component of $\Phi \pi^{p}$ is the difference between the actual payoff to strategy i and the unweighted average payoff of all strategies in S^{p}. Thus, $\Phi \pi^{p}$ discards information about average payoffs while retaining information about relative payoffs of different strategies in S^{p}. This interpretation is important from a game-theoretic point of view, since incentives, and hence Nash equilibria, only depend on payoff differences. Therefore, when incentives (as opposed to, e.g., efficiency) are our main concern, we do not need to know the actual payoff vectors π^{p}; looking at the projected payoff vectors $\Phi \pi^{p}$ is enough.

In multipopulation settings, the tangent space $T X=\prod_{p \in \mathcal{P}} T X^{p}$ has a product structure; hence, the orthogonal projection onto $T X$, denoted $\Phi \in \mathbf{R}^{n \times n}$, has a block diagonal structure: $\boldsymbol{\Phi}=\operatorname{diag}(\Phi, \ldots, \Phi)$. (Note that the blocks on the diagonal of $\boldsymbol{\Phi}$ are generally not identical: the p th block is an element of $\mathbf{R}^{n^{p} \times n^{p}}$.) If we apply $\boldsymbol{\Phi}$ to the society's payoff

Figure 2.3.7: Payoffs and projected payoffs in 12 Coordination.
vector $\pi=\left(\pi^{1}, \ldots, \pi^{p}\right)$, the resulting vector $\Phi \pi=\left(\Phi \pi^{1}, \ldots, \Phi \pi^{p}\right)$ lists the relative payoffs in each population.

2.3.4 Drawing Three-Strategy Games

Before using orthogonal projections to draw three-strategy games, let us see how this device affects our pictures of two-strategy games. Applying the projection $\Phi=I-\frac{1}{2} \mathbf{1 1}^{\prime}$ to the payoff vectors from the coordination game $F^{C 2}$ and the Hawk-Dove game $F^{H D}$ yields

$$
\begin{aligned}
& \Phi F^{C 2}(x)=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right)\binom{x_{1}}{2 x_{2}}=\binom{\frac{1}{2} x_{1}-x_{2}}{-\frac{1}{2} x_{1}+x_{2}} \text { and } \\
& \Phi F^{H D}(x)=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right)\binom{2 x_{D}-x_{H}}{x_{D}}=\binom{\frac{1}{2}\left(x_{D}-x_{H}\right)}{\frac{1}{2}\left(x_{H}-x_{D}\right)} .
\end{aligned}
$$

We draw the projected payoffs along with the original payoffs in Figures 2.3.7 and 2.3.8.
The projected payoff vectors $\Phi F(x)$ lie in the tangent space $T X$, and so are represented by arrows running parallel to the simplex X. Projecting away the orthogonal component of payoffs makes the "outward force" in the coordination game and the "inward force" in the Hawk-Dove game more transparent. Indeed, Figures 2.3.7 and 2.3.8 are suggestive of evolutionary dynamics for these two games-a topic we take up starting in Chapter 4.

Now, let us consider the three-strategy coordination game $F^{C 3}$ and the Rock-Paper-

Figure 2.3.8: Payoffs and projected payoffs in the Hawk-Dove game.
Scissors game $F^{R P S}$.

$$
F^{C 3}(x)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{1} \\
2 x_{2} \\
3 x_{3}
\end{array}\right) ; \quad F^{R P S}(x)=\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{R} \\
x_{P} \\
x_{S}
\end{array}\right)=\left(\begin{array}{l}
x_{S}-x_{P} \\
x_{R}-x_{S} \\
x_{P}-x_{R}
\end{array}\right) .
$$

These games are pictured in Figures 2.3.9 and 2.3.10. The arrows in Figure 2.3.9 represent the projected payoff vectors $\Phi F^{C 3}(x)$, defined by

$$
\Phi F^{C 3}(x)=\left(I-\frac{1}{3} 11^{\prime}\right)\left(\begin{array}{l}
x_{1} \\
2 x_{2} \\
3 x_{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{3}\left(2 x_{1}-2 x_{2}-3 x_{3}\right) \\
\frac{1}{3}\left(-x_{1}+4 x_{2}-3 x_{3}\right) \\
\frac{1}{3}\left(-x_{1}-2 x_{2}+6 x_{3}\right)
\end{array}\right) .
$$

But in the Rock-Paper-Scissors game, the column sums of the payoff matrix all equal 0 , implying that the maps $F^{R P S}$ and $\Phi F^{R P S}$ are identical; by drawing one, we draw the other.

As with that of $F^{C 2}$, the diagram of the coordination game $F^{C 3}$ shows forces pushing outward toward the extreme points of the simplex. In contrast, Figure 2.3.10 displays a property that cannot occur with just two strategies: instead of driving toward some Nash equilibrium, the arrows in Figure 2.3.10 cycle around the simplex. Thus, the figure suggests that in the Rock-Paper-Scissors game, evolutionary dynamics need not converge to Nash equilibrium, but instead may avoid equilibrium in perpetuity. We return to questions of convergence and nonconvergence of evolutionary dynamics beginning in

Figure 2.3.9: Projected payoffs in 123 Coordination.

Figure 2.3.10: Payoffs (= projected payoffs) in Rock-Paper-Scissors.
later chapters.

2.3.5 Tangent Cones and Normal Cones

To complete our introduction to the geometric approach to population games, we explain how one can find a game's Nash equilibria by examining a picture of the game.

To begin this discussion, note that the constraint that defines vectors z as lying in the tangent space $T X$-the constraint that keeps population masses constant-is not always enough to ensure that motion in direction z is feasible. Motions in every direction in TX are feasible if we begin at a state x in the interior of the state space X. But if $x_{i}^{p}=0$ for some strategy $i \in S^{p}$, then motion in any direction z with $z_{i}^{p}<0$ would cause the mass of agents playing strategy i to become negative, taking the state out of X.

To describe the feasible displacement directions from an arbitrary state $x \in X$, we introduce the notion of a tangent cone. To begin, recall that the set $K \subseteq \mathbf{R}^{n}$ is a cone if whenever it contains the vector z, it also contains the vector αz for every $\alpha>0$. Most often one is interested in convex cones (i.e., cones that are convex sets). The polar of the convex cone K is a new convex cone

$$
K^{\circ}=\left\{y \in \mathbf{R}^{n}: y^{\prime} z \leq 0 \text { for all } z \in K\right\} .
$$

In words, the polar cone of K contains all vectors that form a weakly obtuse angle with each vector in K (Figure 2.3.11).

Exercise 2.3.1. Let K be a convex cone. Show that
(i) K° is a closed convex cone, and $K^{\circ}=(\mathrm{cl}(\mathrm{K}))^{\circ}$. (Hence, K° contains the origin.)
(ii) K is a subspace of \mathbf{R}^{n} if and only if K is symmetric, in the sense that $K=-K$. Moreover, in this case, $K^{\circ}=K^{\perp}$.
(iii) $\left(K^{\circ}\right)^{\circ}=\operatorname{cl}(K)$. (Hint: To show that $\left(K^{\circ}\right)^{\circ} \subseteq \operatorname{cl}(K)$, use the separating hyperplane theorem.)

The last result above tells us that $\left(K^{\circ}\right)^{\circ}=K$ for any closed convex cone K; thus, polarity defines an involution on the set of closed convex cones.

Another fundamental result about closed convex cones and their polar cones, the Moreau Decomposition Theorem, is not needed until later chapters. But as the preceding discussion provides the proper context to present this result, we do so in Appendix 2.B.

If $C \subset \mathbf{R}^{n}$ is a closed convex set, then the tangent cone of C at state $x \in C$, denoted $T C(x)$, is the closed convex cone

$$
T C(x)=\operatorname{cl}\left(\left\{z \in \mathbf{R}^{n}: z=\alpha(y-x) \text { for some } y \in C \text { and some } \alpha \geq 0\right\}\right) .
$$

Figure 2.3.11: A convex cone and its polar cone.

If $C \subset \mathbf{R}^{n}$ is a polytope (i.e., the convex hull of a finite number of points), then the closure operation is redundant. In this case, $T C(x)$ is the set of directions of motion from x that initially remain in C; more generally, $T C(x)$ also contains the limits of such directions. (To see the difference, construct $T C(x)$ for $x \in \operatorname{bd}(C)$ when C is a square and when C is a circle.) If x is in the relative interior of C (i.e., the interior of C relative to $\operatorname{aff}(C)$), then $T C(x)$ is just $T C$, the tangent space of C; otherwise, $T C(x)$ is a strict subset of $T C$.

Finally, define the normal cone of C at x to be the polar of the tangent cone of C at x : that is, $N C(x)=(T C(x))^{\circ}$. By definition, $N C(x)$ is a closed convex cone, and it contains every vector that forms a weakly obtuse angle with every feasible displacement vector at x.

In Figures 2.3.12 and 2.3.13, we sketch examples of tangent cones and normal cones when X is the state space for a two strategy game (i.e., the simplex in \mathbf{R}^{2}) and for a three strategy game (the simplex in \mathbf{R}^{3}). Since the latter figure is two-dimensional, with the sheet of paper representing the affine hull of X, the figure actually displays the projected normal cones $\Phi(N X(x))$.

2.3.6 Normal Cones and Nash Equilibria

At first glance, normal cones might appear to be less relevant to game theory than tangent cones. Theorem 2.3 .2 shows that this impression is false: normal cones and Nash

Figure 2.3.12: Tangent cones and normal cones for two-strategy games.

Figure 2.3.13: Tangent cones and normal cones for three-strategy games.
equilibria are intimately linked.
Theorem 2.3.2. Let F be a population game. Then $x \in N E(F)$ if and only if $F(x) \in N X(x)$.

$$
\begin{aligned}
\text { Proof. } x \in N E(F) & \Leftrightarrow\left[x_{i}^{p}>0 \Rightarrow F_{i}^{p}(x) \geq F_{j}^{p}(x)\right] \text { for all } i, j \in S^{p}, p \in \mathcal{P} \\
& \Leftrightarrow\left(x^{p}\right)^{\prime} F^{p}(x) \geq\left(y^{p}\right)^{\prime} F^{p}(x) \text { for all } y^{p} \in X^{p}, p \in \mathcal{P} \\
& \Leftrightarrow\left(y^{p}-x^{p}\right)^{\prime} F^{p}(x) \leq 0 \text { for all } y^{p} \in X^{p}, p \in \mathcal{P} \\
& \Leftrightarrow\left(z^{p}\right)^{\prime} F^{p}(x) \leq 0 \text { for all } z^{p} \in T X^{p}\left(x^{p}\right), p \in \mathcal{P} \\
& \Leftrightarrow F^{p}(x) \in N X^{p}\left(x^{p}\right) \text { for all } p \in \mathscr{P} \\
& \Leftrightarrow F(x) \in N X(x) .
\end{aligned}
$$

Exercise 2.3.3. Justify the last equivalence above.
Theorem 2.3.2 tells us that state x is a Nash equilibrium if and only if the payoff vector $F(x)$ lies in the normal cone of the state space X at x. This result provides us with a simple, purely geometric description of Nash equilibria of population games. Its proof is very simple: some algebra shows that x is a Nash equilibrium if and only if it solves a variational inequality problem-that is, if it satisfies

$$
\begin{equation*}
(y-x)^{\prime} F(x) \leq 0 \text { for all } y \in X \tag{2.1}
\end{equation*}
$$

Applying the definitions of tangent and normal cones then yields the result.
In many cases, it is more convenient to speak in terms of projected payoff vectors and projected normal cones. Corollary 2.3.4 restates Theorem 2.3.2 in these terms.

Corollary 2.3.4. $x \in N E(F)$ if and only if $\boldsymbol{\Phi} F(x) \in \boldsymbol{\Phi}(N X(x))$.
Proof. Clearly, $F(x) \in N X(x)$ implies that $\boldsymbol{\Phi} F(x) \in \Phi(N X(x))$. The reverse implication follows from the facts that $N X(x)=\boldsymbol{\Phi}(N X(x))+(T X)^{\perp}$ (see Exercise 2.3.5) and that $\boldsymbol{\Phi}\left((T X)^{\perp}\right)=\{\mathbf{0}\}$ (which is the equation that defines $\boldsymbol{\Phi}$ as the orthogonal projection of \mathbf{R}^{n} onto TX).

Exercise 2.3.5. (i) Using the notions of relative and average payoffs discussed in Section 2.3.3, explain the intuition behind Corollary 2.3.4 in the single population case.
(ii) Prove that $N X(x)=\boldsymbol{\Phi}(N X(x))+(T X)^{\perp}$.
(iii) Only one of the two statements to follow is equivalent to $x \in N E(F): F(x) \in$ $\boldsymbol{\Phi}(N X(x))$, or $\boldsymbol{\Phi} F(x) \in N X(x)$. Which is it?

In Figures 2.3.7 through 2.3.10, we mark the Nash equilibria of our four population games with dots. In the two-strategy games $F^{C 2}$ and $F^{H D}$, the Nash equilibria are those states x at which the payoff vector $F(x)$ lies in the normal cone $N X(x)$, as Theorem 2.3.2 requires. In both these games and in the three-strategy games $F^{C 3}$ and $F^{R P S}$, the Nash equilibria are those states x at which the projected payoff vector $\Phi F(x)$ lies in the projected normal cone $\Phi(N X(x))$, as Corollary 2.3.4 demands. Even if the dots were not drawn, we could locate the Nash equilibria of all four games by examining the arrows alone.

Exercise 2.3.6. Compute the Nash equilibria of the four games studied above, and verify that the equilibria appear in the correct positions in Figures 2.3.7 through 2.3.10.

Exercise 2.3.7. Two-population two-strategy games. Let F be a game played by two unit mass populations ($p=2$) with two strategies for each $\left(n^{1}=n^{2}=2\right)$.
(i) Describe the state space X, tangent space $T X$, and orthogonal projection $\boldsymbol{\Phi}$ for this setting.
(ii) Show that the state space X can be represented on a sheet of paper by a unit square, with the upper left vertex representing the state at which all agents in both populations play strategy 1 , and with the upper right vertex representing the state at which all agents in population 1 play strategy 1 and all agents in population 2 play strategy 2. Explain how the projected payoff vectors $\boldsymbol{\Phi} F(x)$ can be represented as arrows in this diagram.
(iii) At (a) a point in the interior of the square, (b) a non-vertex boundary point, and (c) a vertex, draw the tangent cone $T X(x)$ and the projected normal cone $\boldsymbol{\Phi}(N X(x))$, and give algebraic descriptions of each.
(iv) Suppose we draw projected payoff vectors $\boldsymbol{\Phi} F(x)$ in the manner you described in part (ii) and projected normal cones in the manner you described in part (iii). Verify that in each of the cases considered in part (iii), the arrow representing $\boldsymbol{\Phi} F(x)$ is contained in the sketch of $\boldsymbol{\Phi}(N X(x))$ if and only if x is a Nash equilibrium of F.

Appendix

2.A Affine Spaces, Tangent Spaces, and Orthogonal Projections

The simplex in \mathbf{R}^{n}, the state space for single population games, is an $n-1$ dimensional subset of \mathbf{R}^{n}; state spaces for multipopulation games are Cartesian products of scalar multiples of simplices. For this reason, linear subspaces, affine spaces, and orthogonal projections all play important roles in the study of population games.

2.A. 1 Affine Spaces

The set $Z \subseteq \mathbf{R}^{n}$ is a (linear) subspace of \mathbf{R}^{n} if it is closed under linear combination: if $z, \hat{z} \in Z$ and $a, b \in \mathbf{R}$, then $a z+b \hat{z} \in Z$ as well. Suppose that Z is a subspace of \mathbf{R}^{n} of dimension $\operatorname{dim}(Z)<n$, and that the set A is a translation of Z by some vector $v \in \mathbf{R}^{n}$:

$$
A=\mathrm{Z}+\{v\}=\left\{x \in \mathbf{R}^{n}: x=z+v \text { for some } z \in Z\right\} .
$$

Then we say that A is an affine space of dimension $\operatorname{dim}(A)=\operatorname{dim}(Z)$.
Observe that any vector representing a direction of motion through A is itself an element of Z : if $x, y \in A$, then $y-x=\left(z^{y}+v\right)-\left(z^{x}+v\right)=z^{y}-z^{x}$ for some z^{x} and z^{y} in Z; since Z is closed under linear combinations, $z^{y}-z^{x} \in Z$. For this reason, the set Z is called the tangent space of A, and we often write $T A$ in place of Z.

Since the origin is an element of Z, the translation vector v in the definition $A=Z+\{v\}$ can be any element of A. But is there a "natural" choice of v ? Recall that the orthogonal complement of Z, denoted by Z^{\perp}, contains the vectors in \mathbf{R}^{n} orthogonal to all elements of Z : that is, $Z^{\perp}=\left\{v \in \mathbf{R}^{n}: v^{\prime} z=0\right.$ for all $\left.z \in Z\right\}$. It is easy to show that the set $A \cap Z^{\perp}$ contains a single element, which we denote by z_{A}^{\perp}, and that this orthogonal translation vector is the

Figure 2.A.1: The state space and its affine hull for two-strategy games.
closest point in Z^{\perp} to every point in A (in the language of Section 2.A.3 below, $P_{Z^{\perp}} x=z_{A}^{\perp}$ for all $x \in A$). We will see that for many purposes, this translation vector is the most convenient choice.

Example 2.A.1. Consider the subspace $\mathbf{R}_{0}^{n}=\left\{z \in \mathbf{R}^{n}: \mathbf{1}^{\prime} z=0\right\}$ and the affine space $A=\mathbf{R}_{0}^{n}+\left\{e_{1}\right\}=\left\{z \in \mathbf{R}^{n}: \mathbf{1}^{\prime} z=1\right\}$, where $\mathbf{1}=(1, \ldots, 1)^{\prime}$. Since $\left(\mathbf{R}_{0}^{n}\right)^{\perp}=\operatorname{span}(\{\mathbf{1}\})$ and $A \cap \operatorname{span}(\{\mathbf{1}\})=\left\{\frac{1}{n} \mathbf{1}\right\}$, the vector $\frac{1}{n} \mathbf{1}$ is the orthogonal translation vector that generates A. In particular, $A=\mathbf{R}_{0}^{n}+\left\{\frac{1}{n} \mathbf{1}\right\}$, and $\frac{1}{n} \mathbf{1}$ is the closest point in $\operatorname{span}(\{\mathbf{1}\})$ to every $x \in A$. We illustrate the case in which $n=2$ in Figure 2.A.1; note again our convention of using the vertical axis to represent the first component of $x=\left(x_{1}, x_{2}\right)$. \S

2.A. 2 Affine Hulls of Convex Sets

Let $Y \subseteq \mathbf{R}^{n}$. The affine hull of Y, denoted aff (Y), is the smallest affine space that contains Y. This set can be described as
(2.2) $\quad \operatorname{aff}(Y)=\left\{x \in \mathbf{R}^{n}: x=\sum_{i=1}^{k} \lambda^{i} y^{i}\right.$ for some $\left\{y^{i}\right\}_{i=1}^{k} \subset Y$ and $\left\{\lambda^{i}\right\}_{i=1}^{k} \subset \mathbf{R}$ with $\left.\sum_{i=1}^{k} \lambda^{i}=1\right\}$.

The vector x is called an affine combination of the vectors y^{i}. If we also required the λ^{i} to be nonnegative, x would instead be an convex combination of the y^{i}, and (2.2) would become
$\operatorname{conv}(Y)$, the convex hull of Y.
Now suppose that Y is itself convex, let $A=\operatorname{aff}(Y)$ be its affine hull, and let $Z=T A$ be the tangent space of A; then we also call $Z=T Y$ the tangent space of Y, as Z contains directions of motion from points in the (relative) interior of Y that stay in Y. We also call $\operatorname{dim}(Y)=\operatorname{dim}(Z)$ the dimension of Y.

In constructing the affine hull of a convex set as in (2.2), it is enough to take affine combinations of a fixed set of $\operatorname{dim}(Y)+1$ points in Y. To accomplish this, let $d=\operatorname{dim}(Y)$, fix $y^{0} \in Y$ arbitrarily, and choose y^{1}, \ldots, y^{d} so that $\left\{y^{1}-y^{0}, \ldots, y^{d}-y^{0}\right\}$ is a basis for Z. Then letting $\lambda^{0}=1-\sum_{i=1}^{d} \lambda^{i}$, we see that

$$
\begin{aligned}
Z+\left\{y^{0}\right\} & =\operatorname{span}\left(\left\{y^{1}-y^{0}, \ldots, y^{d}-y^{0}\right\}\right)+\left\{y^{0}\right\} \\
& =\left\{x \in \mathbf{R}^{n}: x=\sum_{i=1}^{d} \lambda^{i}\left(y^{i}-y^{0}\right)+y^{0} \text { for some }\left\{\lambda^{i}\right\}_{i=1}^{d} \subset \mathbf{R}\right\} . \\
& =\left\{x \in \mathbf{R}^{n}: x=\sum_{i=0}^{d} \lambda^{i} y^{i} \text { for some }\left\{\lambda^{i}\right\}_{i=0}^{d} \subset \mathbf{R} \text { with } \sum_{i=0}^{d} \lambda^{i}=1\right\} \\
& =\operatorname{aff}(Y) .
\end{aligned}
$$

Example 2.A.2. Population states. Let $X^{p}=\left\{x^{p} \in \mathbf{R}_{+}^{n^{p}}: \mathbf{1}^{\prime} x^{p}=m^{p}\right\}$ be the set of population states for a population of mass m^{p}. This convex set has affine hull aff $\left(X^{p}\right)=\left\{x^{p} \in \mathbf{R}^{n^{p}}\right.$: $\left.\mathbf{1}^{\prime} x^{p}=m^{p}\right\}$ and tangent space $T X^{p}=\left\{z^{p} \in \mathbf{R}^{n^{p}}: \mathbf{1}^{\prime} z^{p}=0\right\}=\mathbf{R}_{0}^{n^{p}}$ (cf Example 2.A.1). \S

Example 2.A.3. Social states. Let $X=\prod_{p \in \mathcal{P}} X^{p}$ be the set of social states for a collection of populations $\mathcal{P}=\{1, \ldots, p\}$ with masses $m^{1}, \ldots m^{p}$. This convex set has affine hull $\operatorname{aff}(X)=\prod_{p \in P} \operatorname{aff}\left(X^{p}\right)$ and tangent space $T X=\prod_{p \in \mathcal{P}} \mathbf{R}_{0}^{n^{p}}$. Thus, if $z=\left(z^{1}, \ldots, z^{p}\right) \in T X$, then each z^{p} has components that sum to zero. §

2.A. 3 Orthogonal Projections

If V and W are subspaces of \mathbf{R}^{n}, their sum is $V+W=\operatorname{span}(V \cup W)$, the set of linear combinations of elements of V and W. If $V \cap W=\{0\}$, every $x \in V+W$ has a unique decomposition $x=v+w$ with $v \in V$ and $w \in W$. In this case, we write $V+W$ as $V \oplus W$, and call it the direct sum of V and W. For instance, $V \oplus V^{\perp}=\mathbf{R}^{n}$ for any subspace $V \subseteq \mathbf{R}^{n}$.

Every matrix $A \in \mathbf{R}^{n \times n}$ defines a linear operator from \mathbf{R}^{n} to itself via $x \mapsto A x$. To understand the action of this operator, remember that the i th column of A is the image of the standard basis vector e_{i}, and, more generally, that $A x$ is a linear combination of the columns of A.

We call the linear operator $P \in \mathbf{R}^{n \times n}$ a projection onto the subspace $V \subseteq \mathbf{R}^{n}$ if there is a second subspace $W \subseteq \mathbf{R}^{n}$ satisfying $V \cap W=\{\mathbf{0}\}$ and $V \oplus W=\mathbf{R}^{n}$ such that

Figure 2.A.2: A projection.
(i) $P x=x$ for all $x \in V$, and
(ii) $P y=\mathbf{0}$ for all $y \in W$.

If $W=V^{\perp}$, we call P the orthogonal projection onto V, and write P_{V} in place of P.
Every projection onto V maps all points in \mathbf{R}^{n} to points in V. While for any given subspace V there are many projections onto V, the orthogonal projection onto V is unique.
For example,

$$
P_{1}=\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right) \text { and } P_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

both define projections of \mathbf{R}^{2} onto the horizontal axis $\left\{x \in \mathbf{R}^{2}: x_{1}=0\right\}$. (Recall again our convention of representing x_{1} on the vertical axis.) However, since P_{2} maps the vertical axis $\left\{x \in \mathbf{R}^{2}: x_{2}=0\right\}$ to the origin, it is the orthogonal projection. The action of the two projections is illustrated in Figures 2.A. 2 and 2.A. 3 below. The latter figure illustrates a geometrically obvious property of orthogonal projections: the orthogonal projection of \mathbf{R}^{n} onto V maps each point $y \in \mathbf{R}^{n}$ to the closest point to y in V :

$$
P_{V} y=\underset{v \in V}{\operatorname{argmin}}|y-v|^{2} .
$$

Projections admit simple algebraic characterizations. Recall that the matrix $A \in \mathbf{R}^{n \times n}$ is idempotent if $A^{2}=A$. It is easy to see that projections are represented by idempotent matrices: once the first application of P projects \mathbf{R}^{n} onto the subspace V, the second application of P does nothing more. In fact, we have

Theorem 2.A.4. (i) P is a projection if and only if P is idempotent.

Figure 2.A.3: An orthogonal projection.
(ii) P is an orthogonal projection if and only if P is symmetric idempotent.

Example 2.A.5. The orthogonal projection onto $\mathbf{R}_{0}^{n^{p}}$. In Example 2.A.2, we saw that the set of population states $X^{p}=\left\{x^{p} \in \mathbf{R}_{+}^{n^{p}}: \mathbf{1}^{\prime} x^{p}=m^{p}\right\}$ has tangent space $T X^{p}=\mathbf{R}_{0}^{n^{p}}=\left\{z^{p} \in\right.$ $\left.\mathbf{R}^{n^{p}}: \mathbf{1}^{\prime} z^{p}=0\right\}$. We can decompose the space $\mathbf{R}^{n^{p}}$ into the direct sum $\mathbf{R}_{0}^{n^{p}} \oplus \mathbf{R}_{1}^{n^{p}}$, where $\mathbf{R}_{1}^{n^{p}}=\left(\mathbf{R}_{0}^{n^{p}}\right)^{\perp}=\operatorname{span}(\{\mathbf{1}\})$. The orthogonal projection of $\mathbf{R}^{n^{p}}$ onto $\mathbf{R}_{1}^{n^{p}}$ is $\Xi=\frac{1}{n^{p}} \mathbf{1 1}$, the matrix whose entries all equal $\frac{1}{n^{p}}$; to verify this, note that $\Xi z^{p}=\mathbf{0}$ for $z^{p} \in \mathbf{R}_{0}^{n^{p}}$ and $\Xi \mathbf{1}=\mathbf{1}$. The orthogonal projection of $\mathbf{R}^{n^{p}}$ onto $\mathbf{R}_{0}^{n^{p}}$ is $\Phi=I-\Xi$, since $\Phi z^{p}=z^{p}$ for $z^{p} \in \mathbf{R}_{0}^{n^{p}}$ and $\Phi \mathbf{1}=\mathbf{0}$ (see Figure 2.A. 4 for the case of $n^{p}=2$). Both Ξ and Φ are clearly symmetric, and since $\Xi^{2}=\left(\frac{1}{n^{p}} \mathbf{1} \mathbf{1}^{\prime}\right)\left(\frac{1}{n^{p}} \mathbf{1 1}\right)=\frac{1}{n^{p}} \mathbf{1 1}=\Xi$ and $\Phi^{2}=(I-\Xi)(I-\Xi)=I-2 \Xi+\Xi^{2}=I-2 \Xi+\Xi=I-\Xi=\Phi$, both are idempotent as well. §

More generally, it is easy to show that if P is the orthogonal projection of \mathbf{R}^{n} onto V, then $I-P$ is the orthogonal projection of \mathbf{R}^{n} onto V^{\perp}. Or, in the notation introduced above, $P_{V^{\perp}}=I-P_{V}$.

Example 2.A.6. The orthogonal projection onto TX. Recall from Example 2.A. 3 that the set of social states $X=\prod_{p \in \mathcal{P}} X^{p}$ has tangent space $T X=\prod_{p \in \mathcal{P}} \mathbf{R}_{0}^{n^{p}}$. We can decompose \mathbf{R}^{n} into the direct sum $\prod_{p \in \mathcal{P}} \mathbf{R}_{0}^{n^{p}} \oplus \prod_{p \in \mathcal{P}} \mathbf{R}_{1}^{n^{p}}=T X \oplus \prod_{p \in \mathcal{P}} \operatorname{span}(\{\mathbf{1}\})$. The orthogonal projection of \mathbf{R}^{n} onto $\prod_{p \in \mathcal{P}} \operatorname{span}(\{\mathbf{1}\})$ is the block diagonal matrix $\Xi=\operatorname{diag}(\Xi, \ldots, \Xi)$, while the orthogonal projection of \mathbf{R}^{n} onto $T X$ is $\boldsymbol{\Phi}=I-\boldsymbol{\Xi}=\operatorname{diag}(\Phi, \ldots, \Phi)$. Of course, $\boldsymbol{\Xi}$ and $\boldsymbol{\Phi}$ are both symmetric idempotent. §

Example 2.A.7. Ordinary least squares. Suppose we have a collection of $n>k$ data points, $\left\{\left(x^{i}, y^{i}\right)\right\}_{i=1}^{n}$, where each $x^{i} \in \mathbf{R}^{k}$ contains k components of "explanatory" data and each

Figure 2.A.4: The orthogonal projection Φ in \mathbf{R}^{2}.
$y^{i} \in \mathbf{R}$ is the corresponding component of "explainable" data. We write these data as

$$
X=\left(\begin{array}{c}
\left(x^{1}\right)^{\prime} \\
\vdots \\
\left(x^{n}\right)^{\prime}
\end{array}\right) \in \mathbf{R}^{n \times k} \text { and } y=\left(\begin{array}{c}
y^{1} \\
\vdots \\
y^{n}
\end{array}\right) \in \mathbf{R}^{n}
$$

and assume that X is of full rank. We seek the best linear predictor: the map $x \mapsto x^{\prime} \beta$ that minimizes the sum of squared prediction errors $\sum_{i=1}^{n}\left(y^{i}-\left(x^{i}\right)^{\prime} \beta\right)^{2}=|y-X \beta|^{2}$.
(The prediction function $x^{i} \mapsto\left(x^{i}\right)^{\prime} \beta$ is a truly linear function of x, in the sense that the input vector 0 generates a prediction of 0 . Typically, one seeks an affine prediction function-that is, one that allows for a nonzero constant term. To accomplish this, one sets $x_{1}^{i}=1$ for all i, leaving only $k-1$ components of true explanatory data. In this case, the component β_{1} serves as a constant term in the affine prediction function $\left(x_{2}, \ldots, x_{k}\right) \mapsto$ $\left.\beta_{1}+\sum_{i=2}^{k} x_{i} \beta_{i}.\right)$

Let $\operatorname{span}(X)=\left\{X b: b \in \mathbf{R}^{k}\right\}$ be the column span of X. That $\beta \in \mathbf{R}^{k}$ minimizes $|y-X \beta|^{2}$ is equivalent to the requirement that $X \beta$ be the closest point to y in the column span of X :

$$
X \beta=\underset{v \in \operatorname{span}(X)}{\operatorname{argmin}}|y-v|^{2} .
$$

Both calculus and geometry tell us that for this to be true, the vector of prediction errors
$y-X \beta$ must be orthogonal to span(X), and hence to each column of X.

$$
X^{\prime}(y-X \beta)=\mathbf{0} .
$$

One can verify that $X \in \mathbf{R}^{n \times k}$ and $X^{\prime} X \in \mathbf{R}^{k \times k}$ have the same null space, and hence the same (full) rank. Therefore, $\left(X^{\prime} X\right)^{-1}$ exists, and we can solve the previous equation for β :

$$
\beta=\left(X^{\prime} X\right)^{-1} X^{\prime} y .
$$

To this point, we have taken $X \in \mathbf{R}^{n \times k}$ and $y \in \mathbf{R}^{n}$ as given and used them to find the vector $\beta \in \mathbf{R}^{k}$, which we have viewed as defining a map from vectors of explanatory data $x \in \mathbf{R}^{k}$ to predictions $x^{\prime} \beta \in \mathbf{R}$. Now, let us take X alone as given and consider the map from vectors of "explainable" data $y \in \mathbf{R}^{n}$ to vectors of predictions $X \beta=X\left(X^{\prime} X\right)^{-1} X^{\prime} y \in \mathbf{R}^{n}$. By construction, this linear map $P=X\left(X^{\prime} X\right)^{-1} X^{\prime} \in \mathbf{R}^{n \times n}$ is the orthogonal projection of \mathbf{R}^{n} onto $\operatorname{span}(X) . P$ is clearly symmetric (since the inverse of a symmetric matrix is symmetric), and since $P^{2}=X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime}=X\left(X^{\prime} X\right)^{-1} X^{\prime}=P$ it is idempotent as well. \S

2.B The Moreau Decomposition Theorem

A basic fact about projection onto subspaces holds that for any vector $v \in \mathbf{R}^{n}$ and any subspace $Z \subseteq \mathbf{R}^{n}$, the sum $v=P_{Z}(v)+P_{Z^{\perp}}(v)$ is the unique decomposition of v into the sum of elements of Z and Z^{\perp}. The Moreau Decomposition Theorem is a generalization of this result that replaces the subspace Z and its orthogonal complement with a closed convex cone and its polar cone. We use this theorem repeatedly in Chapter 6 in our analysis of the projection dynamic.

To state this result, we need an appropriate analogue of orthogonal projection for the context of closed, convex sets. To this end, we define $\Pi_{C}: \mathbf{R}^{n} \rightarrow C$, the (closest point) projection of \mathbf{R}^{n} onto the closed convex set C by

$$
\Pi_{\mathcal{C}}(y)=\underset{x \in \mathcal{C}}{\operatorname{argmin}}|y-x| .
$$

This definition generalizes that of the projection P_{Z} onto the subspace $Z \subseteq \mathbf{R}^{n}$ to cases in which the target set is not linear, but merely closed and convex. With this definition in hand, we can state our new decomposition theorem; an illustration is provided in Figure 2.B.1.

Theorem 2.B.1 (The Moreau Decomposition Theorem). Let $K \subseteq \mathbf{R}^{n}$ and $K^{\circ} \subseteq \mathbf{R}^{n}$ be a closed convex cone and its polar cone, and let $v \in \mathbf{R}^{n}$. Then the following are equivalent:

Figure 2.B.1: The Moreau Decomposition Theorem.
(i) $v_{K}=\Pi_{K}(v)$ and $v_{K^{\circ}}=\Pi_{K^{\circ}}(v)$.
(ii) $v_{K} \in K, v_{K^{\circ}} \in K^{\circ}, v=v_{K}+v_{K^{\circ}}$, and $v_{K^{\prime}} v_{K^{\circ}}=0$.

2.N Notes

Congestion games are introduced in Beckmann et al. (1956); see the notes to Chapter 3 for further references. For the biological motivation for the Hawk-Dove game, see Maynard Smith (1982, Chapter 2).

Portions of Section 2.3 follow Lahkar and Sandholm (2008). The link between normal cones and Nash equilibria is known from the literature on variational inequalities; see Harker and Pang (1990) and Nagurney (1999). For more on affine spaces, tangent cones, normal cones, the Moreau Decomposition Theorem, and related notions, see HiriartUrruty and Lemaréchal (2001). The algebra of orthogonal projections is explained, e.g., in Friedberg et al. (1989, Section 6.6).

Potential Games, Stable Games, and Supermodular Games

3.0 Introduction

In the previous chapter, we offered a general definition of population games and characterized their Nash equilibria geometrically. Still, since any continuous map F from the state space X to \mathbf{R}^{n} defines a population game, population games with even a moderate number of strategies can be difficult to analyze. In this chapter, we define three important classes of population games: potential games, stable games, and supermodular games. From an economic point of view, each definition places constraints on the sorts of externalities agents impose on one another through their choices in the game. From a mathematical point of view, each definition imposes a structure on payoff functions that renders their analysis relatively simple.

We show through examples that potential games, stable games, and supermodular games each encompass a variety of interesting applications. We also establish the basic properties of each class of games. Among other things, we show that for games in each class, existence of Nash equilibrium can be proved using elementary methods. Beginning in Chapter 7, we investigate the behavior of evolutionary dynamics in the three classes of games; there, our assumptions on the structure of externalities will allow us to establish a range of global convergence results.

The definitions of our three classes of games only require continuity of the payoff functions. If we instead make the stronger assumption that payoffs are smooth (in particular, continuously differentiable), we can avail ourselves of the tools of calculus. Doing so not only simplifies computations, but also allows us to express our definitions and results in simple, useful, and intuitively appealing ways. The techniques from calculus that we
require are reviewed in the Appendices 3.A and 3.B.

3.1 Full Potential Games

In potential games, all information about payoffs that is relevant to agents' incentives can be captured in a single scalar-valued function. The existence of this function-the game's potential function-underlies potential games' many attractive properties. In this section, we consider full potential games, which can be analyzed using standard multivariate calculus techniques (Appendix 3.A), but at the expense of requiring an extension of the payoff functions' domain. In Section 3.2, we introduce a definition of potential games that does not use this device, but that instead requires analyses that rely on affine calculus (Appendix 3.B).

3.1.1 Full Population Games

To understand the issues alluded to above, consider a game F played by a single population of agents. Since population states for this game are elements of $X=\left\{x \in \mathbf{R}_{+}^{n}\right.$: $\left.\sum_{k \in S} x_{k}=1\right\}$, the simplex in \mathbf{R}^{n}, the payoff F_{i} to strategy i is a real-valued function with domain X.

In looking for useful properties of population games, a seemingly natural characteristic to consider is the marginal effect of adding new agents playing strategy j on the payoffs of agents currently choosing strategy i. This effect is captured by the partial derivative $\frac{\partial F_{i}}{\partial x_{j}}$. But herein lies the difficulty: if F_{i} is only defined on the simplex, then even if the function F is differentiable, the partial derivative $\frac{\partial F_{i}}{\partial x_{j}}$ does not exist.

To ensure that partial derivatives exist, we extend the domain of the game F from the state space $X=\left\{x \in \mathbf{R}^{n}: \sum_{k \in S} x_{k}=1\right\}$ to the entire positive orthant \mathbf{R}_{+}^{n}. In multipopulation settings, the analogous extension is from the original set of social states $X=\left\{x=\left(x^{1}, \ldots, x^{p}\right) \in \mathbf{R}_{+}^{n}: \sum_{i \in S^{p}} x_{i}^{p}=m^{p}\right\}$ to \mathbf{R}_{+}^{n}. In either setting, we call the game with payoffs defined on the positive orthant a full population game. In many interesting cases, one can interpret the extensions of payoffs as specifying the values that payoffs would take were the population sizes to change-see Section 3.1.3.

3.1.2 Definition and Characterization

With these preliminaries addressed, we are now prepared to define full potential games.

Definition. Let $F: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}^{n}$ be a full population game. We call F a full potential game if there exists a continuously differentiable function $f: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}$ satisfying

$$
\begin{equation*}
\nabla f(x)=F(x) \text { for all } x \in \mathbf{R}_{+}^{n} . \tag{3.1}
\end{equation*}
$$

Property (3.1) can be stated more explicitly as

$$
\frac{\partial f}{\partial x_{i}^{p}}(x)=F_{i}^{p}(x) \text { for all } p \in \mathcal{P}, i \in S^{p} \text { and } x \in \mathbf{R}_{+}^{n} .
$$

The function f, which is unique up to the addition of a constant, is called the full potential function for the game F. It represents the game's payoffs in an integrated form.

To explain the potential function's role, suppose that $x \in X$ is a population state at which $F_{j}^{p}(x)>F_{i}^{p}(x)$, so that an agent choosing strategy $i \in S^{p}$ would be better off choosing strategy $j \in S^{p}$. Now suppose some small group of agents switch from strategy i to strategy j. These switches are represented by the displacement vector $z=e_{j}^{p}-e_{i}^{p}$, where e_{i}^{p} is the (i, p)th standard basis vector in \mathbf{R}^{n}. The marginal impact that these switches have on the value of potential is therefore

$$
\frac{\partial f}{\partial z}(x)=\nabla f(x)^{\prime} z=\frac{\partial f}{\partial x_{j}^{p}}(x)-\frac{\partial f}{\partial x_{i}^{p}}(x)=F_{j}^{p}(x)-F_{i}^{p}(x)>0 .
$$

In other words, profitable strategy revisions increase potential. More generally, we will see in later chapters that the "uphill" directions of the potential function include all directions in which reasonable adjustment processes might lead. This fact underlies the many attractive properties that potential games possess.

If the map $F: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}^{n}$ is C^{1} (continuously differentiable), it is well known that F admits a potential function if and only if its derivative matrices $D F(x)$ are symmetric (see Appendix 3.A.9). In the current game-theoretic context, we call this condition full externality symmetry.

Observation 3.1.1. Suppose the population game F is C^{1}. Then F is a full potential game if and only if it satisfies full externality symmetry:

$$
\begin{equation*}
D F(x) \text { is symmetric for all } x \in \mathbf{R}_{+}^{n} \tag{3.2}
\end{equation*}
$$

More explicitly, F is a potential game if and only if

$$
\begin{equation*}
\frac{\partial F_{i}^{p}}{\partial x_{j}^{q}}(x)=\frac{\partial F_{j}^{q}}{\partial x_{i}^{p}}(x) \text { for all } i \in S^{p}, j \in S^{q}, p, q \in \mathcal{P} \text {, and } x \in \mathbf{R}_{+}^{n} . \tag{3.3}
\end{equation*}
$$

Observation 3.1.1 characterizes smooth full potential games in terms of a simple, economically meaningful property: condition (3.2) requires that the effect on the payoffs to strategy $i \in S^{p}$ of introducing new agents choosing strategy $j \in S^{q}$ always equals the effect on the payoffs to strategy j of introducing new agents choosing strategy i.

3.1.3 Examples

Our first two examples build on ones studied in Chapter 2.
Example 3.1.2. Random matching in normal form games with common interests. Suppose a single population is randomly matched to play symmetric two player normal form game $A \in \mathbf{R}^{n \times n}$, generating the population game $F(x)=A x$. While earlier we used this formula to define F on the state space X, here we will use it to define F on all of \mathbf{R}_{+}^{n}. (While this choice works very well in the present example, it is not always innocuous, as will see in Section 3.2.)

The symmetric normal form game A has common interests if both players always receive the same payoff. This means that $A_{i j}=A_{j i}$ for all i and j, or, equivalently, that the matrix A is symmetric. Since $D F(x)=A$, this is precisely what we need for F to be a full potential game. The full potential function for F is

$$
f(x)=\frac{1}{2} x^{\prime} A x,
$$

which is one-half of $x^{\prime} A x=\sum_{i \in S} x_{i} F_{i}(x)=\bar{F}(x)$, the aggregate payoff function for F.
To cover the multipopulation case, call the normal form game $U=\left(U^{1}, \ldots, U^{p}\right)$ a common interest game if there is a function $V: S \rightarrow \mathbf{R}$ such that $U^{p}(s)=V(s)$ for all $s \in S$ and $p \in \mathcal{P}$. As before, this means that under any pure strategy profile, all p players earn the same payoff. This normal form game generates the full population game

$$
F_{s^{p}}^{p}(x)=\sum_{s^{-p} \in S^{-p}} V(s) \prod_{r \neq p} x_{s^{r}}^{r}
$$

on \mathbf{R}_{+}^{n}. Aggregate payoffs in F are given by

$$
\bar{F}(x)=\sum_{p \in \mathcal{P}} \sum_{s^{p} \in S^{p}} x_{s^{p}}^{p} F_{s^{p}}^{p}(x)=p \sum_{s \in S} V(s) \prod_{r \in \mathcal{P}} x_{s^{r}}^{r} .
$$

Hence, if we let $f(x)=\sum_{s \in S} V(s) \prod_{r \in \mathcal{P}} x_{s^{r}}^{r}=\frac{1}{p} \bar{F}(x)$, we obtain

$$
\frac{\partial f}{\partial x_{s^{p}}^{p}}(x)=\sum_{s^{-p} \in S^{-p}} V(s) \prod_{r \neq p} x_{s^{r}}^{r}=F_{s^{p}}^{p}(x) .
$$

So once again, random matching in a common interest game generates a full potential game in which potential is proportional to aggregate payoffs. §

Exercise 3.1.3. In the multipopulation case, check directly that condition (3.2) holds.
Example 3.1.4. Congestion games. For ease of exposition, suppose that the congestion game F models behavior in a traffic network. In this environment, an agent taking path $j \in S^{q}$ affects the payoffs of agents choosing path $i \in S^{p}$ through the marginal increases in congestion on the links $\phi \in \Phi_{i}^{p} \cap \Phi_{j}^{q}$ that the two paths have in common. But the marginal effect of an agent taking path i on the payoffs of agents choosing path j is identical:

$$
\frac{\partial F_{i}^{p}}{\partial x_{j}^{q}}(x)=-\sum_{\phi \in \Phi_{i}^{p} \cap \Phi_{j}^{q}} c_{\phi}^{\prime}\left(u_{\phi}(x)\right)=\frac{\partial F_{j}^{q}}{\partial x_{i}^{p}}(x) .
$$

In other words, congestion games satisfy condition (3.2), and so are full potential games.
The full potential function for the congestion game F can be written explicitly as

$$
f(x)=-\sum_{\phi \in \Phi} \int_{0}^{u_{\phi}(x)} c_{\phi}(z) \mathrm{d} z .
$$

Hence, potential is typically unrelated to aggregate payoffs, which are given by

$$
\bar{F}(x)=\sum_{p \in \mathcal{P}} \sum_{i \in S^{p}} x_{i}^{p} F_{i}^{p}(x)=-\sum_{\phi \in \Phi} u_{\phi}(x) c_{\phi}\left(u_{\phi}(x)\right) .
$$

In Section 3.1.6, we offer conditions under which potential and aggregate payoffs are directly linked. §

Example 3.1.5. Cournot competition. Consider a unit mass population of firms who choose production quantities from the set $S=\{1, \ldots, n\}$. The firms' aggregate production is given
by $a(x)=\sum_{i \in S} i x_{i}$. Let $p: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$denote inverse demand, a decreasing function of aggregate production. Let the firms' production cost function $c: S \rightarrow \mathbf{R}$ be arbitrary. Then the payoff to a firm producing quantity $i \in S$ at population state $x \in X$ is $F_{i}(x)=$ ip $(a(x))-c(i)$.

It is easy to check that F is a full potential game with full potential function

$$
f(x)=\int_{0}^{a(x)} p(z) \mathrm{d} z-\sum_{i \in S} x_{i} c(i)
$$

In contrast, aggregate payoffs in F are

$$
\bar{F}(x)=\sum_{i \in S} x_{i} F_{i}(x)=a(x) p(a(x))-\sum_{i \in S} x_{i} c(i) .
$$

The difference between the two is

$$
f(x)-\bar{F}(x)=\int_{0}^{a(x)}(p(z)-p(a(x))) \mathrm{d} z
$$

which is simply consumers' surplus. Thus, the full potential function $f=\bar{F}+(f-\bar{F})$ measures the total surplus received by firms and consumers. (Total surplus differs from aggregate payoffs because the latter ignores consumers, who are not modeled as active agents.) §

Example 3.1.6. Games generated by variable externality pricing schemes. Population games can be viewed as models of externalities for environments with many agents. One way to force agents to internalize the externalities they impose upon others is to introduce pricing schemes. Given an arbitrary full population game F with aggregate payoff function \bar{F}, define an augmented game \tilde{F} as follows:

$$
\tilde{F}_{i}^{p}(x)=F_{i}^{p}(x)+\sum_{q \in \mathcal{P}} \sum_{j \in S^{q}} x_{j}^{q} \frac{\partial F_{j}^{q}}{\partial x_{i}^{p}}(x)
$$

The double sum represents the marginal effect that an agent choosing strategy i has on other agents' payoffs.

Suppose that when the game F is played, a social planner charges each agent choosing strategy i a tax equal to this double sum, and that each agent's payoff function is separable in this tax. The population game generated by this intervention is \tilde{F}.

Now observe that

$$
\begin{equation*}
\frac{\partial \bar{F}}{\partial x_{i}^{p}}(x)=\frac{\partial}{\partial x_{i}^{p}} \sum_{q \in \mathcal{P}} \sum_{j \in S^{q}} x_{j}^{q} F_{j}^{q}(x)=F_{i}^{p}(x)+\sum_{q \in \mathcal{P}} \sum_{j \in S^{q}} x_{j}^{q} \frac{\partial F_{j}^{q}}{\partial x_{i}^{p}}(x)=\tilde{F}_{i}^{p}(x) . \tag{3.4}
\end{equation*}
$$

Equation (3.4) tells us that the augmented game \tilde{F} is a full potential game, and that its full potential function is the aggregate payoff function of the original game F. Hence, changes in strategy which are profitable in the augmented game increase efficiency with respect to the payoffs of the original game. §

3.1.4 Nash Equilibria of Full Potential Games

We saw in Section 3.1.2 that in full potential games, profitable strategy revisions increase potential. It is therefore natural to expect that Nash equilibria of full potential games are related to local maximizers of potential. To investigate this idea, consider the nonlinear program

$$
\begin{aligned}
& \max f(x) \quad \text { subject to } \sum_{i \in S^{p}} x_{i}^{p}=m^{p} \text { for all } p \in \mathcal{P}, \text { and } \\
& \qquad x_{i}^{p} \geq 0 \quad \text { for all } i \in S^{p} \text { and } p \in \mathscr{P} .
\end{aligned}
$$

The Lagrangian for this maximization problem is

$$
L(x, \mu, \lambda)=f(x)+\sum_{p \in \mathcal{P}} \mu^{p}\left(m^{p}-\sum_{i \in S^{p}} x_{i}^{p}\right)+\sum_{p \in \mathcal{P}} \sum_{i \in S^{p}} \lambda_{i}^{p} x_{i}^{p},
$$

so the Kuhn-Tucker first order necessary conditions for maximization are

$$
\begin{array}{ll}
\frac{\partial f}{\partial x_{i}^{p}}(x)=\mu^{p}-\lambda_{i}^{p} & \text { for all } i \in S^{p} \text { and } p \in \mathcal{P}, \\
\lambda_{i}^{p} x_{i}^{p}=0, & \text { for all } i \in S^{p} \text { and } p \in \mathcal{P}, \text { and } \\
\lambda_{i}^{p} \geq 0 & \text { for all } i \in S^{p} \text { and } p \in \mathcal{P} . \tag{3.7}
\end{array}
$$

Let

$$
K T(f)=\left\{x \in X:(x, \mu, \lambda) \text { satisfies (3.5)-(3.7) for some } \lambda \in \mathbf{R}^{n} \text { and } \mu \in \mathbf{R}^{p}\right\} .
$$

Theorem 3.1.7 shows that the Kuhn-Tucker first order conditions for maximizing f on X
characterize the Nash equilibria of F.
Theorem 3.1.7. If F is a full potential game with full potential function f, then $N E(F)=K T(f)$.
Proof. If x is a Nash equilibrium of F, then since $F=\nabla f$, the Kuhn-Tucker conditions are satisfied by $x, \mu^{p}=\max _{j \in S^{p}} F_{j}^{p}(x)$, and $\lambda_{i}^{p}=\mu^{p}-F_{i}^{p}(x)$. Conversely, if (x, μ, λ) satisfies the Kuhn-Tucker conditions, then for every $p \in \mathscr{P}$,(3.5) and (3.6) imply that $F_{i}^{p}(x)=\frac{\partial f}{\partial x_{i}^{p}}(x)=\mu^{p}$ for all i in the support of x^{p}. Furthermore, (3.5) and (3.7) imply that $F_{j}^{p}(x)=\mu^{p}-\lambda_{j}^{p} \leq \mu^{p}$ for all $j \in S^{p}$. Hence, the support of x^{p} is a subset of $\operatorname{argmax}_{j \in S^{p}} F_{j}^{p}(x)$, and so x is a Nash equilibrium of F.

Note that the multiplier μ^{p} represents the equilibrium payoff in population p, and that the multiplier λ_{i}^{p} represents the "payoff slack" of strategy $i \in S^{p}$.

Since the set X satisfies constraint qualification, satisfaction of the Kuhn-Tucker conditions is necessary for local maximization of the full potential function. Thus, Theorem 3.1.7, along with the fact that a continuous function on a compact set achieves its maximum, gives us a simple proof of existence of Nash equilibrium in full potential games.

On the other hand, the Kuhn-Tucker conditions are not sufficient for maximizing potential. Therefore, while all local maximizers of potential are Nash equilibria, not all Nash equilibria locally maximize potential.

Example 3.1.8. Consider again the 123 Coordination game introduced in Chapter 2:

$$
F(x)=\left(\begin{array}{l}
F_{1}(x) \\
F_{2}(x) \\
F_{3}(x)
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
2 x_{2} \\
3 x_{3}
\end{array}\right) .
$$

The full potential function for this game is the convex function $f(x)=\frac{1}{2}\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\frac{3}{2}\left(x_{3}\right)^{2}$. The three pure states, $e_{1}=(1,0,0), e_{2}=(0,1,0)$, and $e_{3}=(0,0,1)$, all locally maximize potential, and so are Nash equilibria. To focus on one instance, note that the Kuhn-Tucker conditions are satisfied at state e_{1} by the multipliers $\mu=1, \lambda_{1}=0$, and $\lambda_{2}=\lambda_{3}=1$. The global minimizer of potential, $\left(\frac{6}{11}, \frac{3}{11}, \frac{2}{11}\right)$, is a state at which payoffs to all three strategies are equal, and is therefore a Nash equilibrium as well; the Kuhn-Tucker conditions are satisfied here with multipliers $\mu=\frac{6}{11}$ and $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$. Finally, at each of the boundary states $\left(\frac{2}{3}, \frac{1}{3}, 0\right),\left(\frac{3}{4}, 0, \frac{1}{4}\right)$, and $\left(0, \frac{3}{5}, \frac{2}{5}\right)$, the strategies which are played receive equal payoffs, which exceed the payoff accruing to the unused strategy; thus, these states are Nash equilibria as well. These states, coupled with the appropriate multipliers, also satisfy the Kuhn-Tucker conditions: for example, $x=\left(\frac{2}{3}, \frac{1}{3}, 0\right)$ satisfies the conditions with $\mu=\frac{2}{3}$, $\lambda_{1}=\lambda_{2}=0$ and $\lambda_{3}=\frac{2}{3}$. This exhausts the set of Nash equilibria of F.

Figure 3.1.1: The potential function of 123 Coordination.

Figures 3.1.1 and 3.1.2 contain a graph and a contour plot of the full potential function f, and show the connection between this function and the Nash equilibria of F. §

The previous example demonstrates that in general, potential games can possess Nash equilibria that do not maximize potential. But if the full potential function f is concave, the Kuhn-Tucker conditions are not only necessary for maximizing f; they are also sufficient. This fact gives us the following corollary to Theorem 3.1.7.

Corollary 3.1.9. (i) If f is concave on X, then $N E(F)$ is the convex set of maximizers of f on X.
(ii) If f is strictly concave on X, then $N E(F)$ is a singleton containing the unique maximizer of f on X.

Example 3.1.10. A network of highways connects Home and Work. The two towns are separated by a river. Highways A and D are expressways that go around bends in the river, and that do not become congested easily: $c_{A}(u)=c_{D}(u)=4+20 u$. Highways B and C cross the river over two short but easily congested bridges: $c_{B}(u)=c_{C}(u)=2+30 u^{2}$. In order to create a direct path between the towns, a city planner considers building a new expressway E that includes a third bridge over the river. Delays on this new expressway are described by $c_{E}(u)=1+20 u$. The highway network as a whole is pictured in Figure 3.1.3.

Figure 3.1.2: A contour plot of the potential function of 123 Coordination.

Before link E is constructed, there are two paths from Home to Work: path 1 traverses links A and B, while path 2 traverses links C and D. The equilibrium driving pattern splits the drivers equally over the two paths, yielding an equilibrium driving time (= -equilibrium payoff) of 23.5 on each.

After link E is constructed, drivers may also take path 3 , which uses links C, E, and B. (We assume that traffic on link E only flows to the right.) The resulting population game has payoff functions

$$
F(x)=\left(\begin{array}{l}
F_{1}(x) \\
F_{2}(x) \\
F_{3}(x)
\end{array}\right)=\left(\begin{array}{c}
-\left(6+20 x_{1}+30\left(x_{1}+x_{3}\right)^{2}\right) \\
-\left(6+20 x_{2}+30\left(x_{2}+x_{3}\right)^{2}\right) \\
-\left(5+20 x_{3}+30\left(x_{1}+x_{3}\right)^{2}+30\left(x_{2}+x_{3}\right)^{2}\right)
\end{array}\right)
$$

and full potential function

$$
f(x)=-\left(6 x_{1}+6 x_{2}+5 x_{3}+10\left(\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\left(x_{3}\right)^{2}+\left(x_{1}+x_{3}\right)^{3}+\left(x_{2}+x_{3}\right)^{3}\right)\right) .
$$

Figures 3.1.4 and 3.1.5 contain a graph and a contour plot of the full potential function. Note that the full potential function for the two-path game is the restriction of f to the states at which $x_{3}=0$.

Evidently, the full potential function f is concave. (This is no coincidence-see Exercise 3.1.11 below.) The unique maximizer of potential on X, the state $x \approx(.4616, .4616, .0768)$, is the unique Nash equilibrium of the game. In this equilibrium, the driving time on each

Figure 3.1.3: A highway network.

Figure 3.1.4: The potential function of a congestion game.

Figure 3.1.5: A contour plot of the congestion game's potential function.
path is approximately 23.93, which exceeds the original equilibrium time of 23.5. In other words, adding an additional link to the network actually increases equilibrium driving times-a phenomenon known as Braess' paradox.

The intuition behind this phenomenon is easy to see. By opening up the new link E, we make it possible for a single driver on path 3 to use both of the easily congested bridges, B and C. But while using path 3 is bad for the population as a whole, it is appealing to individual drivers, as drivers do not account for the negative externalities their use of the bridges imposes on others. §

Exercise 3.1.11. Uniqueness of equilibrium in congestion games.
(i) Let F be a congestion game with cost functions c_{ϕ} and full potential function f. Show that if each c_{ϕ} is increasing, then f is concave, which implies that $N E(F)$ is the convex set of maximizers of f on X. (Hint: Fix $y, z \in X$, let $x(t)=(1-t) y+t z$, and show that $g(t)=f(x(t))$ is concave.)
(ii) Construct a congestion game in which each c_{ϕ} is strictly increasing but in which $N E(F)$ is not a singleton.
(iii) Show that in case (ii), the equilibrium link utilization levels u_{ϕ} are unique. (Hint: Since $f(x)$ only depends on the state x through the utilization levels $u_{\phi}(x)$, we can define a function $g: U \rightarrow \mathbf{R}$ on $U=\left\{\left\{v_{\phi}\right\}_{\phi \in \Phi}: v_{\phi}=u_{\phi}(x)\right.$ for some $\left.x \in \mathbf{R}_{+}^{n}\right\}$ by $g\left(u_{\phi}(x)\right)=f(x)$. Show that x maximizes f on X if and only if $u_{\phi}(x)$ maximizes g on U.)

Exercise 3.1.12. Example 3.1.6 shows that by adding state-dependent congestion charges to a congestion game, a planner can ensure that drivers use the network efficiently, in the sense of minimizing average travel times. Show that these congestion charges can be imposed on a link-by-link basis, and that the price on each link need only depend on the number of drivers on that link.

Exercise 3.1.13. Show that Cournot competition (Example 3.1.5) with a strictly decreasing inverse demand function generates a potential game with a strictly concave potential function, and hence admits a unique Nash equilibrium.

Exercise 3.1.14. Entry and exit. When we define a full population game $F: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}^{n}$, we specify the payoffs of each of the n strategies for all possible vectors of population masses. It is only a small additional step to allow agents to enter and leave the game. Fixing a vector of population masses $\left(m^{1}, \ldots, m^{p}\right)$, we define a population game with entry and exit by assuming that the set of feasible social states is $\bar{X}=\left\{x=\left(x^{1}, \ldots, x^{p}\right) \in \mathbf{R}_{+}^{n}: \sum_{i \in S^{p}} x_{i}^{p} \leq m^{p}\right\}$, and that an agent who exits the game receives a payoff of 0 .
(i) State an appropriate definition of Nash equilibrium for population games with entry and exit.
(ii) A population game with entry and exit is a potential game if it satisfies full externality symmetry (3.2). Prove an analogue of Theorem 3.1.7 for such games.

3.1.5 The Geometry of Nash Equilibrium in Full Potential Games

Theorem 3.1.7 shows that if F is a potential game with potential function f, then the set of states satisfying the Kuhn-Tucker first order conditions for maximizing f are precisely the Nash equilibria of F. We now offer a geometric proof of this result, and discuss its implications.

The nonlinear program from Section 3.1.4 seeks to maximize the function f on the polytope X. What do the Kuhn-Tucker conditions for this program mean?

The Kuhn-Tucker conditions adapt the classical approach to optimization based on linearization to settings with both equality and inequality constraints. In the current context, these conditions embody the following construction: To begin, one linearizes the objective function f at the state $x \in X$ of interest, replacing it with the function $l_{f, x}(y)=f(x)+\nabla f(x)^{\prime}(y-x)$. Then, one determines whether the linearized function reaches its maximum on X at state x. Of course, this method can accept states that are not maximizers: for instance, if x is an interior local minimizer of f, then the linearization $l_{f, x}$ is a constant function, and so is maximized everywhere in X. But because X is a polytope
(in particular, since constraint qualification holds), x must maximize $l_{f, x}$ on X if it is to maximize f on X.

With this interpretation of the Kuhn-Tucker conditions in hand, we can offer a simple geometric proof that $N E(F)=K T(f)$. The analysis employs our normal cone characterization of Nash equilibrium from Chapter 2.

Theorem 3.1.7: If F is a full potential game with full potential function f, then $N E(F)=K T(f)$.
Second proof. $\quad x \in K T(f) \Leftrightarrow x$ maximizes $l_{f, x}$ on X.

$$
\begin{aligned}
& \Leftrightarrow\left[z \in T X(x) \Rightarrow \nabla f(x)^{\prime} z \leq 0\right] \\
& \Leftrightarrow \nabla f(x) \in N X(x) \\
& \Leftrightarrow F(x) \in N X(x) \\
& \Leftrightarrow x \in N E(F) .
\end{aligned}
$$

This proof is easy to explain in words. As we have argued, satisfying the Kuhn-Tucker conditions for f on X is equivalent to maximizing the linearized version of f on X. This in turn is equivalent to the requirement that if z is in the tangent cone of X at x-that is, if z is a feasible displacement direction from x-then z forms a weakly obtuse angle with the gradient vector $\nabla f(x)$, representing the direction in which f increases fastest. But this is precisely what it means for $\nabla f(x)$ to lie in the normal cone $N X(x)$. The definition of potential tells us that we can replace $\nabla f(x)$ with $F(x)$; and we know from Chapter 2 that $F(x) \in N X(x)$ means that x is a Nash equilibrium of F.

This argument sheds new light on Theorem 3.1.7. The Kuhn-Tucker conditions, which provide a way of finding the maximizers of the function f, are stated in terms of the gradient vectors $\nabla f(x)$. At first glance, it seems rather odd to replace $\nabla f(x)$ with some non-integrable map F : after all, what is the point of the Kuhn-Tucker conditions when there is no function to maximize? But from the geometric point of view, replacing $\nabla f(x)$ with F makes perfect sense. When the Kuhn-Tucker conditions are viewed in geometric termsnamely, in the form $\nabla f(x) \in N X(x)$-they become a restatement of the Nash equilibrium condition; the fact that $\nabla f(x)$ is a gradient vector plays no role. So to summarize, the Nash equilibrium condition $F(x) \in N X(x)$ is identical to the Kuhn-Tucker conditions, but applies whether or not the map F is integrable.

Exercise 3.1.15. Let F be a full potential game with full potential function f. Let $C \subseteq N E(F)$ be smoothly connected, in the sense that if $x, y \in C$, then there exists a piecewise C^{1} path $\alpha:[0,1] \rightarrow C$ with $\alpha(0)=x$ and $\alpha(1)=y$. Show that f is constant on C. (Hint: Use the Fundamental Theorem of Calculus and the fact that $F(x) \in N X(x)$ for all $x \in N E(F)$, along
with the fact that when $\alpha(t)=x$ and α is differentiable at x, both $\alpha^{\prime}(t)$ and $-\alpha^{\prime}(t)$ are in $T X(x)$.)

3.1.6 Efficiency in Homogeneous Full Potential Games

We saw in Section 3.1.3 that when agents are matched to play normal form games with common interests, the full potential function of the resulting population game is proportional to the game's aggregate payoff function. How far can we push this connection?

Definition. We call a full potential game F homogeneous of degree k if each of its payoff functions $F_{i}^{p}: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}$ is a homogeneous function of degree k, where $k \neq-1$.

Example 3.1.16. Random matching in normal form games with common interests. In the single population setting, each payoff function $F(x)=A x$ is linear, so the full potential game F is homogeneous of degree 1 . With $p \geq 2$ populations, the payoffs F^{p} to population p^{\prime} s strategies are multilinear in $\left(x^{1}, \ldots, x^{p-1}, x^{p+1}, \ldots, x^{p}\right)$, so the full potential game F is homogeneous of degree $p-1$. §

Example 3.1.17. Isoelastic congestion games. Let F be a congestion game with cost functions c_{ϕ}. For each facility $\phi \in \Phi$, let

$$
\eta_{\phi}(u)=\frac{u c_{\phi}^{\prime}(u)}{c_{\phi}(u)}
$$

denote ϕ 's cost elasticity, which is well defined whenever $c_{\phi}(u) \neq 0$. We call a congestion game isoelastic with elasticity $\eta \in \mathbf{R}$ if $\eta_{\phi}=\eta$ for all $\phi \in \Phi$. Thus, a congestion game is isoelastic if all facilities in Φ are equally sensitive to congestion at all levels of use.

Isoelasticity implies that all cost functions are of the form $c_{\phi}(u)=a_{\phi} u^{\eta}$, where the a_{ϕ} are arbitrary (i.e., positive or negative) scalar constants. (Notice that η cannot be negative, as this would force facility costs to become infinite at $u=0$.) Since each u_{ϕ} is linear in x, each payoff function F_{i}^{p} is a sum of functions that are homogeneous of degree η in x, and so is itself homogeneous of degree η. Therefore, any isoelastic congestion game with elasticity η is a homogeneous potential game of degree η. §

The efficiency properties of homogeneous potential games are consequences of the following theorem.

Theorem 3.1.18. The full potential game F is homogeneous of degree $k \neq-1$ if and only if the normalized aggregate payoff function $\frac{1}{k+1} \bar{F}(x)$ is a full potential function for F and is homogeneous of degree $k+1 \neq 0$.

Proof. If the potential game F is homogeneous of degree $k \neq-1$, then $\frac{1}{k+1} \bar{F}(x)=$ $\frac{1}{k+1} \sum_{p \in \mathcal{P}} \sum_{j \in S^{p}} x_{j}^{p} F_{j}^{p}(x)$ is clearly homogeneous of degree $k+1$. Therefore, condition (3.2) and Euler's law imply that

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}^{p}}\left(\frac{1}{k+1} \bar{F}(x)\right) & =\frac{1}{k+1}\left(\sum_{q \in \mathcal{P}} \sum_{j \in S^{q}} x_{j}^{q} \frac{\partial F_{j}^{q}}{\partial x_{i}^{p}}(x)+F_{i}^{p}(x)\right) \\
& =\frac{1}{k+1}\left(\sum_{q \in \mathcal{P}} \sum_{j \in S^{q}} x_{j}^{q} \frac{\partial F_{i}^{p}}{\partial x_{j}^{q}}(x)+F_{i}^{p}(x)\right) \\
& =\frac{1}{k+1}\left(k F_{i}^{p}(x)+F_{i}^{p}(x)\right) \\
& =F_{i}^{p}(x),
\end{aligned}
$$

so $\frac{1}{k+1} \bar{F}$ is a full potential function for F. On the other hand, if $\frac{1}{k+1} \bar{F}$ is homogeneous of degree $k+1 \neq 0$ and is a full potential function for F, then each payoff function $F_{i}^{p}=\frac{\partial}{\partial x_{i}^{p}}\left(\frac{1}{k+1} \bar{F}\right)$ is homogeneous of degree k, so the converse statement follows.

To understand the connection between homogeneity and efficiency, consider the expression $\frac{\partial}{\partial x_{i}^{p}} \bar{F}(x)$, which represents the impact of an agent who chooses strategy i on aggregate payoffs. Recalling Example 3.1.6, we split this impact into two terms. The first term, $\sum_{q} \sum_{j} x_{j}^{q} \frac{\partial F_{j}^{q}}{\partial x_{i}^{p}}(x)$, represents the impact of this agent's behavior on his opponents' payoffs. The second term, $F_{i}^{p}(x)$, represents the agent's own payoffs. In homogeneous potential games, these two effects are precisely balanced: the payoff an agent receives from choosing a strategy is directly proportional to the social impact of his choice. For this reason, self-interested behavior leads to desirable social outcomes.

Observe that if a potential game is homogeneous of degree less than -1 , its full potential function is negatively proportional to aggregate payoffs. In this case, self-interested behavior leads to undesirable social outcomes. To remove this case from consideration, we call a potential game positively homogeneous if its full potential function is homogeneous of strictly positive degree, so that the game itself is homogeneous of degree $k>-1$.

With this definition in hand, we can present a result on the efficiency of Nash equilibria. We call the social state x locally efficient in game $F(x \in L E(F))$ if there exists an $\varepsilon>0$ such that $\bar{F}(x) \geq \bar{F}(y)$ for all $y \in X$ within ε of x. If this inequality holds for all $y \in X$, we call x globally efficient $(x \in G E(F))$.

Corollary 3.1.19.

(i) If the full potential game F is positively homogeneous, then $L E(F) \subseteq N E(F)$.
(ii) If in addition its full potential function f is concave, then $G E(F)=L E(F)=N E(F)$.

Exercise 3.1.20. Establish these claims.
Exercise 3.1.21. Let F be a congestion game with nondecreasing affine cost functions: $c_{\phi}(u)=a_{\phi} u+b_{\phi}$. Suppose that within each population, the fixed cost of each route is equal:

$$
\sum_{\phi \in \Phi_{i}^{p}} b_{\phi}=b^{p} \text { for all } i \in S^{p} \text { and } p \in \mathcal{P} .
$$

Show that $N E(F)=G E(F)$.

3.1.7 Inefficiency Bounds for Congestion Games

The results from the previous section provide stringent conditions under which Nash equilibria of congestion games are efficient. Since exact efficiency rarely obtains, it is natural to ask just how inefficient equilibrium behavior can be. We address this question in the context of congestion games with nondecreasing cost functions-in other words, congestion games in which congestion is a bad.

It will be convenient to use notation tailored to the questions at hand. Given the facilities ϕ and the nondecreasing cost functions c_{ϕ}, we let

$$
C_{i}^{p}(x)=-F_{i}^{p}(x)=\sum_{\phi \in \Phi_{i}^{p}} c_{\phi}\left(u_{\phi}(x)\right)
$$

denote the cost of strategy $i \in S^{p}$ at state x and let

$$
\bar{C}(x)=-\bar{F}(x)=\sum_{p \in \mathcal{P}} \sum_{i \in S^{p}} x_{i}^{p} C_{i}^{p}(x)=\sum_{\phi \in \Phi} u_{\phi}(x) c_{\phi}\left(u_{\phi}(x)\right)
$$

denote social cost at state x. We refer to the resulting congestion game either as C or as (C, m) (to emphasize the population masses m). When we introduce alternative cost functions γ_{ϕ}, we replace C with Γ in the notation above.

One approach to bounding the inefficiency of equilibria is to compare the equilibrium social cost to the minimal social cost in a game with additional agents.

Proposition 3.1.22. Let C be a congestion game with nondecreasing cost functions. Let x^{*} be a Nash equilibrium of (C, m), and let y be a feasible state in $(C, 2 m)$. Then $\bar{C}\left(x^{*}\right) \leq \bar{C}(y)$.

Exercise 3.1.23. This exercise outlines a proof of Proposition 3.1.22.
(i) Define the cost functions γ_{ϕ} by $\gamma_{\phi}(u)=\max \left\{c_{\phi}\left(u_{\phi}\left(x^{*}\right)\right), c_{\phi}(u)\right\}$. Show that $u\left(\gamma_{\phi}(u)-\right.$ $\left.c_{\phi}(u)\right) \leq c_{\phi}\left(u_{\phi}\left(x^{*}\right)\right) u_{\phi}\left(x^{*}\right)$.
(ii) Show that $\Gamma_{i}^{p}(y) \geq \min _{j \in S^{p}} C_{j}^{p}\left(x^{*}\right)$.
(iii) Use parts (i) and (ii) to show that $\bar{\Gamma}(y)-\bar{C}(y) \leq \bar{C}\left(x^{*}\right)$ and that $\bar{\Gamma}(y) \geq 2 \bar{C}\left(x^{*}\right)$, and conclude that $\bar{C}\left(x^{*}\right) \leq \bar{C}(y)$.

Exercise 3.1.24. This exercise applies Proposition 3.1.22 to settings with fixed population masses but varying cost functions.
(i) Show that the equilibrium social cost under cost functions $\tilde{c}_{\phi}(u)=\frac{1}{2} c_{\phi}\left(\frac{u}{2}\right)$ is bounded above by the minimal social cost under cost functions c_{ϕ}.
(ii) Let C be a congestion game with cost functions $c_{\phi}(u)=\left(k_{\phi}-u\right)^{-1}$ for some capacities $k_{\phi}>0$. (We assume that population masses are small enough that no edge can reach its capacity.) Using part (i), show that the equilibrium social cost when capacities are $2 k$ is bounded above by the minimal social cost when capacities are k. In other words, doubling the capacities of the edges reduces costs at least as much as enforcing efficient behavior under the original capacities.

A more direct way of understanding inefficiency is to bound a game's inefficiency ratio: the ratio between the game's equilibrium social cost and its minimal feasible social cost.

Example 3.1.25. A highway network consisting of two parallel links is to be traversed by a unit mass of drivers. The links' cost functions are $c_{1}(u)=1$ and $c_{2}(u)=u$. In the unique Nash equilibrium of this game, all drivers travel on route 2 , creating a social cost of 1 . The efficient state, which minimizes $\bar{C}(x)=x_{1}+\left(x_{2}\right)^{2}$, is $x_{\text {min }}=\left(\frac{1}{2}, \frac{1}{2}\right)$; it generates a social cost of $\bar{C}\left(x_{\min }\right)=\frac{3}{4}$. Thus, the inefficiency ratio in this game is $\frac{4}{3}$.

The next result describes an easily established upper bound on inefficiency ratios.
Proposition 3.1.26. Suppose that the cost functions c_{ϕ} are nondecreasing and satisfy $u c_{\phi}(u) \leq$ $\alpha \int_{0}^{u} c_{\phi}(z) \mathrm{d} z$ for all $u \geq 0$. If $x^{*} \in N E(C)$ and $x \in X$, then $\bar{C}\left(x^{*}\right) \leq \alpha \bar{C}(x)$.

Exercise 3.1.27. (i) Prove Proposition 3.1.26. (Hint: Use a potential function argument.)
(ii) Show that if cost functions in C are polynomials of degree at most k with nonnegative coefficients, then the inefficiency ratio in C is at most $k+1$.

Exercise 3.1.27 tells us that the inefficiency ratio of a congestion game with affine cost functions cannot exceed 2. Is it possible to establish a smaller upper bound? We saw in Example 3.1.25 that inefficiency ratios as high as $\frac{4}{3}$ can arise in very simple games with nonnegative affine cost functions. Amazingly, $\frac{4}{3}$ is the highest possible inefficiency ratio for congestion games with cost functions of this form.

Theorem 3.1.28. Let C be a congestion game whose cost functions c_{ϕ} are nonnegative, nondecreasing, and affine: $c_{\phi}(u)=a_{\phi} u+b_{\phi}$ with $a_{\phi}, b_{\phi} \geq 0$. If $x^{*} \in N E(C)$ and $x \in X$, then $\bar{C}\left(x^{*}\right) \leq \frac{4}{3} \bar{C}(x)$.

Proof. Fix $x^{*} \in N E(C)$ and $x \in X$, and write $v_{\phi}^{*}=u_{\phi}\left(x^{*}\right)$ and $v_{\phi}=u_{\phi}(x)$. Let $\Phi_{L}=\{\phi \in$ $\left.\Phi: v_{\phi}<v_{\phi}^{*}\right\}$ be the set of facilities that are underutilized at x relative to x^{*}.

Every $r \in \mathbf{R}$ satisfies $(1-r) r \leq \frac{1}{4}$. Multiplying both sides of this inequality by $b_{\phi}\left(v_{\phi}^{*}\right)^{2}$ and setting $r=v_{\phi} / v_{\phi}^{*}$ yields

$$
\begin{equation*}
b_{\phi}\left(v_{\phi}^{*}-v_{\phi}\right) \cdot v_{\phi} \leq \frac{1}{4} b_{\phi}\left(v_{\phi}^{*}\right)^{2} \text { whenever } \phi \in \Phi_{L} . \tag{3.8}
\end{equation*}
$$

Thus, since x^{*} is a Nash equilibrium, and by our assumptions on c_{ϕ}, we have that

$$
\begin{aligned}
\bar{C}\left(x^{*}\right) & =\sum_{\phi \in \Phi} c_{\phi}\left(v_{\phi}^{*}\right) v_{\phi}^{*} \\
& \leq \sum_{\phi \in \Phi} c_{\phi}\left(v_{\phi}^{*}\right) v_{\phi} \\
& =\sum_{\phi \in \Phi} c_{\phi}\left(v_{\phi}\right) v_{\phi}+\sum_{\phi \in \Phi}\left(c_{\phi}\left(v_{\phi}^{*}\right)-c_{\phi}\left(v_{\phi}\right)\right) v_{\phi} \\
& \leq \bar{C}(x)+\sum_{\phi \in \Phi_{L}} b_{\phi}\left(v_{\phi}^{*}-v_{\phi}\right) \cdot v_{\phi} \\
& \leq \bar{C}(x)+\frac{1}{4} \sum_{\phi \in \Phi_{L}} b_{\phi}\left(v_{\phi}^{*}\right)^{2} \\
& \leq \bar{C}(x)+\frac{1}{4} \sum_{\phi \in \Phi_{L}} v_{\phi}^{*} \cdot c_{\phi}\left(v_{\phi}^{*}\right) \\
& =\bar{C}(x)+\frac{1}{4} \bar{C}\left(x^{*}\right) .
\end{aligned}
$$

Rearranging yields $\bar{C}\left(x^{*}\right) \leq \frac{4}{3} \bar{C}(x)$.
That the highest inefficiency ratio for a given class of cost functions can be realized in a very simple network is true quite generally. Consider a two-link network with link cost functions $c_{1}(u)=1$ and $c_{2}(u)=u^{k}$, where $k \geq 1$. With a unit mass population, the Nash equilibrium for this network is $x^{*}=(0,1)$, and has social $\operatorname{cost} \bar{C}\left(x^{*}\right)=1$; the efficient state is $x_{\text {min }}=\left(1-(k+1)^{-1 / k},(k+1)^{-1 / k}\right)$, and has social $\operatorname{cost} \bar{C}\left(x_{\min }\right)=1-k(k+1)^{-(k+1) / k}$. Remarkably, it is possible to show that the resulting inefficiency ratio of $\left(1-k(k+1)^{-(k+1) / k}\right)^{-1}$ is the highest possible in any network whose cost functions are polynomials of degree at most k. See the Notes for further details.

A minor modification of the proof of Theorem 3.1.28 allows us to improve the bound
presented in Proposition 3.1.22. The earlier result showed that equilibrium social cost in a congestion game cannot exceed the efficient level of social cost in the game with identical cost functions but with population sizes that are twice as large. Corollary 3.1.29 shows that in the affine case, this multiplicative factor can be reduced from 2 to $\frac{5}{4}$.

Corollary 3.1.29. Let C be a congestion game whose cost functions c_{ϕ} are nonnegative, nondecreasing, and affine. Let x^{*} be a Nash equilibrium of (C, m), and let y be a feasible state in ($C, \frac{5}{4} m$). Then $\bar{C}\left(x^{*}\right) \leq \bar{C}(y)$.

Exercise 3.1.30. Prove Corollary 3.1.29. (Hint: The proof of Theorem 3.1.28 establishes that $\sum_{\phi \in \Phi} c_{\phi}\left(u_{\phi}\left(x^{*}\right)\right) u_{\phi}(y) \leq \bar{C}(y)+\frac{1}{4} \bar{C}\left(x^{*}\right)$ for any $y \in \mathbf{R}_{+}^{n}$. Combine this inequality with the fact that x^{*} is a Nash equilibrium of (C, m).)

While our treatment of inefficiency bounds has focused on congestion games with affine and polynomial cost functions, it is possible to establish such bounds while placing much less structure on the costs. In fact, one can generalize the arguments presented above to obtain inefficiency bounds for general population games. See the Notes for references to the relevant literature.

3.2 Potential Games

To define full potential games, we first defined full population games by extending the domain of payoffs from the state space X to the positive orthant \mathbf{R}_{+}^{n}. While this device for introducing potential functions is simple, it is often artifical. By using ideas from affine calculus (Appendix 3.B), we can define potential functions for population games without recourse to changes in domain.

3.2.1 Motivating Examples

We can motivate the developments to come not only by parsimony, but also by generality, as the following two examples show.

Example 3.2.1. Random matching in symmetric normal form potential games. Recall that the symmetric normal form game $C \in \mathbf{R}^{n \times n}$ is a common interest game if C is a symmetric matrix, so that both players always receive the same payoff. We call the symmetric normal form game $A \in \mathbf{R}^{n \times n}$ a potential game if $A=C+\mathbf{1} r^{\prime}$ for some common interest game C and some arbitrary vector $r \in \mathbf{R}^{n}$. Thus, each player's payoff is the sum of a common interest term and a term that only depends on his opponent's choice of strategy. (For the latter point, note that $A_{i j}=C_{i j}+r_{j}$.)

Suppose a population of agents is randomly matched to play game A. Since the second payoff term has no effect on agents' incentives, it is natural to expect our characterization of equilibrium from the previous section to carry over to the current setting. But this does not follow directly from our previous definitions. Suppose we define the full population game $F: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}^{n}$ as in Example 3.1.2: $F(x)=A x$. Then the resulting derivative matrix is $D F(x)=A=C+\mathbf{1} r^{\prime}$, and so

$$
\frac{\partial F_{i}}{\partial x_{j}}(x)=C_{i j}+r_{j}, \quad \text { but } \frac{\partial F_{j}}{\partial x_{i}}(x)=C_{j i}+r_{i} .
$$

Therefore, unless r is a constant vector (in which case A itself is symmetric), the full population game F defined above is not a full potential game. \S

Example 3.2.2. Two-strategy games. Recall that the population game $F: X \rightarrow \mathbf{R}^{n}$ is a two-strategy game if $p=1$ and $n=2$. In this setting, the state space X is the simplex in \mathbf{R}^{2}, which can be viewed as a relabelling of the unit interval. Because all functions defined on the unit interval are integrable, it seems natural to expect two-strategy games to admit potential functions. If we wanted to show that F defines a full potential game, we would first need to extend its domain to \mathbf{R}_{+}^{2}. Once we do this, the domain is no longer one-dimensional, so our intuition about the existence of a potential function is lost. §

3.2.2 Definition, Characterizations, and Examples

Example 3.2.2 suggests that the source of our difficulties is the extension of payoffs from the original state space X to the full-dimensional set \mathbf{R}_{+}^{n}. As the definition of full potential games relied on this extension, our new notion of potential games will require some additional ideas. The key concepts are the tangent spaces and orthogonal projections introduced in Chapter 2, which we briefly review here.

Recall that the state space for population p is given by $X^{p}=\left\{x^{p} \in \mathbf{R}_{+}^{n^{p}}: \sum_{i \in S^{p}} x_{i}^{p}=m^{p}\right\}$. The tangent space of X^{p}, denoted $T X^{p}$, is the smallest subspace of $\mathbf{R}^{n^{p}}$ that contains all directions of motion through X^{p}; it is defined by $T X^{p}=\mathbf{R}_{0}^{n^{p}} \equiv\left\{z^{p} \in \mathbf{R}^{n^{p}}: \sum_{i \in S^{p}} z_{i}^{p}=0\right\}$. The matrix $\Phi \in \mathbf{R}^{n^{p} \times n^{p}}$, representing the orthogonal projection of $\mathbf{R}^{n^{p}}$ onto $T X^{p}$, is defined by $\Phi=I-\frac{1}{n^{p}} \mathbf{1 1}$ '. If $\pi^{p} \in \mathbf{R}^{n^{p}}$ is a payoff vector, then the projected payoff vector $\Phi \pi^{p}$ represents relative payoffs under π^{p} : it preserves the differences between components of π^{p} while normalizing their sum to zero. Changes in the social state $x \in X=\prod_{p \in \mathcal{P}} X^{p}$ are represented by elements of $T X=\prod_{p \in \mathcal{P}} T X^{p}$, the tangent space of X. The matrix $\boldsymbol{\Phi} \in \mathbf{R}^{n \times n}$, representing the orthogonal projection of \mathbf{R}^{n} onto $T X$, is the block diagonal matrix $\operatorname{diag}(\Phi, \ldots, \Phi)$. If $\pi=\left(\pi^{1}, \ldots, \pi^{p}\right) \in \mathbf{R}^{n}$ is a payoff vector for the society, then
$\Phi \pi=\left(\Phi \pi^{1}, \ldots, \Phi \pi^{p}\right)$ normalizes each of the p pieces of the vector π separately.
With these preliminaries in hand, we are ready for our new definition.
Definition. Let $F: X \rightarrow \mathbf{R}^{n}$ be a population game. We call F a potential game if it admits a potential function: a C^{1} function $f: X \rightarrow \mathbf{R}$ that satisfies

$$
\begin{equation*}
\nabla f(x)=\Phi F(x) \text { for all } x \in X \tag{3.9}
\end{equation*}
$$

Since the potential function f has domain X, the gradient vector $\nabla f(x)$ is by definition an element of the tangent space TX (see Appendix 3.B.3). Our definition of potential games requires that this gradient vector always equal $\Phi F(x)$, the projection of the payoff vector $F(x)$ onto the subspace $T X$.

At the cost of sacrificing parsimony, one can define potential games without affine calculus by using a function defined throughout \mathbf{R}_{+}^{n} to play the role of the potential function f. To do so, one simply includes the projection $\boldsymbol{\Phi}$ on both sides of the analogue of equation (3.9).

Observation 3.2.3. If F is a potential game with potential function $f: X \rightarrow \mathbf{R}$, then any C^{1} extension $\tilde{f}: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}$ of f satisfies

$$
\begin{equation*}
\boldsymbol{\Phi} \nabla \tilde{f}(x)=\boldsymbol{\Phi} F(x) \text { for all } x \in X \tag{3.10}
\end{equation*}
$$

Conversely, if the population game F admits a function \tilde{f} satisfying condition (3.10), then F is a potential game, and the restriction $f=\left.\tilde{f}\right|_{X}$ is a potential function for F.

This observation is immediate from the relevant definitions. In particular, if \tilde{f} and f agree on X, then for all $x \in X$ the gradient vectors $\nabla \tilde{f}(x)$ and $\nabla f(x)$ define identical linear operators on $T X$, implying that $\boldsymbol{\Phi} \nabla \tilde{f}(x)=\boldsymbol{\Phi} \nabla f(x)$. But since $\boldsymbol{\Phi} \nabla f(x)=\nabla f(x)$ by definition, it follows that $\Phi \nabla \tilde{f}(x)=\nabla f(x)$; this equality and definition (3.9) yield the result.

Like full potential games, potential games can be characterized by a symmetry condition on the payoff derivatives $D F(x)$. Since potential games generalize full potential games, the new symmetry condition is less restrictive than the old one.

Theorem 3.2.4. Suppose the population game $F: X \rightarrow \mathbf{R}^{n}$ is C^{1}. Then F is a potential game if and only if it satisfies externality symmetry:

$$
\begin{equation*}
D F(x) \text { is symmetric with respect to } T X \times T X \text { for all } x \in X \text {. } \tag{3.11}
\end{equation*}
$$

Proof. Immediate from Theorem 3.B. 8 in Appendix 3.B.

Condition (3.11) demands that at each state $x \in X$, the derivative $D F(x)$ define a symmetric bilinear form on $T X \times T X$:

$$
z^{\prime} D F(x) \hat{z}=\hat{z}^{\prime} D F(x) z \text { for all } z, \hat{z} \in T X \text { and } x \in X
$$

Observation 3.2.5 offers a version of this condition that does not require affine calculus, just as Observation 3.2.3 did for definition (3.9).

Observation 3.2.5. Suppose that the population game $F: X \rightarrow \mathbf{R}^{n}$ is C^{1}, and let $\tilde{F}: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}^{n}$ be any C^{1} extension of F. Then F satisfies externality symmetry (and so is a potential game) if and only if

$$
\boldsymbol{\Phi} D \tilde{F}(x) \boldsymbol{\Phi} \text { is symmetric for all } x \in X \text {. }
$$

The next exercise characterizes externality symmetry in a more intuitive way.
Exercise 3.2.6. Show that externality symmetry (3.11) holds if and only if the previous equality holds whenever $z=e_{j}^{p}-e_{i}^{p}$ and $\hat{z}=e_{l}^{q}-e_{k}^{q}$. In other words, show that (3.11) is equivalent to

$$
\begin{equation*}
\frac{\partial\left(F_{j}^{p}-F_{i}^{p}\right)}{\partial\left(e_{l}^{q}-e_{k}^{q}\right)}(x)=\frac{\partial\left(F_{l}^{q}-F_{k}^{q}\right)}{\partial\left(e_{j}^{p}-e_{i}^{p}\right)}(x) \text { for all } i, j \in S^{p}, k, l \in S^{q}, p, q \in \mathcal{P}, \text { and } x \in X . \tag{3.12}
\end{equation*}
$$

The left hand side of equation (3.12) captures the change in the payoff to strategy $j \in S^{p}$ relative to strategy $i \in S^{p}$ as agents switch from strategy $k \in S^{q}$ to strategy $l \in S^{q}$. This effect must equal the change in the payoff of l relative to k as agents switch from i to j, as expressed on the right hand side of (3.12). This description is akin to that of full externality symmetry (3.2) (see the discussion after equation (3.3)), but it only refers to relative payoffs and to feasible changes in the social state.

Exercise 3.2.7. Let F be a C^{1} single population game. Show that F is a potential game if and only if it satisfies triangular integrability:

$$
\frac{\partial F_{i}}{\partial\left(e_{j}-e_{k}\right)}(x)+\frac{\partial F_{j}}{\partial\left(e_{k}-e_{i}\right)}(x)+\frac{\partial F_{k}}{\partial\left(e_{i}-e_{j}\right)}(x)=0 \text { for all } i, j, k \in S \text { and } x \in X .
$$

We now return to the examples that led off the section.
Example 3.2.8. Two-strategy games revisited. If $F: X \rightarrow \mathbf{R}^{2}$ is a smooth two-strategy game, its state space X is the simplex in \mathbf{R}^{2}, whose tangent space $T X$ is spanned by the vector
$d=e_{1}-e_{2}$. If z and \hat{z} are vectors in $T X$, then $z=k d$ and $\hat{z}=\hat{k} d$ for some real numbers k and \hat{k}; thus, however F is defined, we have that $z^{\prime} D F(x) \hat{z}=k \hat{k} d^{\prime} D F(x) d=\hat{z}^{\prime} D F(x) z$ for all $x \in X$. In other words, F is a potential game. Even if F is merely continuous, the function $f: X \rightarrow \mathbf{R}$ defined by

$$
\begin{equation*}
f\left(x_{1}, 1-x_{1}\right)=\int_{0}^{x_{1}}\left(F_{1}(t, 1-t)-F_{2}(t, 1-t)\right) \mathrm{d} t \tag{3.13}
\end{equation*}
$$

is a potential function for F, so F is still a potential game. (If you think that a $\frac{1}{2}$ is needed on the right hand side of equation (3.13), convince yourself that it is not.) §

Exercise 3.2.9. Random matching in symmetric normal form potential games. Let $A=C+\mathbf{1} r^{\prime}$ be a symmetric normal form potential game: $C \in \mathbf{R}^{n \times n}$ is symmetric, and $r \in \mathbf{R}^{n}$ is arbitrary. Define the population game $F: X \rightarrow \mathbf{R}^{n}$ by $F(x)=A x$. Use one of the derivative conditions above to verify that F is a potential game, and find a potential function $f: X \rightarrow \mathbf{R}$ for F.

Exercise 3.2.10. Random matching in normal form potential games. The normal form game $U=\left(U^{1}, \ldots, U^{p}\right)$ is a potential game if there is a potential function $V: S \rightarrow \mathbf{R}$ such that

$$
U^{p}\left(\hat{s}^{p}, s^{-p}\right)-U^{p}(s)=V\left(\hat{s}^{p}, s^{-p}\right)-V(s) \text { for all } s \in S, \hat{s}^{p} \in S^{p}, \text { and } p \in \mathscr{P}
$$

That is, after any unilateral deviation, the change in the deviator's payoffs is equal to the change in potential. It is easy to see that pure strategy profile $s \in S$ is a Nash equilibrium of U if and only if it is a local maximizer of the potential function V.
(i) Show that U is a potential game with potential function V if and only if there are auxiliary functions $W^{p}: S^{-p} \rightarrow \mathbf{R}$ such that

$$
U^{p}(s)=V(s)+W^{p}\left(s^{-p}\right) \text { for all } s \in S \text { and } p \in \mathscr{P} .
$$

In words: each player's payoff function is the sum of a of a common payoff term given by the value of potential, and a term that only depends on opponents' behavior. This characterization accords with the definition of symmetric normal form potential games from the previous exercise.
(ii) Define the full population game $\tilde{F}: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}^{n}$ by

$$
\tilde{F}_{s^{p}}^{p}(x)=\sum_{s^{-p} \in S^{-p}} U^{p}(s) \prod_{r \neq p} x_{s^{r}}^{r}=\sum_{s^{-p} \in S^{-p}}\left(V(s)+W^{p}\left(s^{-p}\right)\right) \prod_{r \neq p} x_{s^{r}}^{r} .
$$

Show that \tilde{F} is not a full potential game.
(iii) Define the population game $F: X \rightarrow \mathbf{R}^{n}$ using the equation from part (ii). By verifying condition (3.11), show that F is a potential game.
(iv) Construct a potential function for F.

Exercise 3.2.11. This exercise provides the converse to Exercise 3.2.10(iii).
Let the population game $F: X \rightarrow \mathbf{R}^{n}$ be generated by random matching in a p player normal form game U. Show that if F is potential game with potential function $f: X \rightarrow \mathbf{R}$, then U is a potential game with potential function $V(s)=f(\xi(s))$, where $\xi(s) \in X$ is the pure population state with $\xi(s)_{s^{p}}^{p}=1$ for all $p \in \mathscr{P}$. (Hint: To evaluate $f\left(\xi\left(\hat{s}^{p}, s^{-p}\right)\right)-f(\xi(s))$, use the Fundamental Theorem of Calculus, along with the fact that $F^{p}(x)$ is independent of x^{p}.)

3.2.3 Potential Games and Full Potential Games

What is the relationship between full potential games and potential games? In the former case, condition (3.1) requires that payoffs be completely determined by the potential function, which is defined on \mathbf{R}_{+}^{n}; in the latter, condition (3.9) asks only that relative payoffs be determined by the potential function, now defined just on X.

To understand the relationship between the two definitions, take a potential game $F: X \rightarrow \mathbf{R}^{n}$ with potential function $f: X \rightarrow \mathbf{R}$ as given, and extend f to a full potential function $\tilde{f}: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}$. Theorem 3.2.12 shows that the link between the full potential game $\tilde{F} \equiv \nabla \tilde{f}$ and the original game F depends on how the extension \tilde{f} is chosen.

Theorem 3.2.12. Let $F: X \rightarrow \mathbf{R}^{n}$ be a potential game with potential function $f: X \rightarrow \mathbf{R}$. Let $\tilde{f}: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}$ be any C^{1} extension of f, and define the full potential game $\tilde{F}: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}^{n}$ by $\tilde{F}(x)=\nabla \tilde{f}(x)$. Then
(i) The population games F and $\left.\tilde{F}\right|_{X}$ have the same relative payoffs: $\boldsymbol{\Phi} F(x)=\boldsymbol{\Phi} \tilde{F}(x)$ for all $x \in X$.
(ii) One can choose the extension \tilde{f} in such a way that F and $\left.\tilde{F}\right|_{X}$ are identical.

Part (i) of the theorem shows that the full potential game \tilde{F} generated from an arbitrary extension of the potential function f exhibits the same relative payoffs as F on their common domain X. It follows that F and \tilde{F} have the same best response correspondences and Nash equilibria, but may exhibit different average payoff levels. Part (ii) of the theorem shows that by choosing the extension \tilde{f} appropriately, we can make \tilde{F} and F identical on X. To accomplish this, we construct the extension \tilde{f} in such a way (equation (3.14) below) that its derivatives at states in X evaluated in directions orthogonal to $T X$ encode information about average payoffs from the original game F.

In conclusion, Theorem 3.2.12(ii) demonstrates that if population masses are fixed, so that the relevant set of social states is X, then definition (3.1), while more difficult to check, does not entail a loss of generality relative to definition (3.9).

Proof of Theorem 3.2.12: Part (i) follows from the fact that $\boldsymbol{\Phi} \tilde{F}(x)=\boldsymbol{\Phi} \nabla \tilde{f}(x)=\nabla f(x)=$ $\boldsymbol{\Phi} F(x)$ for all $x \in X$; compare the discussion following Observation 3.2.3.

To prove part (ii), we first extend f and F from the state space X to its affine hull $\operatorname{aff}(X)$. Let $\hat{f}: \operatorname{aff}(X) \rightarrow \mathbf{R}$ be a C^{1} extension of $f: X \rightarrow \mathbf{R}$, and let $\hat{g}^{p}: \operatorname{aff}(X) \rightarrow \mathbf{R}$ be a continuous extension of population p^{\prime} s average payoff function, $\frac{1}{n^{p}} \mathbf{1}^{\prime} F^{p}: X \rightarrow \mathbf{R}$. (The existence of these extensions follows from the Whitney Extension Theorem.) Then define $\hat{G}: \operatorname{aff}(X) \rightarrow \mathbf{R}^{n}$ by $\hat{G}^{p}(x)=\mathbf{1} \hat{g}^{p}(x)$, so that $F(x)=\boldsymbol{\Phi} F(x)+(I-\Phi) F(x)=\nabla \hat{f}(x)+\hat{G}(x)$ for all $x \in X$. If after this we define $\hat{F}: \operatorname{aff}(X) \rightarrow \mathbf{R}^{n}$ by $\hat{F}(x)=\nabla \hat{f}(x)+\hat{G}(x)$, then \hat{F} is a continuous extension of F, and $\nabla \hat{f}(x)=\boldsymbol{\Phi} \hat{F}(x)$ for all $x \in \operatorname{aff}(X)$.

With this groundwork complete, we can extend f to all of \mathbf{R}_{+}^{n} via

$$
\begin{equation*}
\tilde{f}(y)=f(\xi(y))+(y-\xi(y))^{\prime} F(\xi(y)) \tag{3.14}
\end{equation*}
$$

where $\xi(y)=\Phi \Phi^{y}+z_{T X}^{\perp}$ is the closest point to y in $\operatorname{aff}(X)$. (Here, $z_{T X}^{\perp}$ is the orthogonal translation vector that sends TX to aff (X) : namely, $\left(z_{T X}^{\perp}\right)^{p}=\frac{m^{p}}{n^{p}} \mathbf{1}$.) Theorem 3.B. 10 shows that $\left.\nabla \tilde{f}\right|_{X}=\left.\tilde{F}\right|_{X}$ is identical to F.

Theorem 3.2.12 implies that all of our results from Sections 3.1.4 and 3.1.5 on Nash equilibria of full potential games apply unchanged to potential games. On the other hand, the efficiency results from Section 3.1.6 do not. In particular, the proof of Theorem 3.1.18 depends on the game F being a full population game, as the application of Euler's Theorem makes explicit use of the partial derivatives of F. In fact, to establish that a potential game F has efficiency properties of the sorts described in Section 3.1.6, one must show that F can be extended to a homogeneous full potential game. This should come as no surprise: since the potential function $f: X \rightarrow \mathbf{R}$ only captures relative payoffs, it cannot be used to prove efficiency results, which depend on both relative and average payoffs.

Exercise 3.2.13. Consider population games with entry and exit (Exercise 3.1.14). Which derivative condition is the right one for defining potential games in this context, (3.2) or (3.11)? Why?

Exercise 3.2.14. Prove this simple "converse" to Theorem 3.2.12: Suppose $\tilde{F}: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}^{n}$ is a full potential game with full potential function $\tilde{f}: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}$. Let $F=\left.\tilde{F}\right|_{X}$ and $f=\left.\tilde{f}\right|_{X}$. Then F is a potential game with potential function f.

3.2.4 Passive Games and Constant Games

We conclude this section by introducing two simple classes of population games.
Definition. The population game $H: X \rightarrow \mathbf{R}^{n}$ is a passive game if for each state $x \in X$ and each population $p \in \mathcal{P}$, the payoffs to all of population p 's strategies are equal:

$$
H_{i}^{p}(x)=H_{j}^{p}(x) \text { for all } i, j \in S^{p}, p \in \mathcal{P}, \text { and } x \in X .
$$

Definition. The population game $K: X \rightarrow \mathbf{R}^{n}$ is a constant game if all strategies' payoffs are independent of the state: that is, if $K(x)=\pi$ for all $x \in X$, or, more explicitly, if

$$
K_{i}^{p}(x)=\pi_{i}^{p} \text { for all } i \in S^{p}, p \in \mathcal{P}, \text { and } x \in X .
$$

In a passive game, an agent's own behavior has no bearing on his payoffs; in a constant game, each agent's behavior is the sole determinant of his payoffs.

The following two propositions provide some alternate characterizations of these games.

Proposition 3.2.15. The following statements are equivalent:
(i) H is a passive game.
(ii) There are functions $c^{p}: X \rightarrow \mathbf{R}$ such that $H^{p}(x)=c^{p}(x) \mathbf{1}$ for all $p \in \mathcal{P}$ and $x \in X$.
(iii) $H(x) \in(T X)^{\perp}$ for all $x \in X$.
(iv) $\boldsymbol{\Phi} H(x)=\mathbf{0}$ for all $x \in X$.
(v) $z^{\prime} H(x)=\mathbf{0}$ for all $z \in T X$ and $x \in X$.
(vi) H is a potential game whose potential function is constant.

Proposition 3.2.16. The following statements are equivalent:
(i) K is a constant game.
(ii) $D K(x)=\mathbf{0}$ for all $x \in X$.
(iii) K is a potential game that admits a linear potential function.

In particular, if $K(x)=\pi$ is a constant game, then $k(x)=\pi^{\prime} x$ is a potential function for K.
One reason that passive and constant games are interesting is that adding them to a population game from a certain class (the potential games, the stable games, the supermodular games) results in a new game from the same class. For instance, suppose that F is a potential game with potential function f, let H be a passive game, and let K be a constant game with potential function k. Evidently, $F+H$ is also a potential game with potential function f; thus, adding H to F leaves the Nash equilibria of F unchanged. $F+K$ is also
a potential game, but its potential function is not f, but $f+k$; thus, $N E(F)$ and $N E(F+K)$ generally differ. Similar observations are true for stable games and for supermodular games: adding a passive game or a constant game to a game from either of these classes keeps us in the class, but only adding passive games leaves incentives unchanged.

When payoffs are smooth, the invariances just described can be represented in terms of payoff derivatives. As an illustration, recall that the C^{1} population game $F: X \rightarrow \mathbf{R}^{n}$ is a potential game if and only if it satisfies externality symmetry:
(3.11) $\quad D F(x)$ is symmetric with respect to $T X \times T X$ for all $x \in X$.

The first TX tells us that condition (3.11) constrains the effects of left multiplication of $D F(x)$ by elements of TX; this restricts the purview of (3.11) to changes in relative payoffs. The second $T X$ tells us that (3.11) constrains the effects of right multiplication of $D F(x)$ by elements of TX; this reflects that we can only evaluate how payoffs change in response to feasible changes in the state. In summary, the action of the derivative matrices $D F(x)$ on $T X \times T X$ captures changes in relative payoffs due to feasible changes in the state. We have seen that this action is enough to characterize potential games, and we will soon find that it is enough to characterize stable and supermodular games as well.

It follows from this discussion that the additions to F that do not affect the action of its derivative matrices on $T X \times T X$ are the ones that do not alter F^{\prime} s class. These additions are characterized by the following proposition.
Proposition 3.2.17. Let G be a C^{1} population game. Then $D G(x)$ is the null bilinear form on $T X \times T X$ for all $x \in X$ if and only if $G=H+K$, where H is a passive game and K is a constant game.

Exercise 3.2.18. Prove Propositions 3.2.15,3.2.16, and 3.2.17. (Hints: For Proposition 3.2.16, prove the equivalence of (i) and (iii) using the Fundamental Theorem of Calculus. For 3.2.17, use the previous propositions, along with the fact that $D G(x)$ is the null bilinear form on $T X \times T X$ if and only if $\boldsymbol{\Phi} D G(x)=\mathbf{0}$.)
Exercise 3.2.19.
(i) Suppose $H(x)=A x$ is a single population passive game. Describe A.
(ii) Suppose $K(x)=A x$ is a single population constant game. Describe A.

3.3 Stable Games

There are a variety of well-known classes of games whose Nash equilibria lie in a single convex component: for instance, two player zero-sum games, wars of attrition,
games with an interior ESS or NSS, and potential games with concave potential functions. This shared property of these seemingly disparate examples springs from a common source: all of these examples are stable games.

3.3.1 Definition

The common structure in the examples above is captured by the following definition.
Definition. The population game $F: X \rightarrow \mathbf{R}^{n}$ is a stable game if

$$
\begin{equation*}
(y-x)^{\prime}(F(y)-F(x)) \leq 0 \text { for all } x, y \in X \tag{3.15}
\end{equation*}
$$

If the inequality in condition (3.15) holds strictly whenever $x \neq y$, we call F a strictly stable game, while if this inequality always binds, we call F a null stable game.

For a first intuition, imagine for the moment that $F \equiv \nabla f(x)$ is also a full potential game. In this case, condition (3.15) is simply the requirement that the potential function f be concave. Our definition of stable games thus extends the defining property of concave potential games to games whose payoffs are not integrable.

Stable games whose payoffs are differentiable can be characterized in terms of the action of their derivative matrices $D F(x)$ on $T X \times T X$.

Theorem 3.3.1. Suppose the population game F is C^{1}. Then F is a stable game if and only if it satisfies self-defeating externalities:

$$
\begin{equation*}
D F(x) \text { is negative semidefinite with respect to } T X \text { for all } x \in X \text {. } \tag{3.16}
\end{equation*}
$$

Before proving Theorem 3.3.1, let us provide some intuition for condition (3.16). This condition asks that

$$
z^{\prime} D F(x) z \leq 0 \text { for all } z \in T X \text { and } x \in X
$$

This requirement is in turn equivalent to

$$
\sum_{p \in \mathcal{P}} \sum_{i \in S^{p}} z_{i}^{p} \frac{\partial F_{i}^{p}}{\partial z}(x) \leq 0 \text { for all } z \in T X \text { and all } x \in X
$$

To interpret this expression, recall that the displacement vector $z \in T X$ describes the aggregate effect on the population state of strategy revisions by a small group of agents. The derivative $\frac{\partial F_{i}^{p}}{\partial z}(x)$ represents the marginal effect that these revisions have on the payoffs
of agents currently choosing strategy $i \in S^{p}$. Condition (3.16) considers a weighted sum of these effects, with weights given by the changes in the use of each strategy, and requires that this weighted sum be negative.

Intuitively, a game exhibits self-defeating externalities if the improvements in the payoffs of strategies to which revising agents are switching are always exceeded by the improvements in the payoffs of strategies which revising agents are abandoning. For example, suppose the tangent vector z takes the form $z=e_{j}^{p}-e_{i}^{p}$, representing switches by some members of population p from strategy i to strategy j. In this case, the requirement in condition (3.16) reduces to $\frac{\partial F_{j}^{p}}{\partial z}(x) \leq \frac{\partial F_{i}^{p}}{\partial z}(x)$: that is, any performance gains that the switches create for the newly chosen strategy j are dominated by the performance gains created for the abandoned strategy i.

Exercise 3.3.2. (i) Characterize the C^{1} two-strategy stable games using a derivative condition.
(ii) Recall the Hawk-Dove game introduced in Chapter 2:

$$
F^{H D}(x)=\left(\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right)\binom{x_{H}}{x_{D}}=\binom{2 x_{D}-x_{H}}{x_{D}} .
$$

Verify that F is a stable game. Also, fill in the numerical details of the argument from the previous paragraph for this specific choice of payoff function.

Proof of Theorem 3.3.1: To begin, suppose that F is a stable game. Fix $x \in X$ and $z \in T X$; we want to show that $z^{\prime} D F(x) z \leq 0$. Since F is C^{1}, it is enough to consider x in the interior of X. In this case, $y_{\varepsilon}=x+\varepsilon z$ lies in X whenever $|\varepsilon|$ is sufficiently small, and so

$$
F\left(y_{\varepsilon}\right)=F(x)+D F(x)\left(y_{\varepsilon}-x\right)+o\left(\left|y_{\varepsilon}-x\right|\right) .
$$

by the definition of $D F(x)$. Premultiplying by $y_{\varepsilon}-x$ and rearranging yields

$$
\left(y_{\varepsilon}-x\right)^{\prime}\left(F\left(y_{\varepsilon}\right)-F(x)\right)=\left(y_{\varepsilon}-x\right)^{\prime} D F(x)\left(y_{\varepsilon}-x\right)+o\left(\left|y_{\varepsilon}-x\right|^{2}\right)
$$

Since the left hand side is nonpositive and since $y_{\varepsilon}-x=\varepsilon z$, it follows that $\varepsilon^{2} z^{\prime} D F(x) z+$ $o\left(\varepsilon^{2}\right) \leq 0$, and hence that $z^{\prime} D F(x) z \leq 0$.

Next, suppose that condition (3.16) holds. Then if we let $\alpha(t)=t y+(1-t) x$, the

Fundamental Theorem of Calculus implies that

$$
\begin{aligned}
(y-x)^{\prime}(F(y)-F(x)) & =(y-x)^{\prime}\left(\int_{0}^{1} D F(\alpha(t))(y-x) \mathrm{d} t\right) \\
& =\int_{0}^{1}(y-x)^{\prime} D F(\alpha(t))(y-x) \mathrm{d} t \leq 0 .
\end{aligned}
$$

Exercise 3.3.3. The derivative condition that characterizes potential games, externality symmetry (3.11), requires that $z^{\prime} D F(x) \hat{z}=\hat{z}^{\prime} D F(x) z$. That z and \hat{z} are chosen separately means that $D F(x)$ is treated as a bilinear form. Exercise 3.2.6 shows that in order to check that (3.11) holds for all z and \hat{z} in $T X$, it is enough to show that it holds for all z and \hat{z} in a basis for TX-for example, the set of vectors of the form $e_{j}^{p}-e_{i}^{p}$.

In contrast, self-defeating externalities (3.16), which requires that $z^{\prime} D F(x) z \leq 0$, places the same vector z on both sides of $D F(x)$, thus viewing $D F(x)$ as a quadratic form. Explain why the conclusion of Exercise 3.2.6 does not extend to the present setting. Also, construct a 3×3 symmetric game A such that $z^{\prime} A z \leq 0$ whenever z is of the form $e_{j}^{p}-e_{i}^{p}$ but such that $F(x)=A x$ is not a stable game.

3.3.2 Examples

Example 3.3.4. Random matching in symmetric normal form games with an interior evolutionarily or neutrally stable state. Let A be a symmetric normal form game. State $x \in X$ is an evolutionarily stable state (or an evolutionarily stable strategy, or simply an ESS) of A if

$$
\begin{align*}
& x^{\prime} A x \geq y^{\prime} A x \text { for all } y \in X ; \text { and } \tag{3.17}\\
& x^{\prime} A x=y^{\prime} A x \text { implies that } x^{\prime} A y>y^{\prime} A y . \tag{3.18}
\end{align*}
$$

Condition (3.17) says that x is a symmetric Nash equilibrium of A. Condition (3.18) says that x performs better against any alternative best reply y than y performs against itself. (Alternatively, (3.17) says that no $y \in X$ can strictly invade x, and (3.17) and (3.18) together say that if y can weakly invade x, then x can strictly invade y-see Section 3.3.3 below.) If we weaken condition (3.18) to

$$
\begin{equation*}
\text { If } x^{\prime} A x=y^{\prime} A x \text {, then } x^{\prime} A y \geq y^{\prime} A y \tag{3.19}
\end{equation*}
$$

then a state satisfying conditions (3.17) and (3.19) is called a neutrally stable state (NSS).
Suppose that the ESS x lies in the interior of X. Then as x is an interior Nash equilibrium, all pure and mixed strategies are best responses to it: for all $y \in X$, we have that $x^{\prime} A x=$
$y^{\prime} A x$, or, equivalently, that $(x-y)^{\prime} A x=0$. Next, we can rewrite the inequality in condition (3.18) as $(x-y)^{\prime} A y>0$. Subtracting this last expression from the previous one yields $(x-y)^{\prime} A(x-y)<0$. But since x is in the interior of X, all tangent vectors $z \in T X$ are proportional to $x-y$ for some choice of $y \in X$. Therefore, $z^{\prime} D F(x) z=z^{\prime} A z<0$ for all $z \in T X$, and so F is a strictly stable game. Similar reasoning shows that if F admits an interior NSS, then F is a stable game. §

Example 3.3.5. Random matching in Rock-Paper-Scissors. In Rock-Paper-Scissors, Paper covers Rock, Scissors cut Paper, and Rock smashes Scissors. If a win in a match is worth $w>0$, a loss $-l<0$, and a draw 0 , we obtain the symmetric normal form game

$$
A=\left(\begin{array}{ccc}
0 & -l & w \\
w & 0 & -l \\
-l & w & 0
\end{array}\right), \text { where } w, l>0
$$

When $w=l$, we refer to A as (standard) RPS; when $w>l$, we refer to A as good RPS, and when $w<l$, we refer to A as bad RPS. In all cases, the unique symmetric Nash equilibrium of A is $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.

To determine the parameter values for which this game generates a stable population game, define $d=w-l$. Since $y^{\prime} A y=\frac{1}{2} y^{\prime}\left(A+A^{\prime}\right) y$, it is enough to see when the symmetric matrix

$$
\hat{A}=A+A^{\prime}=\left(\begin{array}{lll}
0 & d & d \\
d & 0 & d \\
d & d & 0
\end{array}\right)
$$

is negative semidefinite with respect to $T X$. Now \hat{A} has one eigenvalue of $2 d$ corresponding to the eigenvector 1 , and two eigenvalues of $-d$ corresponding to the orthogonal eigenspace $T X$. Thus, $z^{\prime} \hat{A} z=-d z^{\prime} z$ for each $z \in T X$. Since $z^{\prime} z>0$ whenever $z \neq 0$, we conclude that F is stable if and only if $d \geq 0$. Thus, good RPS is strictly stable, standard RPS is stable, and bad RPS is neither. \S

Exercise 3.3.6. Random matching in wars of attrition. A war of attrition is a two player symmetric normal form game. Strategies represent amounts of time committed to waiting for a scarce resource. If the two players choose times i and $j>i$, then the j player obtains the resource, worth v, while both players pay a cost of c_{i} : once the first player leaves, the other seizes the resource immediately. If both players choose time i, the resource is split, so payoffs are $\frac{v}{2}-c_{i}$ each. Show that for any resource value $v \in \mathbf{R}$ and any cost vector $c \in \mathbf{R}^{n}$ satisfying $c_{1} \leq c_{2} \leq \ldots \leq c_{n}$, random matching in a war of attrition generates a
stable game. §
Example 3.3.7. Random matching in symmetric zero-sum games. A symmetric two player normal form game A is symmetric zero-sum if A is skew-symmetric: that is, if $A_{j i}=-A_{i j}$ for all $i, j \in S$. This condition ensures that under single population random matching, the total utility generated in any match is zero. Since payoffs in the resulting single population game are $F(x)=A x$, we find that $z^{\prime} D F(x) z=z^{\prime} A z=0$ for all vectors $z \in \mathbf{R}^{n}$, and so F is a null stable game. §

Example 3.3.8. Random matching in standard zero-sum games. A two player normal form game $U=\left(U^{1}, U^{2}\right)$ is zero-sum if $U^{2}=-U^{1}$, so that the two players' payoffs always add up to zero. Random matching of two populations to play U generates the population game

$$
F\left(x^{1}, x^{2}\right)=\left[\begin{array}{cc}
0 & U^{1} \\
\left(U^{2}\right)^{\prime} & 0
\end{array}\right]\binom{x^{1}}{x^{2}}=\left[\begin{array}{cc}
0 & U^{1} \\
-\left(U^{1}\right)^{\prime} & 0
\end{array}\right]\binom{x^{1}}{x^{2}} .
$$

If z is a vector in $\mathbf{R}^{n}=\mathbf{R}^{n^{1}+n^{2}}$, then

$$
z^{\prime} D F(x) z=\left(\begin{array}{ll}
\left(z^{1}\right)^{\prime} & \left(z^{2}\right)^{\prime}
\end{array}\right)\left[\begin{array}{cc}
0 & U^{1} \\
-\left(U^{1}\right)^{\prime} & 0
\end{array}\right]\binom{z^{1}}{z^{2}}=\left(z^{1}\right)^{\prime} U^{1} z^{2}-\left(z^{2}\right)^{\prime}\left(U^{1}\right)^{\prime} z^{1}=0,
$$

so F is a null stable game. §
Exercise 3.3.9. Random matching in multi-zero-sum games. Let U be a p player normal form game in which each player $p \in \mathscr{P}$ chooses a single strategy from S^{p} to simultaneously play a distinct zero-sum contest with each of his $p-1$ opponents. We call such a U a multi-zero-sum game.
(i) When $p<q$, let $Z^{p q} \in \mathbf{R}^{n^{p} \times n^{q}}$ denote player p^{\prime} s payoff matrix for his zero-sum contest against player q. Define the normal form game U in terms of the $Z^{p q}$ matrices.
(ii) Let F be the p population game generated by random matching in U. Show that $z^{\prime} D F(x) z=0$ for all $x \in X$ and $z \in \mathbf{R}^{n}$, and hence that F is a null stable game.

The previous example and exercise show that random matching across multiple populations can generate a null stable game. Proposition 3.3.10 reveals that null stable games are the only stable games that can be generated in this way.

Proposition 3.3.10. Suppose F is a C^{1} stable game without own-population interactions: $F^{p}(x)$ is independent of x^{p} for all $p \in \mathcal{P}$. Then F is a null stable game.

Proof. By Theorem 3.3.1, F is stable if and only if for all $x \in X, D F(x)$ is negative semidefinite with respect to $T X$. This requirement on $D F(x)$ can be restated as (i) $\boldsymbol{\Phi} D F(x) \boldsymbol{\Phi}$
is negative semidefinite (with respect to \mathbf{R}^{n}); or as (ii) $\boldsymbol{\Phi}\left(D F(x)+D F(x)^{\prime}\right) \boldsymbol{\Phi}$ is negative semidefinite, or (since the previous matrix is symmetric) as (iii) $\boldsymbol{\Phi}\left(D F(x)+D F(x)^{\prime}\right) \boldsymbol{\Phi}$ has all eigenvalues nonpositive. By similar logic, F is null stable if and only if for all $x \in X$, $\boldsymbol{\Phi}\left(D F(x)+D F(x)^{\prime}\right) \boldsymbol{\Phi}$ has all eigenvalues zero (and so is the null matrix).

Let $D^{q} F^{p}(x)$ be the (p, q) th block of the derivative matrix $D F(x)$. Since F^{p} is independent of x^{p}, it follows that $D^{p} F^{p}(x)=0$, and hence that $\Phi\left(D^{p} F^{p}(x)+D^{p} F^{p}(x)^{\prime}\right) \Phi=0$. Since this product is the (p, p) th block of the symmetric matrix $\boldsymbol{\Phi}\left(D F(x)+D F(x)^{\prime}\right) \boldsymbol{\Phi}$, the latter has zero trace, and so its eigenvalues sum to zero. Therefore, the only way $\boldsymbol{\Phi}\left(D F(x)+D F(x)^{\prime}\right) \Phi$ can be negative semidefinite is if all of its eigenvalues are zero. In other words, if F is stable, it is null stable.

Proposition 3.3.10 tells us that within-population interactions are required to obtain a strictly stable game. Thus, strictly stable games can arise when there is matching within a single population to play a symmetric normal form game, but not when there is random matching in multiple populations to play a standard normal form game.

On the other hand, strictly stable games can arise in multipopulation matching settings that allow matches both across and within populations (see the Notes). Moreover, in general population games-for instance, in congestion games-within-population interactions are the norm, and strictly stable games are not uncommon. Our remaining examples illustrate this point.

Example 3.3.11. (Perturbed) concave potential games. We call $F: X \rightarrow \mathbf{R}^{n}$ a concave potential game if it is a potential game whose potential function $f: X \rightarrow \mathbf{R}$ is concave. Then since $y-x \in T X$, since the orthogonal projection matrix $\boldsymbol{\Phi}$ is symmetric, and since $\nabla f \equiv \boldsymbol{\Phi} F$, we find that

$$
\begin{aligned}
(y-x)^{\prime}(F(y)-F(x)) & =(\boldsymbol{\Phi}(y-x))^{\prime}(F(y)-F(x)) \\
& =(y-x)^{\prime}(\boldsymbol{\Phi} F(y)-\boldsymbol{\Phi} F(x)) \\
& =(y-x)^{\prime}(\nabla f(y)-\nabla f(x)) \\
& \leq 0,
\end{aligned}
$$

so F is a stable game. If the inequalities above are satisfied strictly, then they will continue to be satisfied if the payoff functions are slightly perturbed. In other words, perturbations of strictly concave potential games remain strictly stable games. §

Example 3.3.12. Negative dominant diagonal games. We call the full population game F a
negative dominant diagonal game if it satisfies

$$
\frac{\partial F_{i}^{p}}{\partial x_{i}^{p}}(x) \leq 0 \text { and }\left|\frac{\partial F_{i}^{p}}{\partial x_{i}^{p}}(x)\right| \geq \frac{1}{2} \sum_{(j, q) \neq(i, p)}\left(\left|\frac{\partial F_{j}^{q}}{\partial x_{i}^{p}}(x)\right|+\left|\frac{\partial F_{i}^{p}}{\partial x_{j}^{q}}(x)\right|\right)
$$

for all $i \in S^{p}, p \in \mathcal{P}$, and $x \in X$. The first condition says that choosing strategy $i \in S^{p}$ imposes a negative externality on other users of this strategy. The second condition requires that this externality exceeds the average of (i) the total externalities that strategy i imposes on other strategies and (ii) the total externalities that other strategies impose on strategy i. These conditions are precisely what is required for the matrix $D F(x)+D F(x)^{\prime}$ to have a negative dominant diagonal. The dominant diagonal condition implies that all of the eigenvalues of $D F(x)+D F(x)^{\prime}$ are negative; since $D F(x)+D F(x)^{\prime}$ is also symmetric, it is negative semidefinite. Therefore, $D F(x)$ is negative semidefinite too, and so F is a stable game. §

3.3.3 Invasion

In Section 3.3.4, we introduce new equilibrium concepts that are of basic importance for stable games: global neutral stability and global evolutionary stability. These concepts are best understood in terms of the notion of invasion to be presented now.

Let $F: X \rightarrow \mathbf{R}^{n}$ be a population game, and let $x, y \in X$ be two social states. We say that y can weakly invade $x\left(y \in \bar{I}_{F}(x)\right)$ if $(y-x)^{\prime} F(x) \geq 0$. Similarly, y can strictly invade $x\left(y \in I_{F}(x)\right)$ if $(y-x)^{\prime} F(x)>0$.

The intuition behind these definitions is simple. Consider a single population of agents who play the game F, and whose initial behavior is described by the state $x \in X$. Now imagine that a very small group of agents decide to switch strategies. After these agents select their new strategies, the distribution of choices within their group is described by some $y \in X$, but since the group is so small the impact of its behavior on the overall population state is negligible. Thus, the average payoff in the invading group is at least as high as that in the incumbent population if $y^{\prime} F(x) \geq x^{\prime} F(x)$, or equivalently, if $y \in \bar{I}_{F}(x)$. Similarly, the average payoff in the invading group exceeds that in the incumbent population if $y \in I_{F}(x)$.

The interpretation of invasion does not change much when there are multiple populations. If we write $(y-x)^{\prime} F(x)$ as $\sum_{p}\left(y^{p}-x^{p}\right)^{\prime} F^{p}(x)$, we see that if $y \in I_{F}(x)$, there must be some population p for which the small group switching to y^{p} outperforms the incumbent population playing x^{p} at social state x.

These stories suggest a link with evolutionary dynamics. If y is any state in X, then

Figure 3.3.1: Invasion in a two strategy game.
the vector $y-x$ is a feasible displacement direction from state x. If in addition $y \in I_{F}(x)$, then the direction $y-x$ is not only feasible, but also respects the incentives provided by the underlying game.

The invasion conditions also have simple geometric interpretations. That $y \in \bar{I}_{F}(x)$ means that the angle between the displacement vector $y-x$ and the payoff vector $F(x)$ is weakly acute; if $y \in I_{F}(x)$, this angle is strictly acute. Figure 3.3.1 sketches the set $I_{F}(x)$ at various states x in a two strategy game. Figure 3.3.2 does the same for a three-strategy game. To draw the latter case, we need the observation that

$$
\begin{aligned}
y \in I_{F}(x) & \Leftrightarrow(y-x)^{\prime} F(x)>0 \\
& \Leftrightarrow(\boldsymbol{\Phi}(y-x))^{\prime} F(x)>0 \\
& \Leftrightarrow(y-x)^{\prime} \boldsymbol{\Phi} F(x)>0 .
\end{aligned}
$$

In other words, $y \in I_{F}(x)$ if and only if the angle between the displacement vector $y-x$ and the projected payoff vector $\boldsymbol{\Phi} F(x)$ is strictly acute.

3.3.4 Global Neutral Stability and Global Evolutionary Stability

Before introducing our new solution concepts, we first characterize Nash equilibrium in terms of invasion: a Nash equilibrium is a state that no other state can strictly invade.

Proposition 3.3.13. $x \in N E(F)$ if and only if $I_{F}(x)=\varnothing$.

Figure 3.3.2: Invasion in a three strategy game.

Proof. $x \in N E(F) \Leftrightarrow(y-x)^{\prime} F(x) \leq 0$ for all $y \in X \Leftrightarrow I_{F}(x)=\varnothing$.

With this background at hand, we call $x \in X$ a globally neutrally stable state (GNSS) if

$$
(y-x)^{\prime} F(y) \leq 0 \text { for all } y \in X
$$

Similarly, we call x a globally evolutionarily stable state (GESS) if

$$
(y-x)^{\prime} F(y)<0 \text { for all } y \in X-\{x\} .
$$

We let $G N S S(F)$ and $G E S S(F)$ denote the sets of globally neutrally stable strategies and globally evolutionarily stable strategies, respectively.

To see the reason for our nomenclature, note that the inequalities used to define GNSS and GESS are the same ones used to define NSS and ESS in symmetric normal form games (Example 3.3.4), but that they are now required to hold not just at those states y that are optimal against x, but at all $y \in X$. NSS and ESS also require a state to be a Nash equilibrium, but our new solution concepts implicitly require this as well-see Proposition 3.3 .15 below.

It is easy to describe both of these concepts in terms of the notion of invasion.
Observation 3.3.14. (i) $G N S S(F)=\bigcap_{y \in X} \bar{I}_{F}(y)$, and so is convex.
(ii) $x \in G E S S(F)$ if and only if $x \in \bigcap_{y \in X-\{x\}} I_{F}(y)$.

In words: a GNSS is a state that can weakly invade every state (or, equivalently, every other state), while a GESS is a state that can strictly invade every other state.

Our new solution concepts can also be described in geometric terms. For example, x is a GESS if a small motion from any state $y \neq x$ in the direction $F(y)$ (or $\boldsymbol{\Phi} F(y)$) moves the state closer to x (see Figure 3.3.3). If we allow not only these acute motions, but also orthogonal motions, we obtain the weaker notion of GNSS.

We conclude this section by relating our new solution concepts to Nash equilibrium.
Proposition 3.3.15. (i) If $x \in G N S S(F)$, then $x \in N E(F)$.
(ii) If $x \in G E S S(F)$, then $N E(F)=\{x\}$. Hence, if a GESS exists, it is unique.

Proof. To prove part (i), let $x \in \operatorname{GNSS}(F)$ and let $y \neq x$. Define $x_{\varepsilon}=\varepsilon y+(1-\varepsilon) x$. Since x is a GNSS, $\left(x-x_{\varepsilon}\right)^{\prime} F\left(x_{\varepsilon}\right) \geq 0$ for all $\varepsilon \in(0,1]$. Simplifying and dividing by ε yields $(x-y)^{\prime} F\left(x_{\varepsilon}\right) \geq 0$ for all $\varepsilon \in(0,1]$, so taking ε to zero yields $(y-x)^{\prime} F(x) \leq 0$. In other words, $x \in N E(F)$.

Figure 3.3.3: The geometric definition of GESS.

Figure 3.3.4: Why every GNSS is a Nash equilibrium.

To prove part (ii), it is enough to show that if x is a GESS, then no $y \neq x$ is Nash. But if $x \in G E S S(F)$, then $x \in I_{F}(y)$; since $I_{F}(y)$ is nonempty, $y \notin N E(F)$.

Evidently, this proposition implies that every GNSS is an NSS, and that every GESS is an ESS.

The proof that every GNSS is Nash is easy to explain in pictures. In Figure 3.3.4, we draw the GNSS x and an arbitrary state y, and place the state x_{ε} on the segment between y and x. Since x is a GNSS, the angle between $F\left(x_{\varepsilon}\right)$ and $x-x_{\varepsilon}$, and hence between $\Phi F\left(x_{\varepsilon}\right)$ and $x-x_{\varepsilon}$, is weakly acute. Taking ε to zero, it is apparent that the angle between $\boldsymbol{\Phi} F(x)$ and $y-x$, and hence between $y-x$ and $\Phi F(x)$, must be weakly obtuse. Since y was arbitrary, x is a Nash equilibrium.

3.3.5 Nash Equilibrium and Global Neutral Stability in Stable Games

Proposition 3.3.15 tells us that every GNSS of an arbitrary game F is a Nash equilibrium. Theorem 3.3.16 shows that much more can be said if F is stable: in these case, the sets of globally neutrally stable states and Nash equilibria coincide. Together, this fact and Observation 3.3.14 imply that the Nash equilibria of any stable game form a convex set. In fact, if we can replace certain of the weak inequalities that define stable games with strict ones, then the Nash equilibrium is actually unique.

Theorem 3.3.16. (i) If F is a stable game, then $N E(F)=\operatorname{GNSS}(F)$, and so is convex.
(ii) If in addition F is strictly stable at some $x \in N E(F)$ (that is, if $(y-x)^{\prime}(F(y)-F(x))<0$ for all $y \neq x$), then $N E(F)=G E S S(F)=\{x\}$.

Proof. Suppose that F is stable, and let $x \in N E(F)$. To establish part (i), it is enough to show that $x \in \operatorname{GNSS}(F)$. So fix an arbitrary $y \neq x$. Since F is stable,

$$
\begin{equation*}
(y-x)^{\prime}(F(y)-F(x)) \leq 0 . \tag{3.20}
\end{equation*}
$$

And since $x \in N E(F),(y-x)^{\prime} F(x) \leq 0$. Adding these inequalities yields

$$
\begin{equation*}
(y-x)^{\prime} F(y) \leq 0 \tag{3.21}
\end{equation*}
$$

As y was arbitrary, x is a GNSS.
Turning to part (ii), suppose that F is strictly stable at x. Then inequality (3.20) holds strictly, so inequality (3.21) holds strictly as well. This means that x is a GESS of F, and hence the unique Nash equilibrium of F.

Figure 3.3.5: The GESS of good RPS.

Example 3.3.17. Rock-Paper-Scissors revisited. Recall from Example 3.3.5 that good RPS is a (strictly) stable game; standard RPS is a zero-sum game, and hence a (weakly) stable game. The unique Nash equilibrium of both of games is $x^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. In Figure 3.3.5, for a selection of states x, we draw the projected payoff vectors $\Phi F(x)$ generated by good RPS (with $w=3$ and $l=1$), as well as the vector from x to x^{*}. For each x, the angle between this pair of vectors is acute, reflecting the fact that the Nash equilibrium x^{*} is a GESS. In Figure 3.3.6, we perform the same exercise for standard RPS. In this case, the vectors $\Phi F(x)$ and $x^{*}-x$ always form a right angle, so x^{*} is a GNSS but not a GESS. \S

Exercise 3.3.18. Let F be a stable game. Show that if x^{*} is a Nash equilibrium of F such that $D F\left(x^{*}\right)$ is negative definite with respect to $T X \times T X$, then x^{*} is a GESS, and hence the unique Nash equilibrium of F.

Exercise 3.3.19. Pseudostable games. We call the population game F pseudostable if for all x, $y \in X,(y-x)^{\prime} F(x) \leq 0$ implies that $(x-y)^{\prime} F(y) \geq 0$. In other words, if y cannot strictly invade x, then x can weakly invade y.
(i) Show that every stable game is pseudostable.
(ii) Show that if F is pseudostable, then $N E(F)=G N S S(F)$, and so is convex.

Figure 3.3.6: The GNSS of standard RPS.
(A smooth real-valued function f is p seudoconcave if its gradient ∇f is pseudostable. Given facts (i) and (ii) above and the discussion in Section 3.1.5, it should be no surprise that many results from concave programming (e.g., the convexity of the set of maximizers) remain true when the objective function is only pseudoconcave.)

In addition to its role in establishing that the set of Nash equilibria of a stable game is convex, the concept of global neutral stability enables us to carry out an important theoretical exercise: that of devising an elementary proof of existence of Nash equilibrium in stable games-in other words, one that does not rely on an appeal to a fixed point theorem. The heart of the proof, Proposition 3.3.20, is a finite analogue of the result we seek.

Proposition 3.3.20. Let F be a stable game, and let Y be a finite subset of X. Then there exists a state $x^{*} \in \operatorname{conv}(Y)$ such that $\left(y-x^{*}\right)^{\prime} F(y) \leq 0$ for all $y \in Y$.

In words: if F is a stable game, then given any finite set of states Y, we can always find a state in the convex hull of Y that can weakly invade every element of Y. The proof of this result uses the Minmax Theorem.

Proof. Suppose that Y has m elements. Define a two player zero-sum game $U=$
$\left(U^{1}, U^{2}\right)=(Z,-Z)$ with $n^{1}=n^{2}=m$ as follows:

$$
Z_{x y}=(x-y)^{\prime} F(y) .
$$

In this game, player 2 chooses a "status quo" state $y \in Y$, player 1 chooses an "invader" $x \in Y$, and the payoff $Z_{x y}$ is the invader's "relative payoff" in F. Split Z into its symmetric and skew-symmetric parts:

$$
Z^{S}=\frac{1}{2}\left(Z+Z^{\prime}\right) \text { and } Z^{S S}=\frac{1}{2}\left(Z-Z^{\prime}\right)
$$

Since F is stable, equation (3.20) from the previous proof shows that

$$
Z_{x y}^{S}=\frac{1}{2}\left((x-y)^{\prime} F(y)+(y-x)^{\prime} F(x)\right)=\frac{1}{2}(x-y)^{\prime}(F(y)-F(x)) \geq 0
$$

for all $x, y \in Y$.
The Minmax Theorem tells us that in any zero sum game, player 1 has a strategy that guarantees him the value of the game. In the skew-symmetric game $U^{S S}=\left(Z^{S S},-Z^{S S}\right)=$ $\left(Z^{S S},\left(Z^{S S}\right)^{\prime}\right)$, the player roles are interchangeable, so the game's value must be zero. Since $Z=Z^{S S}+Z^{S}$ and $Z^{S} \geq 0$, the value of $U=(Z,-Z)$ must be at least zero. In other words, if $\lambda \in \mathbf{R}^{m}$ is a maxmin strategy for player 1 , then

$$
\sum_{x \in Y} \sum_{y \in Y} \lambda_{x} Z_{x y} \mu_{y} \geq 0
$$

for all mixed strategies μ of player 2 . If we let

$$
x^{*}=\sum_{x \in Y} \lambda_{x} x \in \operatorname{conv}(Y)
$$

and fix an arbitrary pure strategy $y \in Y$ for player 2 , we find that

$$
0 \leq \sum_{x \in Y} \lambda_{x} Z_{x y}=\sum_{x \in Y} \lambda_{x}(x-y)^{\prime} F(y)=\left(x^{*}-y\right)^{\prime} F(y) .
$$

With this result in hand, existence of Nash equilibrium in stable games follows from a simple compactness argument. Theorem 3.3.16 and Observation 3.3.14 tell us that

$$
N E(F)=\operatorname{GNSS}(F)=\bigcap_{y \in X}\left\{x \in X:(y-x)^{\prime} F(y) \leq 0\right\} .
$$

Proposition 3.3.20 shows that if we take the intersection above over an arbitrary finite set
$Y \subset X$ instead of over X itself, then the intersection is nonempty. Since X is compact, the finite intersection property allows us to conclude that $G N S S(F)$ is nonempty itself.

Exercise 3.3.21. In Exercise 3.1.14, we defined population games with entry and exit. If $F: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}$ is C^{1} and defines such a game, what condition on the derivative matrices $D F(x)$ is the appropriate definition of stable games for this context? Argue that all of the results in this section continue to hold when entry and exit are permitted.

3.4 Supermodular Games

Of the classes of games we study in this chapter, supermodular games, a class that includes models of coordination, search, and Bertrand competition, are the most familiar to economists. By definition, supermodularity requires that higher choices by one's opponents make one's own higher strategies look relatively more desirable. This complementarity condition imposes a monotone structure on the agents' best response correspondences, which in turn imposes structure on the set of Nash equilibria.

3.4.1 Definition

Each strategy set $S^{p}=\left\{1, \ldots, n^{p}\right\}$ is naturally endowed with a linear order. To define supermodular games, we introduce a corresponding partial order on the set of population states X^{p} (and, implicitly, on the set of mixed strategies for population p). Define the matrix $\Sigma \in \mathbf{R}^{\left(n^{p}-1\right) \times n^{p}}$ by

$$
\Sigma=\left(\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1
\end{array}\right) .
$$

Then

$$
\left(\Sigma x^{p}\right)_{i}=\sum_{j=i+1}^{n^{p}} x_{j}^{p}
$$

equals the total mass on strategies greater than i at population state x^{p}. If we view x^{p} as a discrete density function on S^{p} with total mass m^{p}, then Σx^{p} defines the corresponding "decumulative distribution function" for x^{p}. In particular, $\Sigma y^{p} \geq \Sigma x^{p}$ if and only if y^{p} stochastically dominates x^{p}.

We extend this partial order to all of X using the matrix $\boldsymbol{\Sigma} \in \mathbf{R}^{(n-p) \times n}$, which we define as the block diagonal matrix $\Sigma=\operatorname{diag}(\Sigma, \ldots, \Sigma)$. Note that $\Sigma y \geq \Sigma x$ if and only if y^{p} stochastically dominates x^{p} for all $p \in \mathcal{P}$.

With these preliminaries in hand, we are ready to define our class of games.
Definition. We call the population game $F: X \rightarrow \mathbf{R}^{n}$ a supermodular game if it exhibits strategic complementarities:

$$
\begin{equation*}
\text { If } \Sigma y \geq \Sigma x, \text { then } F_{i+1}^{p}(y)-F_{i}^{p}(y) \geq F_{i+1}^{p}(x)-F_{i}^{p}(x) \text { for all } i<n^{p}, p \in P, x \in X \tag{3.22}
\end{equation*}
$$

In words: if y stochastically dominates x, then for any strategy $i<n^{p}$, the payoff advantage of $i+1$ over i is greater at y than at x.

By introducing a bit more notation, we can express condition (3.22) in a more concise way. Define the matrices $\tilde{\Sigma} \in \mathbf{R}^{n^{p} \times\left(n^{p}-1\right)}$ and $\tilde{\Sigma} \in \mathbf{R}^{n \times(n-p)}$ by

$$
\tilde{\Sigma}=\left(\begin{array}{cccc}
-1 & 0 & \cdots & 0 \\
1 & -1 & \ddots & \vdots \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & \ddots & -1 \\
0 & \ddots & 0 & 1
\end{array}\right) \text { and } \tilde{\Sigma}=\operatorname{diag}(\tilde{\Sigma}, \ldots, \tilde{\Sigma})
$$

Observation 3.4.1. F is a supermodular game if and only if the following condition holds:

$$
\begin{equation*}
\boldsymbol{\Sigma} y \geq \boldsymbol{\Sigma} x \text { implies that } \tilde{\boldsymbol{\Sigma}}^{\prime} F(y) \geq \tilde{\boldsymbol{\Sigma}}^{\prime} F(x) \tag{3.23}
\end{equation*}
$$

As with potential games and stable games, we can characterize smooth supermodular games in terms of conditions on the derivatives $D F(x)$.

Theorem 3.4.2. Suppose the population game F is C^{1}. Then F is supermodular if and only if either of the following equivalent conditions holds.

$$
\begin{align*}
& \frac{\partial\left(F_{i+1}^{p}-F_{i}^{p}\right)}{\partial\left(e_{j+1}^{q}-e_{j}^{q}\right)}(x) \geq 0 \text { for all } i<n^{p}, j<n^{q}, p, q \in \mathcal{P}, \text { and } x \in X . \tag{3.24}\\
& \tilde{\mathbf{\Sigma}}^{\prime} D F(x) \tilde{\mathbf{\Sigma}} \geq \mathbf{0} \text { for all } x \in X . \tag{3.25}
\end{align*}
$$

Condition (3.24) is the most transparent of the four conditions. It requires that if some players in population q switch from strategy j to strategy $j+1$, the performance of strategy $i+1 \in S^{p}$ improves relative to that of strategy i. On the other hand, condition
(3.25) provides the most concise characterization of supermodular games. Moreover, since the range of $\tilde{\boldsymbol{\Sigma}}$ is $T X$ (i.e., since each column of $\tilde{\boldsymbol{\Sigma}}$ lies in $T X$), condition (3.25) is a restriction of the action of $D F(x)$ on $T X \times T X$-just like our earlier conditions (3.11) and (3.16) characterizing potential games and stable games.

Proof. The equivalence of conditions (3.24) and (3.25) is easily verified. Given Observation 3.4.1, it is enough to show that (3.22) implies (3.24) and that (3.25) implies (3.23).

So suppose condition (3.22) holds, and fix $x \in X$; since F is C^{1} it is enough to consider x in the interior of X. Let $y_{\varepsilon}=x+\varepsilon\left(e_{j+1}^{q}-e_{j}^{q}\right)$, which lies in X whenever $|\varepsilon|$ is sufficiently small, and which satisfies $\Sigma y_{\varepsilon} \geq \Sigma x$. By the definition of $D F(x)$, we have that

$$
F_{i+1}^{p}\left(y_{\varepsilon}\right)-F_{i}^{p}\left(y_{\varepsilon}\right)=F_{i+1}^{p}(x)-F_{i}^{p}(x)+\varepsilon \frac{\partial\left(F_{i+1}^{p}-F_{i}^{p}\right)}{\partial\left(e_{j+1}^{q}-e_{j}^{q}\right)}(x)+o\left(\left|y_{\varepsilon}-x\right|\right) .
$$

Thus, condition (3.22) implies that

$$
\varepsilon \frac{\partial\left(F_{i+1}^{p}-F_{i}^{p}\right)}{\partial\left(e_{j+1}^{q}-e_{j}^{q}\right)}(x)+o(|\varepsilon|) \geq 0,
$$

which implies (3.24).
We now show that (3.25) implies (3.23). We consider only the single population case, leaving the general case as an exercise. The idea behind the proof is simple. If state y stochastically dominates state x, then we can transit from state x to state y by shifting mass from strategy 1 to strategy 2 , from strategy 2 to strategy $3, \ldots$, and finally from strategy $n-1$ to strategy n. Condition $(3.24) \equiv(3.25)$ says that each such shift improves the payoff of each strategy $k+1$ relative to that of strategy k. Since transiting from x to y means executing all of the shifts, this transition too must improve the performance of $k+1$ relative to k, which is exactly what condition (3.22) $\equiv(3.23)$ requires.

Our matrix notation makes it possible to formalize this argument in a streamlined way. Recall the definitions of $\tilde{\Sigma} \in \mathbf{R}^{n \times(n-1)}$ and $\Sigma \in \mathbf{R}^{(n-1) \times n}$, and define $\Omega \in \mathbf{R}^{n \times n}$ as follows:

$$
\tilde{\Sigma}=\left(\begin{array}{cccc}
-1 & 0 & \cdots & 0 \\
1 & -1 & \ddots & \vdots \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & \ddots & -1 \\
0 & \ddots & 0 & 1
\end{array}\right), \Sigma=\left(\begin{array}{ccccc}
0 & 1 & \cdots & \cdots & 1 \\
0 & 0 & 1 & & \vdots \\
\vdots & & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right) \text {, and } \Omega=\left(\begin{array}{ccccc}
1 & 1 & \cdots & \cdots & 1 \\
0 & 0 & \cdots & \cdots & 0 \\
0 & 0 & \ddots & & \vdots \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & 0
\end{array}\right)
$$

Then it is easy to verify this next observation.

Observation 3.4.3. $\tilde{\Sigma} \Sigma=I-\Omega \in \mathbf{R}^{n \times n}$.
In words, Observation 3.4 .3 says that the stochastic dominance operator Σ is "inverted" by the difference operator $\tilde{\Sigma}$, except for a remainder Ω that is a null operator on $T X$ (i.e., that satisfies $\Omega z=0$ for all $z \in T X$). (For completeness, we also note that $\Sigma \tilde{\Sigma}=I \in \mathbf{R}^{(n-1) \times(n-1)}$.)

Now suppose that $\Sigma x \leq \Sigma y$, and let $\alpha(t)=t y+(1-t) x$, so that $\alpha(0)=x, \alpha(1)=y$, and $\alpha^{\prime}(t)=y-x \in T X$. Then using the Fundamental Theorem of Calculus, Observation 3.4.3, condition (3.25), and the fact that $\Sigma(y-x) \geq 0$, we find that

$$
\begin{aligned}
\tilde{\Sigma}^{\prime}(F(y)-F(x)) & =\tilde{\Sigma}^{\prime} \int_{0}^{1} D F(\alpha(t))(y-x) \mathrm{d} t \\
& =\int_{0}^{1} \tilde{\Sigma}^{\prime} D F(\alpha(t))(\tilde{\Sigma} \Sigma+\Omega)(y-x) \mathrm{d} t \\
& =\int_{0}^{1}\left(\tilde{\Sigma}^{\prime} D F(\alpha(t)) \tilde{\Sigma}\right) \Sigma(y-x) \mathrm{d} t \\
& \geq 0
\end{aligned}
$$

3.4.2 Examples

Exercise 3.4.4. Random matching in supermodular normal form games. The normal form game $U=\left(U^{1}, \ldots, U^{p}\right)$ is supermodular if the difference $U^{p}\left(s^{p}+1, s^{q}, s^{-\{p, q\}}\right)-U^{p}\left(s^{p}, s^{q}, s^{-\{p, q\}}\right)$ is nondecreasing in s^{q} for all $s^{p}<n^{p}, s^{-\{p, q\}} \in \prod_{r \notin\{p, q\}} S^{r}$ and distinct $p, q \in \mathcal{P}$. Show that random matching of p populations to play U generates a supermodular game.

Exercise 3.4.5. Which symmetric normal form games generate supermodular population games?

Example 3.4.6. Bertrand oligopoly with differentiated products. A population of firms produce output at zero marginal cost and compete in prices $S=\{1, \ldots, n\}$. Suppose that the demand faced by a firm increases when competitors raise their prices, and that this effect does not diminish when the firm itself charges higher prices. More precisely, let $q_{i}(x)$, the demand faced by a firm that charges price i when the price distribution is x, satisfy

$$
\frac{\partial q_{i}}{\partial\left(e_{j+1}-e_{j}\right)}(x) \geq 0 \text { and } \frac{\partial\left(q_{k+1}-q_{k}\right)}{\partial\left(e_{j+1}-e_{j}\right)}(x) \geq 0 \quad \text { for all } i \leq n \text { and all } j, k<n
$$

The payoff to a firm that charges price i is $F_{i}(x)=i q_{i}(x)$, and so

$$
\frac{\partial\left(F_{i+1}-F_{i}\right)}{\partial\left(e_{j+1}-e_{j}\right)}(x)=(i+1) \frac{\partial q_{i+1}}{\partial\left(e_{j+1}-e_{j}\right)}(x)-i \frac{\partial q_{i}}{\partial\left(e_{j+1}-e_{j}\right)}(x)
$$

$$
=i \frac{\partial\left(q_{i+1}-q_{i}\right)}{\partial\left(e_{j+1}-e_{j}\right)}(x)+\frac{\partial q_{i+1}}{\partial\left(e_{j+1}-e_{j}\right)}(x) \geq 0 .
$$

Therefore, F is a supermodular game. §
Example 3.4.7. Search with positive externalities. A population of agents choose levels of search effort in $S=\{1, \ldots, n\}$. The payoff to choosing effort i is

$$
F_{i}(x)=m(i) b(a(x))-c(i),
$$

where $a(x)=\sum_{k \leq n} k x_{k}$ is the aggregate search effort, b is some increasing benefit function, m is an increasing multiplier function, and c is an arbitrary cost function. Notice that the benefits from searching are increasing in both own search effort and in the aggregate search effort. Since

$$
\begin{aligned}
\frac{\partial\left(F_{i+1}-F_{i}\right)}{\partial\left(e_{j+1}-e_{j}\right)}(x) & =m(i+1) b^{\prime}(a(x))((j+1)-j)-m(i) b^{\prime}(a(x))((j+1)-j) \\
& =(m(i+1)-m(i)) b^{\prime}(a(x)) \geq 0
\end{aligned}
$$

F is a supermodular game. \S
Example 3.4.8. Relative consumption effects/Arms races. Agents from a single population choose consumption levels (or armament levels) in $S=\{1, \ldots, n\}$. Payoffs take the form

$$
F_{i}(x)=r(i-a(x))+u(i)-c(i)
$$

Here, r is a concave function of the difference between the agent's consumption level and the average consumption level in the population, while u and c are arbitrary functions of the consumption level. (One would typically assume that r is increasing, but this property is not needed for supermodularity.) Since

$$
\begin{aligned}
\frac{\partial\left(F_{i+1}-F_{i}\right)}{\partial\left(e_{j+1}-e_{j}\right)}(x) & =r^{\prime}((i+1)-a(x))(-(j+1)+j)-r^{\prime}(i-a(x))(-(j+1)+j) \\
& =r^{\prime}(i-a(x))-r^{\prime}((i+1)-a(x)) \geq 0,
\end{aligned}
$$

F is a supermodular game. §
Exercise 3.4.9. Characterize the C^{1} two-strategy supermodular games using a derivative condition. Compare them with the C^{1} two-strategy stable games (Exercise 3.3.2(i)). Are all C^{1} two-strategy games in one class or the other?

3.4.3 Best Response Monotonicity in Supermodular Games

Recall the definition of the pure best response correspondence for population p :

$$
b^{p}(x)=\underset{i \in S^{p}}{\operatorname{argmax}} F_{i}^{p}(x)
$$

Theorem 3.4.10 establishes a fundamental property of supermodular games: their pure best response correspondences are increasing.

Theorem 3.4.10. Let F be a supermodular game with pure best response correspondences b^{p}. If $\Sigma x \leq \Sigma y$, then $\min b^{p}(x) \leq \min b^{p}(y)$ and $\max b^{p}(x) \leq \max b^{p}(y)$ for all $p \in \mathcal{P}$.

This property is intuitively obvious: when opponents choose higher strategies, an agent's own higher strategies look relatively better, so his best strategies must be (weakly) higher as well.

Proof. We consider the case in which $p=1$, focusing on the first inequality; we leave the remaining cases as exercises.

Let $\Sigma x \leq \Sigma y$ and $i<j$. Then condition (3.22) implies that

$$
\left(F_{j}(y)-F_{i}(y)\right)-\left(F_{j}(x)-F_{i}(x)\right)=\sum_{k=i}^{j-1}\left(\left(F_{k+1}(y)-F_{k}(y)\right)-\left(F_{k+1}(x)-F_{k}(x)\right)\right) \geq 0
$$

Thus, if $j=\min b(x)>i$, then $F_{j}(y)-F_{i}(y) \geq F_{j}(x)-F_{i}(x)>0$, so i is not a best response to y. As $i<\min b(x)$ was arbitrary, we conclude that $\min b(x) \leq \min b(y)$.

To state a version of Theorem 3.4.10 for mixed best responses, we need some additional notation. Let $v_{i}^{p} \in \mathbf{R}^{n^{p}}$ denote the i th vertex of the simplex Δ^{p} : that is, $\left(v_{i}^{p}\right)_{j}$ equals 1 if $j=i$ and equals 0 otherwise. (To summarize our notation to date: $x_{i}^{p} \in \mathbf{R}, v_{i}^{p} \in \mathbf{R}^{n^{p}}$, and $e_{i}^{p} \in \mathbf{R}^{n}$. Of course, the notation v_{i}^{p} is unnecessary in the single population case.) We can describe population p^{\prime} s mixed best response correspondence in the following equivalent ways:

$$
\begin{aligned}
B^{p}(x) & =\left\{x^{p} \in \Delta^{p}: x_{i}^{p}>0 \Rightarrow i \in b^{p}(x)\right\} \\
& =\operatorname{conv}\left(\left\{v_{i}^{p}: i \in b^{p}(x)\right\}\right),
\end{aligned}
$$

We can also define the minimal and maximal elements of $B^{p}(x)$ as follows:

$$
\underline{B}^{p}(x)=v_{\min b^{p}(x)}^{p} \quad \text { and } \quad \bar{B}^{p}(x)=v_{\max b^{p}(x)}^{p} .
$$

To extend this notation to the multipopulation environment, define

$$
\underline{B}(x)=\left(\underline{B}^{1}(x), \ldots, \underline{B}^{p}(x)\right) \text { and } \bar{B}(x)=\left(\bar{B}^{1}(x), \ldots, \bar{B}^{p}(x)\right) .
$$

Then the following corollary follows immediately from Theorem 3.4.10.
Corollary 3.4.11. If F is supermodular and $\Sigma x \leq \Sigma y$, then $\Sigma \underline{B}(x) \leq \Sigma \underline{B}(y)$ and $\Sigma \bar{B}(x) \leq \Sigma \bar{B}(y)$.

3.4.4 Nash Equilibria of Supermodular Games

We now use the monotonicity of the best response correspondence to show that every supermodular game has a minimal and a maximal Nash equilibrium. The derivation of this result includes a finite iterative method for computing the minimal and maximal equilibria, and so provides a simple proof of the existence of equilibrium. We focus attention on the case where each population has mass one, so that each set of population states X^{p} is just the simplex in $\mathbf{R}^{{ }^{p}}$; the extension to the general case is a simple but notationally cumbersome exercise.

Let \underline{x} and \bar{x} be the minimal and maximal states in $X: \underline{x}^{p}=v_{1}^{p}$ and $\bar{x}^{p}=v_{n^{p}}^{p}$ for all $p \in \mathcal{P}$. Recall that X_{v} denotes the set of vertices of X, and let $n^{*}=\# X_{v}=\prod_{p \in \mathcal{P}} n^{p}$. Finally, for states $y, z \in X$, define the interval $[y, z] \subseteq X$ by $[y, z]=\{x \in X: \Sigma y \leq \Sigma x \leq \Sigma z\}$.

Theorem 3.4.12. Suppose F is a supermodular game. Then
(i) The sequences $\left\{\underline{B}^{k}(\underline{x})\right\}_{k \geq 0}$ and $\left\{\bar{B}^{k}(\bar{x})\right\}_{k \geq 0}$ are monotone sequences in X_{v}, and so converge within n^{*} steps to their limits, \underline{x}^{*} and \bar{x}^{*}.
(ii) $\underline{x}^{*}=\underline{B}\left(\underline{x}^{*}\right)$ and $\bar{x}^{*}=\bar{B}\left(\bar{x}^{*}\right)$, so \underline{x}^{*} and \bar{x}^{*} are pure Nash equilibria of F.
(iii) $N E(F) \subseteq\left[\underline{x}^{*}, \bar{x}^{*}\right]$. Thus, if $\underline{x}^{*}=\bar{x}^{*}$, then this state is the Nash equilibrium of F.

In short, iterating \underline{B} and \bar{B} from the minimal and maximal states in X yields Nash equilibria of F, and all other Nash equilibria of F lie between the two so obtained.

Proof. Part (i) follows immediately from Corollary 3.4.11. To prove part (ii), note that since $\underline{x}^{*}=\underline{B}^{n^{*}}(\underline{x})$ and $\underline{B}^{n^{*}+1}(\underline{x})=\underline{B}^{n^{*}}(\underline{x})$ by part (i), it follows that

$$
\underline{B}\left(\underline{x}^{*}\right)=\underline{B}\left(\underline{n}^{n^{*}}(\underline{x})\right)=\underline{B}^{n^{*}+1}(\underline{x})=\underline{B}^{n^{*}}(\underline{x})=\underline{x}^{*} .
$$

An analogous argument shows that $\bar{B}\left(\bar{x}^{*}\right)=\bar{x}^{*}$.
We finish with the proof of part (iii). If $Y \subseteq X$ and $\min Y$ and $\max Y$ exist, then the monotonicity of B implies that $B(Y) \subseteq[\underline{B}(\min Y), \bar{B}(\max Y)]$. Iteratively applying B to the set X therefore yields $B^{n^{*}}(X) \subseteq\left[\underline{B}^{n^{*}}(\underline{x}), \bar{B}^{n^{*}}(\bar{x})\right]=\left[\underline{x}^{*}, \bar{x}^{*}\right]$. Also, if $x \in N E(F)$, then $x \in B(x)$,
and so $B^{k-1}(x) \subseteq B^{k-1}(B(x))=B^{k}(x)$, implying that $x \in B^{k}(x)$ for all $k \geq 1$. We therefore conclude that $x \in B^{n^{*}}(x) \subseteq B^{n^{*}}(X) \subseteq\left[\underline{x}^{*}, \bar{x}^{*}\right]$.

Appendix

3.A Multivariate Calculus

3.A. 1 Univariate Calculus

Before discussing multivariate calculus we review some ideas from univariate calculus. A function f from the real line to itself is differentiable at the point x if

$$
f^{\prime}(x)=\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}
$$

exists; this limit is called the derivative of f at x. Three useful facts about derivatives are

The Product Rule:
The Chain Rule:
The Fundamental Theorem of Calculus:

$$
\begin{aligned}
& (f g)^{\prime}(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x) ; \\
& (g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x) \\
& f(y)-f(x)=\int_{x}^{y} f^{\prime}(z) \mathrm{d} z
\end{aligned}
$$

The definition of $f^{\prime}(x)$ above is equivalent to the requirement that

$$
\begin{equation*}
f(y)=f(x)+f^{\prime}(x)(y-x)+o(y-x) \tag{3.26}
\end{equation*}
$$

where $o(z)$ represents a remainder function $r: \mathbf{R} \rightarrow \mathbf{R}$ satisfying

$$
\lim _{z \rightarrow 0} \frac{r(z)}{z}=0
$$

(In words: $r(z)$ approaches zero faster than z approaches zero.) In the approximation (3.26), $f^{\prime}(x)$ acts as a linear map from \mathbf{R} to itself; it sends the displacement of the input, $y-x$, to the displacement of the output, $f^{\prime}(x)(y-x)$.

3.A. 2 The Derivative as a Linear Map

Let $L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ denote the space of linear maps from \mathbf{R}^{n} to \mathbf{R}^{m} :

$$
L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)=\left\{\lambda: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m} \mid \lambda(a z+b \hat{z})=a \lambda(z)+b \lambda(\hat{z}) \text { for all } a, b \in \mathbf{R} \text { and } z, \hat{z} \in \mathbf{R}^{n}\right\}
$$

Each matrix $A \in \mathbf{R}^{m \times n}$ defines a linear map in $L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ via $\lambda(z)=A z$, and such a matrix can be found for every map λ in $L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ (see Appendix 3.B.1). It is common to identify a linear map with its matrix representation. But it is important to be aware of the distinction between these two objects: if we replace the domain \mathbf{R}^{n} with a proper subspace of \mathbf{R}^{n}, matrix representations of linear maps are no longer unique-see Appendix 3.B.

Let F be a function from \mathbf{R}^{n} to \mathbf{R}^{m}. (Actually, we can replace the domain \mathbf{R}^{n} with any open set in \mathbf{R}^{n}, or even with a closed set in \mathbf{R}^{n}, as discussed in Appendix 3.A.7.) We say that F is differentiable at x if there is a linear map $D F(x) \in L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ satisfying

$$
\begin{equation*}
F(y)=F(x)+D F(x)(y-x)+o(y-x) \tag{3.27}
\end{equation*}
$$

Here, $o(z)$ represents a remainder function $r: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ that satisfies

$$
\lim _{z \rightarrow 0} \frac{r(z)}{|z|}=\mathbf{0} .
$$

If the function $D F: \mathbf{R}^{n} \rightarrow L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ is continuous, we say that F is continuously differentiable or of class C^{1}.

When we view $D F(x)$ as a matrix in $\mathbf{R}^{m \times n}$, we call it the Jacobian matrix or derivative matrix of F at x. To express this matrix explicitly, define the partial derivatives of F at x by

$$
\frac{\partial F_{i}}{\partial x_{j}}(x)=\lim _{y_{j} \rightarrow x_{j}} \frac{F_{i}\left(y_{j}, x_{-j}\right)-F_{i}(x)}{y_{j}-x_{j}} .
$$

Then the derivative matrix $D F(x)$ can be expressed as

$$
D F(x)=\left(\begin{array}{ccc}
\frac{\partial F_{1}}{\partial x_{1}}(x) & \cdots & \frac{\partial F_{1}}{\partial x_{n}}(x) \\
\vdots & \vdots & \vdots \\
\frac{\partial F_{m}}{\partial x_{1}}(x) & \cdots & \frac{\partial F_{m}}{\partial x_{n}}(x)
\end{array}\right) .
$$

If f is a function from \mathbf{R}^{n} to \mathbf{R} (i.e., if $m=1$), then its derivative at x can be represented by a vector. We call this vector the gradient of f at x, and define it by

$$
\nabla f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right) .
$$

Our notations for derivatives are related by $D f(x)=\nabla f(x)^{\prime}$, where the prime represents
transposition, and also by

$$
D F(x)=\left(\begin{array}{c}
\nabla F_{1}(x)^{\prime} \\
\vdots \\
\nabla F_{m}(x)^{\prime}
\end{array}\right)
$$

Suppose we are interested in how quickly the value of f changes as we move from the point $x \in \mathbf{R}^{n}$ in the direction $z \in \mathbf{R}^{n}-\{\mathbf{0}\}$. This rate is described by the directional derivative of f at x in direction z, defined by

$$
\begin{equation*}
\frac{\partial f}{\partial z}(x)=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon z)-f(x)}{\varepsilon} \tag{3.28}
\end{equation*}
$$

It is easy to verify that

$$
\frac{\partial f}{\partial z}(x)=\nabla f(x)^{\prime} z
$$

More generally, the rate of change of the vector-valued function F at x in direction z can be expressed as $D F(x) z$.

It is worth noting that a function can admit directional derivatives at x in every direction $z \neq 0$ without being differentiable at x (i.e., without satisfying definition (3.27)). Amazingly, such a function need not even be continuous at x, as the following example shows.

Example 3.A.1. Define the function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{x_{1}\left(x_{2}\right)^{2}}{\left(x_{1}\right)^{2}+\left(x_{2}\right)^{4}} & \text { if } x_{1} \neq 0 \\ 0 & \text { if } x_{1}=0\end{cases}
$$

Using definition (3.28), it is easy to verify that the directional derivatives of f at the origin in every direction $z \neq 0$ exist:

$$
\frac{\partial f}{\partial z}(\mathbf{0})= \begin{cases}\frac{\left(z_{2}\right)^{2}}{z_{1}} & \text { if } z_{1} \neq 0 \\ 0 & \text { if } z_{1}=0\end{cases}
$$

But while $f(0)=0, f(x)=\frac{1}{2}$ at all other x that satisfy $x_{1}=\left(x_{2}\right)^{2}$, and so f is discontinuous at 0 .

On the other hand, if all (or even all but one) of the partial derivatives f exist and are continuous in a neighborhood of x, then f is differentiable at x.

3.A. 3 Differentiation as a Linear Operation

We can view differentiation as an operation that takes functions as inputs and returns functions as outputs. From this point of view, differentiation is a linear operation between spaces of functions. As an example, suppose that f and g are functions from \mathbf{R} to itself, and that a and b are real numbers. Then the scalar product $a f$ is a function from \mathbf{R} to itself, as is the linear combination $a f+b g$. (In other words, the set of functions from \mathbf{R} to itself is a vector space.) The fact that differentiation is linear means that the derivative of the linear combination, $(a f+b g)^{\prime}$, is equal to the linear combination of the derivatives, $a f^{\prime}+b g^{\prime}$.

We can express this idea in a multivariate setting using a simple formula. Suppose that $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a differentiable function and that A is a matrix in $\mathbf{R}^{l \times m}$. Then $A F$ is the function from \mathbf{R}^{n} to \mathbf{R}^{l} defined by $(A F)_{k}(x)=\sum_{j=1}^{m} A_{k j} F_{j}(x)$ for $k \in\{1, \ldots, l\}$. Linearity of differentiation says that $D(A F)=A(D F)$, or, more explicitly, that

Linearity of differentiation: $\quad D(A F)(x)=A(D F)(x)$ for all $x \in \mathbf{R}^{n}$.
Put differently, the differential operator D and the linear map A commute.

3.A. 4 The Product Rule and the Chain Rule

Suppose f and g are differentiable functions from \mathbf{R} to itself. Then the product rule tells us that $(f g)^{\prime}(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$. In other words, to find the effect of changing x on the value $(f g)(x)$ of the product function, first find the effect of changing x on $g(x)$, and scale this effect by $f(x)$; then, find the effect of changing x on $f(x)$, and scale this effect by $g(x)$; and finally, add the two terms.

This same idea can be applied in multidimensional cases as well. Let $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $G: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be differentiable vector-valued functions. Then $F^{\prime} G: \mathbf{R}^{n} \rightarrow \mathbf{R}$, defined by $\left(F^{\prime} G\right)(x)=F(x)^{\prime} G(x)$, is a scalar-valued function. The derivative $D\left(F^{\prime} G\right)(x) \in \mathbf{R}^{1 \times n}$ of our new function is described by the following product rule:

Product Rule 1: $\quad D\left(F^{\prime} G\right)(x)=\left(\nabla\left(F^{\prime} G\right)(x)\right)^{\prime}=F(x)^{\prime} D G(x)+G(x)^{\prime} D F(x)$.
(Notice that in the previous paragraph, a prime (') denoted the derivative of a scalarvalued function, while here it denotes matrix transposition. So long as we keep these scalar and matrix usages separate, no confusion should arise.)

If $a: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is a differentiable scalar-valued function, then $a F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, defined by $(a F)(x)=a(x) F(x)$, is a vector-valued function. Its derivative $D(a F)(x) \in \mathbf{R}^{m \times n}$ is described our next product rule:

Product Rule 2: $\quad D(a F)(x)=a(x) D F(x)+F(x) \nabla a(x)^{\prime}=a(x) D F(x)+F(x) D a(x)$.
Finally, we can create a vector-valued function from $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $G: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ by introducing the componentwise product $F \bullet G: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. This function is defined by $(F \bullet G)_{i}(x)=F_{i}(x) G_{i}(x)$, or, in matrix notation, by $(F \bullet G)(x)=\operatorname{diag}(F(x)) G(x)=\operatorname{diag}(G(x)) F(x)$, where $\operatorname{diag}(v)$ denotes the diagonal matrix whose diagonal entries are the components of the vector v. The derivative of the componentwise product, $D(F \bullet G)(x) \in \mathbf{R}^{m \times n}$, is described by our last product rule:

Product Rule 3: $\quad D(F \bullet G)(x)=\operatorname{diag}(F(x)) D G(x)+\operatorname{diag}(G(x)) D F(x)$.
One can verify each of the formulas above by expanding them and then applying the univariate product rule term by term. To remember the product rules, bear in mind that the end result must be a sum of two terms of the same dimensions, and that each of the terms must end with a derivative, so as to operate on a displacement vector $z \in \mathbf{R}^{n}$ to be placed on the right hand side.

In the one dimensional setting, the chain rule tells us that $(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$. In words, the formula says that we can decompose the effect of changing x on $(g \circ f)(x)$ into two pieces: the effect of changing x on the value of $f(x)$, and the effect of this change in $f(x)$ on the value of $g(f(x))$.

This same idea carries through to multivariate functions. Let $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ and $G: \mathbf{R}^{m} \rightarrow \mathbf{R}^{l}$ be differentiable, and let $G \circ F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{l}$ be their composition. The chain rule says that the derivative of this composition at $x \in \mathbf{R}^{n}, D(G \circ F)(x) \in \mathbf{R}^{l \times n}$, is obtained as the product of the derivative matrices $D G(F(x)) \in \mathbf{R}^{l \times m}$ and $D F(x) \in \mathbf{R}^{m \times n}$.

The Chain Rule: $\quad D(G \circ F)(x)=D G(F(x)) D F(x)$.
This equation can be stated more explicitly as

$$
\frac{\partial(G \circ F)_{k}}{\partial x_{i}}(x)=\sum_{j=1}^{m} \frac{\partial G_{k}}{\partial y_{j}}(F(x)) \frac{\partial F_{j}}{\partial x_{i}}(x)
$$

The chain rule can be viewed as a generalization of the earlier formula on linearity of differentiation, with the linear map A replaced by the nonlinear function G.

3.A. 5 Homogeneity and Euler's Theorem

Let f be a differentiable function from \mathbf{R}^{n} to \mathbf{R}. (We can replace the domain \mathbf{R}^{n} with an open (or even a closed) convex cone: a convex set which, if it contains $x \in \mathbf{R}^{n}$, also contains $t x$ for all $t>0$.) We say that f is homogeneous of degree k if

$$
\begin{equation*}
f(t x)=t^{k} f(x) \tag{3.29}
\end{equation*}
$$

for all $x \in \mathbf{R}^{n}$ and $t>0$.
By definition, homogeneous functions are monomials along each ray from the origin. Indeed, when $n=1$ the homogeneous functions are precisely the monomials: if $x \in$ $\mathbf{R}, g(t x)=t^{k} g(x)$, and $g(1)=a$, then $g(x)=a x^{k}$. But when $n>1$ more complicated homogeneous functions can be found.

Nevertheless, the basic properties of homogeneous functions are generalizations of properties of monomials. If we take the derivative of each side of equation (3.29) with respect to x_{i}, applying the chain rule on the left hand side, we obtain

$$
\nabla f(t x)^{\prime}\left(t e_{i}\right)=t^{k} \frac{\partial f}{\partial x_{i}}(x)
$$

Dividing both sides of this equation by t and simplifying yields

$$
\frac{\partial f}{\partial x_{i}}(t x)=t^{k-1} \frac{\partial f}{\partial x_{i}}(x)
$$

In other words, the partial derivatives of a homogeneous function of degree k are themselves homogeneous of degree $k-1$.

If we instead take the derivative of each side of (3.29) with respect to t, again using the chain rule on the left hand side, we obtain

$$
\nabla f(t x)^{\prime} x= \begin{cases}0 & \text { if } k=0 \\ k t^{k-1} f(x) & \text { otherwise }\end{cases}
$$

Setting $t=1$ yields Euler's Theorem: if f is homogeneous of degree k, then

$$
\nabla f(x)^{\prime} x=k f(x) \text { for all } x \in \mathbf{R}^{n}
$$

In fact, the converse of Euler's Theorem is also true: one can show that if f satisfies the previous identity, it is homogeneous of degree k.

3.A. 6 Higher Order Derivatives

As we have seen, the derivative of a function $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a new function

$$
\begin{equation*}
D F: \mathbf{R}^{n} \rightarrow L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right) \tag{3.30}
\end{equation*}
$$

For each $x \in \mathbf{R}^{n}, D F(x)$ describes how the value of F in \mathbf{R}^{m} changes as we move away from x in any direction $z \in \mathbf{R}^{n}$. Notice that in expression (3.30), the point x around which we evaluate the function F inhabits the first \mathbf{R}^{n}, while the displacement vector z inhabits the second \mathbf{R}^{n}.

The second derivative of F at $x, D^{2} F(x)=D(D F(x))$, describes how the value of the first derivative $D F(x) \in L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ changes as we move away from x in direction $\hat{z} \in \mathbf{R}^{n}$. Thus, $D^{2} F(x)$ is an element of the set of maps $L\left(\mathbf{R}^{n}, L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)\right)$, which we denote by $L^{2}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$. Elements of $L^{2}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ are called bilinear maps from $\mathbf{R}^{n} \times \mathbf{R}^{n}$ to \mathbf{R}^{m} : they take two vectors in \mathbf{R}^{n} as inputs, are linear in each of these vectors, and return elements of \mathbf{R}^{m} as outputs.

If F is twice continuously differentiable (i.e., if $D F$ and $D^{2} F$ are both continuous in x), then it can be shown that $D^{2} F(x)$ is symmetric, in the sense that $D^{2} F(x)(z, \hat{z})=D^{2} F(x)(\hat{z}, z)$ for all $z, \hat{z} \in \mathbf{R}^{n}$. We therefore say that $D^{2} F(x)$ is an element of $L_{s}^{2}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$, the set of symmetric bilinear maps from $\mathbf{R}^{n} \times \mathbf{R}^{n}$ to \mathbf{R}^{m}.

More generally, the k th derivative of F is a map $D^{k} F: \mathbf{R}^{n} \rightarrow L_{s}^{k}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$. For each $x \in \mathbf{R}^{n}$, $D^{k} F(x)$ is a symmetric multilinear map; it takes k displacement vectors in \mathbf{R}^{n} as inputs, is linear in each, and returns an output in \mathbf{R}^{m}; this output does not depend on the order of the inputs. If F has continuous derivatives of orders zero through K, we say that it is in class C^{K}.

We can use higher order derivatives to write the Kth order version of Taylor's Formula, which provides a polynomial approximation of a C^{K} function F around the point x.
Taylor's Formula: $\quad F(y)=F(x)+\sum_{k=1}^{K} \frac{1}{k!} D^{k} F(x)(y-x, \ldots, y-x)+o\left(|y-x|^{K}\right)$.
Here, $D^{k} F(x)(y-x, \ldots, y-x) \in \mathbf{R}^{m}$ is the output generated when the multilinear map $D^{k} F(x) \in L_{s}^{k}\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ acts on k copies of the displacement vector $(y-x) \in \mathbf{R}^{n}$. (To see where the factorial terms come from, try expressing the coefficients of a Kth order polynomial in terms of the polynomial's derivatives.)

The higher order derivative that occurs most frequently in applications is the second derivative of a scalar valued function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$. This second derivative, $D^{2} f$, sends each $x \in \mathbf{R}^{n}$ to a symmetric bilinear map $D^{2} f(x) \in L_{s}^{2}\left(\mathbf{R}^{n}, \mathbf{R}\right)$. We can represent this map using a Hessian matrix $\nabla^{2} f(x) \in \mathbf{R}^{n \times n}$, the elements of which are the second order partial
derivatives of f :

$$
\nabla^{2} f(x)=\left(\begin{array}{ccc}
\frac{\partial^{2} f}{\left(\partial x_{1}\right)^{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(x) \\
\vdots & \vdots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(x) & \cdots & \frac{\partial^{2} f}{\left(\partial x_{n}\right)^{2}}(x)
\end{array}\right)
$$

When f is C^{2}, the symmetry of the map $D^{2} f(x)$ is reflected in the fact that the Hessian matrix is symmetric: corresponding pairs of mixed partial derivatives are equal.

The value $D^{2} f(x)(z, \hat{z})$ is expressed in terms of the Hessian matrix in this way:

$$
D^{2} f(x)(z, \hat{z})=z^{\prime} \nabla^{2} f(x) \hat{z}
$$

Using the gradient vector and Hessian matrix, we can express the second-order Taylor approximation of a C^{2} scalar-valued function as follows:

$$
f(y)=f(x)+\nabla f(x)^{\prime}(y-x)+\frac{1}{2}(y-x)^{\prime} \nabla^{2} f(x)(y-x)+o\left(|y-x|^{2}\right) .
$$

3.A. 7 The Whitney Extension Theorem

While we have defined our K times continuously differentiable functions to have domain \mathbf{R}^{n}, nothing we have discussed so far would change were our functions only defined on open subsets of \mathbf{R}^{n}. In fact, it is also possible to define C^{K} functions on closed sets $X \subset \mathbf{R}^{n}$. To do so, one requires $F: X \rightarrow \mathbf{R}^{m}$ to be C^{K} in the original sense on $\operatorname{int}(X)$, and to admit "local uniform Taylor expansions" at each x on $\operatorname{bd}(X)$. The Whitney Extension Theorem tells us that such functions F can always be extended to C^{K} functions defined on all of \mathbf{R}^{n}. In effect, the Whitney Extension Theorem provides a definition of (K times) continuously differentiability for functions defined on closed sets.

3.A. 8 Vector Integration and the Fundamental Theorem of Calculus

Let $\alpha: \mathbf{R} \rightarrow \mathbf{R}^{n}$ be a vector-valued function defined on the real line. Integrals of α are computed componentwise: in other words,

$$
\begin{equation*}
\left(\int_{a}^{b} \alpha(t) \mathrm{d} t\right)_{i}=\int_{a}^{b} \alpha_{i}(t) \mathrm{d} t \tag{3.31}
\end{equation*}
$$

It is easy to verify that integration, like differentiation, is linear: if $A \in \mathbf{R}^{m \times n}$ then

$$
\int_{a}^{b} A \alpha(t) \mathrm{d} t=A \int_{a}^{b} \alpha(t) \mathrm{d} t
$$

With definition (3.31) in hand, we can state a multivariate version of the Fundamental Theorem of Calculus. Suppose that $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is a C^{1} function. Let $\alpha:[0,1] \rightarrow \mathbf{R}^{n}$ be a C^{1} function satisfying $\alpha(0)=x$ and $\alpha(1)=y$, and call its derivative $\alpha^{\prime}: \mathbf{R} \rightarrow \mathbf{R}^{n}$. Then we have

The Fundamental Theorem of Calculus: $\quad F(y)-F(x)=\int_{0}^{1} D F(\alpha(t)) \alpha^{\prime}(t) \mathrm{d} t$.

3.A. 9 Potential Functions and Integrability

When can a continuous vector field $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be expressed as the gradient of some scalar valued function f ? In other words, when does $F=\nabla f$ for some potential function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$? One can characterize the vector fields that admit potential functions in terms of their integrals over closed curves: if $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is continuous, it admits a potential function if and only if

$$
\begin{equation*}
\int_{0}^{1} F(\alpha(t))^{\prime}\left(\frac{d}{d t} \alpha(t)\right) \mathrm{d} t=0 \tag{3.32}
\end{equation*}
$$

for every piecewise C^{1} function $\alpha:[0,1] \rightarrow \mathbf{R}^{n}$ with $\alpha(0)=\alpha(1)$. If we use C to denote the closed curve through \mathbf{R}^{n} traced by α, then (3.32) can be expressed more concisely as

$$
\oint_{C} F(x) \cdot \mathrm{d} x=0 .
$$

When F is not only continuous, but also C^{1}, the question of the integrability of F can be answered by examining cross-partial derivatives. Note first that if F admits a C^{2} potential function f, then the symmetry of the Hessian matrices of f implies that

$$
\begin{equation*}
\frac{\partial F_{i}}{\partial x_{j}}(x)=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(x)=\frac{\partial F_{j}}{\partial x_{i}}(x), \tag{3.33}
\end{equation*}
$$

and hence that the derivative matrix $D F(x)$ is symmetric for all $x \in \mathbf{R}^{n}$. The converse statement is also true, and provides the characterization of integrability we seek: if F is C^{1}, with $D F(x)$ symmetric for all $x \in \mathbf{R}^{n}$ (i.e., whenever the integrability condition (3.33) holds), there is a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ such that $\nabla f=F$. This sufficient condition for
integrability remains valid whenever the domain of F is an open (or closed) convex subset of \mathbf{R}^{n}. However, condition (3.33) does not ensure the existence of a potential function for vector fields defined on more general domains.

3.B Affine Calculus

The simplex in \mathbf{R}^{n}, which serves as our state space in single population games, is an $n-1$ dimensional set. As a consequence, derivatives of functions defined on the simplex can not be computed in the manner described in Appendix 3.A, as partial derivatives of such functions do not exist. To understand differential calculus in this context, and in the more general context of multipopulation games, we must develop the tools of calculus for functions defined on affine spaces.

3.B. 1 Linear Forms and the Riesz Representation Theorem

Let Z be a subspace of \mathbf{R}^{n}, and let $L(Z, \mathbf{R})$ be the set of linear maps from Z to $\mathbf{R} . L(Z, \mathbf{R})$ is also known as the dual space of Z, and elements of $L(Z, \mathbf{R})$, namely, maps $\lambda: Z \rightarrow \mathbf{R}$ that satisfy $\lambda(a z+b \hat{z})=a \lambda(z)+b \lambda(\hat{z})$, are also known as linear forms.

Each vector $y \in Z$ defines a linear form $\lambda \in L(Z, \mathbf{R})$ via $\lambda(z)=y^{\prime} z$. In fact, the converse statement is also true: every linear form can be uniquely represented in this way.

Theorem 3.B. 1 (The Riesz Representation Theorem). For each linear form $\lambda \in L(Z, \mathbf{R})$, there is a unique $y \in Z$, the Riesz representation of λ, such that $\lambda(z)=y^{\prime} z$ for all $z \in Z$.

Another way of describing the Riesz representation theorem is to say that Z and $L(Z, \mathbf{R})$ are linearly isomorphic: the map from Z to $L(Z, \mathbf{R})$ described above is linear, one-to-one, and onto.

It is crucial to note that when Z is a proper subspace of \mathbf{R}^{n}, the linear form λ can be represented by many vectors in \mathbf{R}^{n}. What Theorem 3.B. 1 tells us is that λ can be represented by a unique vector in Z itself.

Example 3.B.2. Let $Z=\mathbf{R}_{0}^{2}=\left\{z \in \mathbf{R}^{2}: z_{1}+z_{2}=0\right\}$, and define the linear form $\lambda \in L(Z, \mathbf{R})$ by $\lambda(z)=z_{1}-z_{2}$. Then not only

$$
y=\binom{1}{-1}, \text { but also } \hat{y}=\binom{3}{1}
$$

represents λ : if $z \in Z$, then $\hat{y}^{\prime} z=3 z_{1}+z_{2}=3 z_{1}+\left(-z_{1}\right)=2 z_{1}=z_{1}-z_{2}=y^{\prime} z=\lambda(z)$. But since y is an element of Z, it is the Riesz representation of λ. \S

In this example, the reason that both y and \hat{y} can represent λ is that their difference,

$$
\hat{y}-y=\binom{2}{2}
$$

is orthogonal to Z. This suggests a simple way of recovering the Riesz representation of a linear form from an arbitrary vector representation: eliminate the portion orthogonal to Z by applying the orthogonal projection P_{Z}.

Theorem 3.B.3. Let $\lambda \in L(Z, \mathbf{R})$ be a linear form. If $\hat{y} \in \mathbf{R}^{n}$ represents λ, in the sense that $\lambda(z)=\hat{y}^{\prime} z$ for all $z \in Z$, then $y=P_{Z} \hat{y}$ is the Riesz representation of λ.

Example 3.B.4. Recall that the orthogonal projection onto \mathbf{R}_{0}^{2} is $\Phi=I-\frac{1}{2} \mathbf{1 1}{ }^{\prime}$. Thus, in the previous example, we can recover y from \hat{y} in the following way:

$$
y=\Phi \hat{y}=\left(I-\frac{1}{2} \mathbf{1} \mathbf{1}^{\prime}\right)\binom{3}{1}=\binom{3}{1}-\binom{2}{2}=\binom{1}{-1} \cdot \S
$$

3.B. 2 Dual Characterizations of Multiples of Linear Forms

Before turning our attention to calculus, we present some results that characterize when two linear forms are scalar multiples of one another. We will use these results when studying imitative dynamics in Chapters 5 and 8; see especially Exercise 5.4.18 and Theorem 8.5.9.

If the vectors $v \in \mathbf{R}^{n}$ and $w \in \mathbf{R}^{n}$ are non-zero multiples of one another, then v and w clearly are orthogonal to the same set of vectors in \mathbf{R}^{n}. Conversely, if $\{v\}^{\perp}=\left\{y \in \mathbf{R}^{n}: v^{\prime} y=\right.$ $0\}$ equals $\{w\}^{\perp}$, then v and w must be (non-zero) multiples of one another, as they are both normal vectors of the same hyperplane.

When are v and w positive multiples of one another? This is the case if and only if the set $\mathcal{H}(v)=\left\{y \in \mathbf{R}^{n}: v^{\prime} y \geq 0\right\}$, the closed half-space consisting of those vectors with which v forms an acute or right angle, is equal to the corresponding set $\mathcal{H}(w)$. Clearly, $\mathcal{H}(v)=\mathcal{H}(w)$ implies that $\{v\}^{\perp}=\{w\}^{\perp}$, and so that $v=c w$; since $v \in \mathcal{H}(v)=\mathcal{H}(w)$, it must be that $c>0$.

In summary, we have

Observation 3.B.5.

(i) $\left\{x \in \mathbf{R}^{n}: v^{\prime} x=0\right\}=\left\{x \in \mathbf{R}^{n}: w^{\prime} x=0\right\}$ if and only if $v=c w$ for some $c \neq 0$.
(ii) $\left\{x \in \mathbf{R}^{n}: v^{\prime} x \geq 0\right\}=\left\{x \in \mathbf{R}^{n}: w^{\prime} x \geq 0\right\}$ if and only if $v=c w$ for some $c>0$.

Proposition 3.B. 6 provides analogues of the characterizations above for settings in which one can only compare how v and w act on vectors in some subspace $Z \subseteq \mathbf{R}^{n}$. Since these comparisons relate v and w as linear forms on Z, Theorem 3.B. 3 suggests that the characterizations should be expressed in terms of the orthogonal projections of v and w onto Z.

Proposition 3.B.6.

(i) $\left\{z \in Z: v^{\prime} z=0\right\}=\left\{z \in Z: w^{\prime} z=0\right\}$ if and only if $P_{Z} v=c P_{Z} w$ for some $c \neq 0$.
(ii) $\left\{z \in Z: v^{\prime} z \geq 0\right\}=\left\{z \in Z: w^{\prime} z \geq 0\right\}$ if and only if $P_{Z} v=c P_{Z} w$ for some $c>0$.

Proof. The "if" direction of part (i) is immediate. For the "only if" direction, observe that $v^{\prime} z=0$ for all $z \in Z$ if and only if $v^{\prime} P_{Z} x=0$ for all $x \in \mathbf{R}^{n}$. Since the matrix P_{Z} is symmetric, we can rewrite the equality above as $\left(P_{Z} v\right)^{\prime} x=0$; thus, the conclusion that $P_{Z} v=c P_{Z} w$ with $c \neq 0$ follows from Observation 3.B.5(i). The proof of part (ii) follows similarly from Observation 3.B.5(ii).

To cap this discussion, we note that both parts of Observation 3.B. 5 are the simplest cases of more general duality results that link a linear map $A \in L\left(\mathbf{R}^{m}, \mathbf{R}^{n}\right) \equiv \mathbf{R}^{n \times m}$ with its transpose $A^{\prime} \in L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right) \equiv \mathbf{R}^{m \times n}$. Part (i) is essentially the $m=1$ case of the Fundamental Theorem of Linear Algebra:

$$
\begin{equation*}
\operatorname{range}(A)=\left(\operatorname{nullspace}\left(A^{\prime}\right)\right)^{\perp} \tag{3.34}
\end{equation*}
$$

In equation (3.34), the set range $(A)=\left\{w \in \mathbf{R}^{n}: w=A x\right.$ for some $\left.x \in \mathbf{R}^{m}\right\}$ is the span of the columns of A. The set nullspace $\left(A^{\prime}\right)=\left\{y \in \mathbf{R}^{n}: A^{\prime} y=0\right\}$ consists of the vectors that A^{\prime} maps to the origin; equivalently, it is the set of vectors that are orthogonal to every column of A. Viewed in this light, equation (3.34) says that w is a linear combination of the columns of A if and only if any y that is orthogonal to each column of A is also orthogonal to w. While (3.34) is of basic importance, it is quite easy to derive after taking orthogonal complements:

$$
(\operatorname{range}(A))^{\perp}=\left\{y \in \mathbf{R}^{n}: y^{\prime} A x=0 \text { for all } x \in \mathbf{R}^{m}\right\}=\left\{y \in \mathbf{R}^{n}: y^{\prime} A=\mathbf{0}^{\prime}\right\}=\operatorname{nullspace}\left(A^{\prime}\right)
$$

Part (ii) of Observation 3.B. 5 is essentially the $m=1$ case of Farkas's Lemma:

$$
\begin{equation*}
\left[w=A x \text { for some } x \in \mathbf{R}_{+}^{m}\right] \text { if and only if }\left[\left[A^{\prime} y \geq \mathbf{0} \Rightarrow w^{\prime} y \geq 0\right] \text { for all } y \in \mathbf{R}^{n}\right] . \tag{3.35}
\end{equation*}
$$

In words: w is a nonnegative linear combination of the columns of A if and only if any y that forms a weakly acute angle with each column of A also forms a weakly acute angle with
w. Despite their analogous interpretations, statement (3.35) is considerably more difficult to prove than statement (3.34)—see the Notes.

3.B. 3 Derivatives of Functions on Affine Spaces

Before considering calculus on affine spaces, let us briefly review differentiation of scalar-valued functions on \mathbf{R}^{n}. If f is a C^{1} function from \mathbf{R}^{n} to \mathbf{R}, then its derivative at x, denoted $D f(x)$, is an element of $L\left(\mathbf{R}^{n}, \mathbf{R}\right)$, the set of linear maps from \mathbf{R}^{n} to \mathbf{R}. For each $x \in \mathbf{R}^{n}$, the map $D f(x)$ takes vectors $z \in \mathbf{R}^{n}$ as inputs and returns scalars $D f(x) z \in \mathbf{R}$ as outputs. The latter expression appears in the first order Taylor expansion

$$
f(x+z)=f(x)+D f(x) z+o(z) \text { for all } z \in \mathbf{R}^{n} .
$$

By the Riesz Representation Theorem, there is a unique vector $\nabla f(x) \in \mathbf{R}^{n}$ satisfying $D f(x) z=\nabla f(x)^{\prime} z$ for all $z \in \mathbf{R}^{n}$. We call $\nabla f(x)$ the gradient of f at x. In the present full-dimensional case, $\nabla f(x)$ is the vector of partial derivatives $\frac{\partial f}{\partial x_{i}}(x)$ of f at x.

Now, let $A \subseteq \mathbf{R}^{n}$ be an affine space with tangent space $T A$, and consider a function $f: A \rightarrow \mathbf{R}$. (As in Appendix 3.A, the ideas to follow can also be applied to functions whose domain is a set that is open (or closed) relative to A.) We say that f is differentiable at $x \in A$ if there is a linear map $D f(x) \in L(T A, \mathbf{R})$ satisfying

$$
f(x+z)=f(x)+D f(x) z+o(z) \text { for all } z \in T A
$$

The gradient of f at x is the Riesz representation of $D f(x)$. In other words, it is the unique vector $\nabla f(x) \in T A$ such that $D f(x) z=\nabla f(x)^{\prime} z$ for all $z \in T A$. If the function $\nabla f: A \rightarrow T A$ is continuous, then f is continuously differentiable, or of class C^{1}.

When $A=\mathbf{R}^{n}$, this definition of the gradient is simply the one presented earlier, and $\nabla f(x)$ is the only vector in \mathbf{R}^{n} that represents $D f(x)$. But in lower dimensional cases, there are many vectors in \mathbf{R}^{n} that can represent $D f(x)$. The gradient vector $\nabla f(x)$ is the only one lying in $T A$; all others are obtained by summing $\nabla f(x)$ and an element of $(T A)^{\perp}$.

When $A=\mathbf{R}^{n}$, the gradient of f at x is just the vector of partial derivatives of f at x. But in other cases, the partial derivatives of f may not even exist. How does one compute $\nabla f(x)$ then? Usually, it is easiest to extend the function f to all of \mathbf{R}^{n} in some smooth way, and then to compute the gradient by way of this extension. In some cases (e.g., when f is a polynomial), obtaining the extension is just a matter of declaring that the domain is \mathbf{R}^{n}. But even in this situation, there is an alternative extension that is often handy.

Proposition 3.B.7. Let $f: A \rightarrow \mathbf{R}$ be a C^{1} function on the affine set A, and let $Z=T A$.
(i) Let $\tilde{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be any C^{1} extension of f. Then $\nabla f(x)=P_{Z} \nabla \tilde{f}(x)$ for all $x \in A$.
(ii) Define $\bar{f}: \mathbf{R}^{n} \rightarrow \mathbf{R} b y$

$$
\bar{f}(y)=f\left(P_{z} y+z_{A}^{\perp}\right),
$$

where z_{A}^{\perp} is the unique element of $A \cap Z^{\perp}$. Then $\nabla f(x)=\nabla \bar{f}(x)$ for all $x \in A$.
In words, \bar{f} assigns the value $f(x)$ to each point in \mathbf{R}^{n} whose orthogonal projection onto $T A=\mathrm{Z}$ is the same as that of $x \in A$; the gradient of \bar{f} is identical to the gradient of f on the set A.

Proof. Part (i) follows immediately from the relevant definitions. To prove part (ii), suppose that $x \in A$. Then by the chain and product rules,

$$
D \bar{f}(x)=D\left(f\left(P_{Z} x+z_{A}^{\perp}\right)\right)=D f(x) P_{Z}
$$

This linear form on \mathbf{R}^{n} is represented by the (column) vector $\nabla \bar{f}(x)=\left(\nabla f(x)^{\prime} P_{Z}\right)^{\prime} \in \mathbf{R}^{n}$. But since the orthogonal projection matrix P_{Z} is symmetric, and since $\nabla f(x) \in Z$, we conclude that

$$
\nabla \bar{f}(x)=\left(\nabla f(x)^{\prime} P_{Z}\right)^{\prime}=P_{Z}^{\prime} \nabla f(x)=P_{Z} \nabla f(x)=\nabla f(x)
$$

The fact that P_{Z} is an orthogonal projection makes this proof simple: since P_{Z} is symmetric, we are able to transfer its action from the displacement direction $z \in Z$ to the vector $\nabla f(x)$ itself.

Similar considerations arise for vector-valued functions defined on affine spaces, and also for higher order derivatives. If $F: A \rightarrow \mathbf{R}^{m}$ is C^{1}, its derivative at $x \in A$ is a linear map $D F(x) \in L\left(Z, \mathbf{R}^{m}\right)$, where we once again write Z for $T A$. While there are many matrices in $\mathbf{R}^{m \times n}$ that represent this derivative, applying the logic above to each component of F shows that there is a unique such matrix, called the Jacobian matrix or derivative matrix, whose rows are elements of Z. As before, we abuse notation by denoting this matrix $D F(x)$. But unlike before, this abuse can create some confusion: if F is "automatically" defined on all of \mathbf{R}^{n}, one must be careful to distinguish between the derivative matrix of $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ at x and the derivative matrix of its restriction $\left.F\right|_{A}: A \rightarrow \mathbf{R}^{m}$ at x; they are related by $\left.D F\right|_{A}(x)=D F(x) P_{Z}$.

If the function $f: A \rightarrow \mathbf{R}$ is C^{2}, then its second derivative at $x \in A$ is a symmetric bilinear map $D^{2} f(x) \in L_{s}^{2}(Z, \mathbf{R})$. There are many symmetric matrices in $\mathbf{R}^{n \times n}$ that represent $D^{2} f(x)$, but there is a unique such matrix whose rows and columns are in Z. We call this matrix the Hessian of f at x, and denote it $\nabla^{2} f(x)$. If $\tilde{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is any C^{2} extension of f,
then we can compute the Hessian of f as $\nabla^{2} f(x)=P_{Z} \nabla^{2} \tilde{f}(x) P_{Z}$; if $\bar{f}(y)=f\left(P_{Z} y+z_{A}^{\perp}\right)$ is the constant orthogonal extension of f to \mathbf{R}^{n}, then $\nabla^{2} f(x)=\nabla^{2} \bar{f}(x)$.

3.B. 4 Affine Integrability

A necessary and sufficient condition for a C^{1} vector field $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ to admit a potential function-that is, a scalar valued function f satisfying $\nabla f(x)=F(x)$ for all $x \in \mathbf{R}^{n}$ —is that its derivative matrix $D F(x)$ be symmetric for all $x \in \mathbf{R}^{n}$. We now state a definition of potential functions for cases in which the map F is only defined on an affine space, and show that an appropriate symmetry condition on $D F(x)$ is necessary and sufficient for a potential function to exist. We also relate these notions to their fulldimensional analogues.

Let $A \subseteq \mathbf{R}^{n}$ be an affine space with tangent space $Z=T A$, and let z_{A}^{\perp} be the unique element of $A \cap Z^{\perp}$. Suppose that the map $F: A \rightarrow \mathbf{R}^{n}$ is continuous. We call the function $f: A \rightarrow \mathbf{R}$ a potential function for F if

$$
\begin{equation*}
\nabla f(x)=P_{Z} F(x) \text { for all } x \in A \tag{3.36}
\end{equation*}
$$

What does this definition require? Since $\nabla f(x) \in Z$, the action of $\nabla f(x)$ on Z^{\perp} is null (that is, $\left(z^{\perp}\right)^{\prime} \nabla f(x)=0$ whenever $\left.z^{\perp} \in Z^{\perp}\right)$. But since $F(x) \in \mathbf{R}^{n}$, the action of $F(x)$ on Z^{\perp} is not restricted in this way. Condition (3.36) requires that $F(x)$ have the same action as $\nabla f(x)$ on Z, but places no restriction on how $F(x)$ acts on the complementary set Z^{\perp}.

Theorem 3.B. 8 characterizes the smooth maps on A that admit potential functions. The characterization is stated in terms of a symmetry condition on the derivatives $D F(x)$.

Theorem 3.B.8. The C^{1} map $F: A \rightarrow \mathbf{R}^{n}$ admits a potential function if and only if $D F(x)$ is symmetric with respect to $Z \times Z$ for all $x \in A$ (i.e., if and only if $z^{\prime} D F(x) \hat{z}=\hat{z}^{\prime} D F(x) z$ for all $z, \hat{z} \in Z$ and $x \in A$).

Proof. To prove the "only if" direction, suppose that F admits a potential function f satisfying condition (3.36). This means that for all $x \in A, F(x)$ and $\nabla f(x)$ define identical linear forms in $L(Z, \mathbf{R})$. By taking the derivative of each side of this identity, we find that $D F(x)=\nabla^{2} f(x)$ as bilinear forms in $L^{2}(Z, \mathbf{R})$. But since $\nabla^{2} f(x)$ is a symmetric bilinear form on $Z \times Z$ (by virtue of being a second derivative), $D F(x)$ is as well.

The "if" direction is a consequence of the following proposition.
Proposition 3.B.9. Define the map $\bar{F}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ by

$$
\bar{F}(y)=P_{Z} F\left(P_{Z} y+z_{A}^{\perp}\right)
$$

Then \bar{F} admits a potential function $\bar{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ if and only if $D F(x)$ is symmetric with respect to $Z \times Z$ for all $x \in A$. In this case, $f=\left.\bar{f}\right|_{A}$ is a potential function for F.

Proof. Define the function $\xi: \mathbf{R}^{n} \rightarrow A$ by $\xi(y)=P_{z} y+z_{A}^{\perp}$. Then

$$
\begin{equation*}
D \bar{F}(y)=D\left(P_{Z} F(\xi(y))\right)=P_{Z}(D F(\xi(y))) P_{Z} \tag{3.37}
\end{equation*}
$$

Now \bar{F} admits a potential function if and only if $D \bar{F}(y)$ is symmetric for all $y \in \mathbf{R}^{n}$. Equation (3.37) tells us that the latter statement is true if and only if $D F(x)$ is symmetric with respect to $Z \times Z$ for all $x \in A$, proving the first statement in the proposition.

To prove the second statement, suppose that \bar{f} is a potential function for \bar{F}, and let $f=\left.\bar{f}\right|_{A}$. Then since $\xi(x)=x$ for all $x \in A$, we find that

$$
\nabla f(x)=P_{Z} \nabla \bar{f}(x)=P_{Z} \bar{F}(x)=P_{Z}\left(P_{Z} F(\xi(x))\right)=P_{Z} F(x)
$$

This completes the proof of Theorem 3.B.8.
If the $C^{1} \operatorname{map} F: A \rightarrow \mathbf{R}^{n}$ is integrable (i.e., if it admits a potential function $f: A \rightarrow \mathbf{R}$), can we extend F to all of \mathbf{R}^{n} in such a way that the extension is integrable too? One natural way to proceed is to extend the potential function f to all of \mathbf{R}^{n}. If one does so in an arbitrary way, then the projected maps $P_{Z} F$ and $P_{Z} \tilde{F}$ will agree regardless of how the extended potential function \tilde{f} is chosen (cf Observation 3.2.3 and the subsequent discussion). But is it always possible to choose \tilde{f} in such a way that that F and \tilde{F} are identical on A, so that the function \tilde{F} is a genuine extension of the function F ? Theorem 3.B. 10 shows one way that this can be done.

Theorem 3.B.10. Suppose $F: A \rightarrow \mathbf{R}^{n}$ is continuous with potential function $f: A \rightarrow \mathbf{R}$. Define $\tilde{f}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ by

$$
\tilde{f}(y)=f(\xi(y))+(y-\xi(y))^{\prime} F(\xi(y)), \text { where } \xi(y)=P_{Z} y+z_{A}^{\perp}
$$

and define $\tilde{F}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ by $\tilde{F}(y)=\nabla \tilde{f}(y)$. Then $\left.\tilde{F}\right|_{A}=F$. Thus, any integrable map/potential function pair defined on A can be extended to a vector field/potential function pair defined on all of \mathbf{R}^{n}.

Proof. We can compute \tilde{F} from \tilde{f} using the chain and product rules:

$$
\begin{aligned}
\tilde{F}(y)^{\prime} & =\nabla \tilde{f}(y)^{\prime} \\
& =\nabla f(\xi(y))^{\prime} P_{Z}+(y-\xi(y))^{\prime} D F(\xi(y)) P_{Z}+F(\xi(y))^{\prime}\left(I-P_{Z}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(P_{Z} F(\xi(y))\right)^{\prime} P_{Z}+(y-\xi(y))^{\prime} D F(\xi(y)) P_{Z}+F(\xi(y))^{\prime}-F(\xi(y))^{\prime} P_{Z} \\
& =F(\xi(y))^{\prime} P_{Z} P_{Z}+(y-\xi(y))^{\prime} D F(\xi(y)) P_{Z}+F(\xi(y))^{\prime}-F(\xi(y))^{\prime} P_{Z} \\
& =F(\xi(y))^{\prime}+(y-\xi(y))^{\prime} D F(\xi(y)) P_{Z}
\end{aligned}
$$

If $x \in A$, then $\xi(x)=x$, allowing us to conclude that $\tilde{F}(x)=F(x)$.
If F takes values in Z, so that $F(x)=P_{Z} F(x)$ for all $x \in A$, then $\tilde{f}(y)$ is simply $f(\xi(y))$, and so $\tilde{F}(y)=P_{Z} \nabla f(\xi(y))=P_{Z} F(\xi(y))$; in this case, the construction in Theorem 3.B. 10 is identical to the one introduced in Proposition 3.B.9. The novelty in Theorem 3.B. 10 is that it lets us extend the domain of F to all of \mathbf{R}^{n} in an integrable fashion even when F takes values throughout \mathbf{R}^{n}.

3.N Notes

Section 3.1. Sections 3.1.1 through 3.1.6 follow Sandholm (2001), while Section 3.1.7 follows Roughgarden and Tardos $(2002,2004)$ and Correa et al. $(2004,2008)$.

Random matching in two player games with common interests defines a fundamental model from population genetics; the common interest assumption reflects the shared fate of two genes that inhabit the same organism. See Hofbauer and Sigmund $(1988,1998)$ for further discussion. Congestion games first appear in the seminal book of Beckmann et al. (1956), who define a general model of traffic flow with inelastic demand, and use a potential function argument to establish the existence and uniqueness of Nash equilibrium. The textbook of Sheffi (1985) treats congestion games from a transportation science perspective at an undergraduate level; the more recent monograph of Patriksson (1994) provides a comprehensive treatment of the topic from this point of view. Important examples of finite player potential games are introduced by Rosenthal (1973) and Slade (1994), and characterizations of this class of normal form games are provided by Monderer and Shapley (1996), Ui (2000), and Sandholm (2008a). Example 3.1.6 and Exercise 3.1.12 are due to Sandholm (2005b). Braess's paradox (Example 3.1.10) was first reported in Braess (1968). Exercise 3.1.11 is well known in the transportation science literature; it also corrects a mistake (!) in Corollary 5.6 of Sandholm (2001). Versions of the efficiency results in Section 3.1.6 are established by Dafermos and Sparrow (1969) for a model of traffic congestion model and by Hofbauer and Sigmund (1988) for single population games. For further discussion of constraint qualification and of the interpretation of the Kuhn-Tucker first order conditions, see Avriel (1976, Section 3.1) and Harker and Pang (1990).

Inefficiency bounds were introduced in the computer science literature by Koutsoupias
and Papadimitriou (1999) and by Papadimitriou (2001), who introduced the term "price of anarchy" to refer to these bounds. Most of the results in presented in Section 3.1.7 are due to Roughgarden and Tardos $(2002,2004)$ and are presented in the book of Roughgarden (2005). The simple proof of Theorem 3.1.28 presented here is due to Correa et al. (2004, 2008), as is Corollary 3.1.29. These references present a variety of additional inefficiency bounds for congestion games with general classes of cost functions, as well as inefficiency bounds for general population games.

Section 3.2. This section follows Sandholm (2008b).
The general definition and basic properties of normal form potential games are established by Monderer and Shapley (1996). The triangular integrability condition from Exercise 3.2.7 is due to Hofbauer (1985). The fact that constant games are potential games in which potential equals aggregate payoffs is important in models of evolutionary implementation; see Sandholm (2002, 2005b, 2007b).

Section 3.3. This section follows Hofbauer and Sandholm (2008).
Evolutionarily stable strategies and neutrally stable strategies are introduced in the single population random matching context by Maynard Smith and Price (1973) and Maynard Smith (1982), respectively. The connection between interior ESS and negative definiteness of the payoff matrix was first noted by Haigh (1975). See Hines (1987) for a survey of early work on these and related concepts. A version of the GESS concept is used by Hamilton (1967) in his pioneering analysis of sex-ratio selection under the name "unbeatable strategy"; see Hamilton (1996, p. 373-374) for an intriguing discussion of the links between the notions of unbeatable strategy and ESS. Further discussion of ESS can be found in the Notes to Chapter 8.

For more on Rock-Paper-Scissors, see Gaunersdorfer and Hofbauer (1995). The War of Attrition is introduced in Bishop and Cannings (1978); for economic applications, see Bulow and Klemperer (1999) and the references therein. Imhof (2005) derives a closedform expression for the Nash equilibrium of the war of attrition in terms of Chebyshev polynomials of the second kind. The dominant diagonal condition used in Example 3.3.12 is a consequence of the Geršgorin Disk Theorem; see Horn and Johnson (1985). This reference also presents the trace condition used in proving Proposition 3.3.10.

In the convex analysis literature, functions that satisfy our definition of stability (though typically with the inequality reversed) are called "monotone"-see Rockafellar (1970) or Hiriart-Urruty and Lemaréchal (2001). For more on pseudomonotonicity and pseudoconvexity, see Avriel (1976, Chapter 6) and Crouzeix (1998). The elementary proof of existence of Nash equilibrium in stable games presented in Section 3.3.5 is a translation to the present context of work on monotone operators on vector spaces due to Minty
(1967). Good references on the Minmax Theorem and its connection with the Separating Hyperplane Theorem are Kuhn (2003) and Luce and Raiffa (1957).

Section 3.4. The definition of supermodular population games here comes from Hofbauer and Sandholm (2007). Finite player analogues of the results presented here are established by Topkis (1979), Vives (1990), and Milgrom and Roberts (1990). Accounts of these results can be found in Fudenberg and Tirole (1991, Sec. 12.3) and Vives (2005); Topkis (1998) and Vives (2000) are book-length studies. For macroeconomic applications, see Cooper (1999).

Appendix 3.A. For a textbook treatment of multivariate calculus that emphasizes the notion of the derivative as a linear map, see Lang (1997, Chapter 17). For the Whitney Extension Theorem, see Abraham and Robbin (1967) or Krantz and Parks (1999).

Appendix 3.B. The version of the Riesz Representation Theorem presented here, along with further discussion of calculus on affine spaces, can be found in Akin (1990). For further discussion of the dual characterizations described at the end of Section 3.B.2, see Lax (2007, Chapter 13) or Hiriart-Urruty and Lemaréchal (2001, Section A.4.3).

Part II

Deterministic Evolutionary Dynamics

Revision Protocols and Evolutionary Dynamics

4.0 Introduction

The theory of population games developed in the previous chapters provides a simple framework for describing strategic interactions among large numbers of agents. Having explored these games' basic properties, we now turn to modeling the behavior of the agents who play them.

Traditionally, predictions of behavior in games are based on some notion of equilibrium, typically Nash equilibrium or some refinement thereof. These notions are founded on the assumption of equilibrium knowledge, which posits that each player correctly anticipates how his opponents will act. The equilibrium knowledge assumption is difficult to justify, and in contexts with large numbers of agents it is particularly strong.

As an alternative to the equilibrium approach, we introduce an explicitly dynamic model of choice, a model in which agents myopically alter their behavior in response to their current strategic environment. This dynamic model does not assume the automatic coordination of agents' beliefs, and it can accommodate many specifications of agents' choice procedures.

These procedures are specified formally by defining a revision protocol ρ. A revision protocol takes current payoffs and aggregate behavior as inputs; its outputs are conditional switch rates $\rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)$, which describe how frequently agents playing strategy $i \in S^{p}$ who are considering switching strategies switch to strategy $j \in S^{p}$, given that the current payoff vector and population state are π^{p} and x^{p}. Revision protocols are flexible enough to accommodate a wide variety of choice paradigms, including ones based on imitation, optimization, and other approaches.

A population game F describes a strategic environment; a revision protocol ρ describes the procedures agents follow in adapting their behavior to that environment. Together F and ρ define a stochastic evolutionary process in which all random elements are idiosyncratic across agents. Since the number of agents are large, intuition from the law of large numbers suggests that the idiosyncratic noise will average out, so that aggregate behavior evolves according to an essentially deterministic process.

After formally defining revision protocols, we spend Section 4.1 deriving the differential equation that describes this deterministic process. As the differential equation captures expected motion under the original stochastic process, we call it the mean dynamic generated by F and ρ. The examples we present in Section 4.2 show how common dynamics from the evolutionary literature can be derived through this approach.

In the story above, we began with a game and a revision protocol and derived a differential equation on the state space X. But if our goal is to investigate the consequences of a particular choice procedure, it is preferable to fix this revision protocol and let the game F vary. By doing so, we generate a map from population games to differential equations that we call an evolutionary dynamic. This notion of an evolutionary dynamic is developed in detail in Section 4.3.

Our derivation of deterministic evolutionary dynamics in this chapter is informal, based solely on an appeal to the idea that idiosyncratic noise should be averaged away when populations are large. We will formalize this logic in Chapter 10. There we specify a Markov process to describe stochastic evolution in a large but finite population. We then prove that over finite time spans, this Markov process converges to a deterministic limit-namely, a solution trajectory of the mean dynamic-as the population size becomes arbitrarily large.

Until then, we spend Chapters 4 through 9 working directly with the deterministic limit. To prepare for this, we introduce the rudiments of the theory of ordinary differential equations in Appendix 4.A and pursue this topic further in the appendices of the chapters to come.

4.1 Revision Protocols and Mean Dynamics

4.1.1 Revision Protocols

We now introduce a simple, general model of myopic individual choice in population games.

Let $F: X \rightarrow \mathbf{R}^{n}$ be a population game with pure strategy sets $\left(S^{1}, \ldots, S^{p}\right)$ and integer-
valued population masses $\left(m^{1}, \ldots, m^{p}\right)$. We suppose for now that each population is large but finite: population $p \in \mathcal{P}$ has $N m^{p}$ members, where N is a positive integer. The set of feasible social states is therefore $X^{N}=X \cap \frac{1}{N} \mathbf{Z}^{n}=\left\{x \in X: N x \in \mathbf{Z}^{n}\right\}$, a discrete grid embedded in the original state space X. We refer to the parameter N somewhat loosely as the population size.

The procedures agents follow in deciding when to switch strategies and which strategies to switch to are called revision protocols.

Definition. A revision protocol ρ^{p} is a map $\rho^{p}: \mathbf{R}^{n^{p}} \times X^{p} \rightarrow \mathbf{R}_{+}^{n^{p} \times n^{p}}$. The scalar $\rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)$ is called the conditional switch rate from strategy $i \in S^{p}$ to strategy $j \in S^{p}$ given payoff vector π^{p} and population state x^{p}.

We will also refer to the collection $\rho=\left(\rho^{1}, \ldots, \rho^{p}\right)$ as a revision protocol when no confusion will arise.

A population game F, a population size N, and a revision protocol ρ define a continuous time evolutionary process on X^{N}. A one-size-fits-all interpretation of this process is as follows. Each agent in the society is equipped with a "stochastic alarm clock". The times between rings of an agent's clock are independent, each with a rate R exponential distribution. (This modeling device is often called a "Poisson alarm clock" for reasons to be made clear below.) We assume that the rate R satisfies

$$
R \geq \max _{x^{p}, \pi^{p}, i, p} \sum_{j \in S^{p}} \rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)
$$

and that the ring times of different agents' clocks are independent of one another.
The ringing of a clock signals the arrival of a revision opportunity for the clock's owner. If an agent playing strategy $i \in S^{p}$ receives a revision opportunity, he switches to strategy $j \neq i$ with probability $\rho_{i j}^{p} / R$, and he continues to play strategy i with probability $1-\sum_{j \neq i} \rho_{i j}^{p} / R$; this decision is made independently of the timing of the clocks' rings. If a switch occurs, the population state changes accordingly, from the old state x to a new state y that accounts for the agent's choice. As the evolutionary process proceeds, the alarm clocks and the revising agents are only influenced by the prior history of the process by way of the current values of payoffs and the social state.

This interpretation of the evolutionary process can be applied to any revision protocol. Still, simpler interpretations are often available for protocols with additional structure.

To motivate one oft-satisfied structural condition, observe that in the interpretation provided above, the diagonal components $\rho_{i i}^{p}$ of the revision protocol play no role what-
soever. But if the protocol is exact-that is, if there is a constant $R>0$ such that

$$
\begin{equation*}
\sum_{j \in S^{p}} \rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)=R \text { for all } \pi^{p} \in \mathbf{R}^{n^{p}}, x^{p} \in X^{p}, i \in S^{p}, \text { and } p \in \mathcal{P} \tag{4.1}
\end{equation*}
$$

then the values of these diagonal components become meaningful: in this case, $\rho_{i i}^{p} / R=$ $1-\sum_{j \neq i} \rho_{i j}^{p} / R$ is the probability that a strategy i player who receives a revision opportunity does not switch strategies.

Exact protocols are particularly easy to interpret when $R=1$: in this case, agents' clocks ring at rate 1 , and for every strategy $j \in S^{p}, \rho_{i j}^{p}$ itself represents the probability that an i player whose clock rings proceeds by playing strategy j. We will henceforth assume that protocols described as exact have clock rate $R=1$ unless a different clock rate is specified explicitly. This focus on unit clock rates is not very restrictive: the only effect of replacing a protocol ρ with its scalar multiple $\frac{1}{R} \rho$ is to change the speed at which the evolutionary process runs by a constant factor.

Other examples of protocols that allow alternative interpretations of the evolutionary process can be found in Section 4.2.

4.1.2 Mean Dynamics

The model above defines a stochastic process $\left\{X_{t}^{N}\right\}$ on the state space X^{N}. We now derive a deterministic process that describes the expected motion of $\left\{X_{t}^{N}\right\}$. In Chapter 10, we will prove that this deterministic process provides a very good approximation of the behavior of the stochastic process $\left\{X_{t}^{N}\right\}$ so long as the time horizon of interest is finite and the population size is sufficiently large. But having noted this result, we will focus in the intervening chapters on the deterministic process itself.

The times between rings of each agent's stochastic alarm clock are independent and follow a rate R exponential distribution. How many times will this agent's clock ring during the next t time units? A basic result from probability theory shows that the number of rings during time interval $[0, t]$ follows a Poisson distribution with mean Rt. This fact is all we need to perform the analysis below; a detailed account of the exponential and Poisson distributions can be found in Appendix 10.A.

Let us now compute the expected motion of the stochastic process $\left\{X_{t}^{N}\right\}$ over the next $d t$ time units, where $d t$ is small. To rein in our notation we focus on the single population case.

Each agent in the population receives revision opportunities according to an exponential distribution with rate R, and so each expects to receive $R d t$ opportunities during
the next $d t$ time units. Thus, if the current state is x, the expected number of revision opportunities received by agents currently playing strategy i is approximately

$$
N x_{i} R d t
$$

We say "approximately" because the value of x_{i} may change during time interval $[0, d t]$, but this change is very likely to be small if $d t$ is small.

Since an i player who receives a revision opportunity switches to strategy j with probability $\rho_{i j} / R$, the expected number of such switches during the next $d t$ time units is approximately

$$
N x_{i} \rho_{i j} d t
$$

It follows that the expected change in the use in strategy i during the next $d t$ time units is approximately

$$
\begin{equation*}
N\left(\sum_{j \in S} x_{j} \rho_{j i}-x_{i} \sum_{j \in S} \rho_{i j}\right) d t \tag{4.2}
\end{equation*}
$$

The first term in expression (4.2) captures switches to strategy i from other strategies, while the second captures switches to other strategies from strategy i. Dividing expression (4.2) by N yields the expected change in the proportion of agents choosing strategy i : that is, in component x_{i} of the social state. We obtain a differential equation for the social state by eliminating the time differential $d t$:

$$
\dot{x}_{i}=\sum_{j \in S} x_{j} \rho_{j i}-x_{i} \sum_{j \in S} \rho_{i j} .
$$

This ordinary differential equation is the mean dynamic corresponding to revision protocol ρ.

We now describe the mean dynamic for the general multipopulation case.
Definition. Let F be a population game, and let ρ be a revision protocol. The mean dynamic corresponding to F and ρ is

$$
\begin{equation*}
\dot{x}_{i}^{p}=\sum_{j \in S^{p}} x_{j}^{p} \rho_{j i}^{p}\left(F^{p}(x), x^{p}\right)-x_{i}^{p} \sum_{j \in S^{p}} \rho_{i j}^{p}\left(F^{p}(x), x^{p}\right) . \tag{M}
\end{equation*}
$$

4.1.3 Target Protocols and Target Dynamics

To conclude this section, we introduce a condition on revision protocols that is satisfied in many interesting examples, and that generates mean dynamics that are easy to describe in geometric terms.

We say that ρ is a target protocol if conditional switch rates under ρ do not depend on agents' current strategies: in other words, $\rho_{i j}^{p}$ may depend on the candidate strategy j, but not on the incumbent strategy i. We can represent target protocols using maps of the form $\tau^{p}: \mathbf{R}^{n^{p}} \times X^{p} \rightarrow \mathbf{R}_{+}^{n^{p}}$, where $\rho_{i j}^{p} \equiv \tau_{j}^{p}$ for all $i \in S^{p}$. This restriction yields mean dynamics of the form

$$
\begin{equation*}
\dot{x}_{i}^{p}=m^{p} \tau_{i}^{p}\left(F^{p}(x), x^{p}\right)-x_{i}^{p} \sum_{j \in S^{p}} \tau_{j}^{p}\left(F^{p}(x), x^{p}\right), \tag{4.3}
\end{equation*}
$$

which we call target dynamics.
What is the geometric interpretation of these dynamics? If $\tau^{p}\left(\pi^{p}, x^{p}\right) \in \mathbf{R}_{+}^{n^{p}}$ is not the zero vector, we can define

$$
\lambda^{p}\left(\pi^{p}, x^{p}\right)=\sum_{i \in S} \tau_{i}^{p}\left(\pi^{p}, x^{p}\right) \text { and } \sigma_{i}^{p}\left(\pi^{p}, x^{p}\right)=\frac{\tau_{i}^{p}\left(\pi^{p}, x^{p}\right)}{\lambda^{p}\left(\pi^{p}, x^{p}\right)} .
$$

Then $\sigma^{p}\left(\pi^{p}, x^{p}\right) \in \Delta^{p}$ is a probability vector, and we can rewrite equation (4.3) as

$$
\dot{x}^{p}= \begin{cases}\lambda^{p}\left(F^{p}(x), x^{p}\right)\left(m^{p} \sigma^{p}\left(F^{p}(x), x^{p}\right)-x^{p}\right) & \text { if } \tau^{p}\left(F^{p}(x), x^{p}\right) \neq \mathbf{0} \tag{4.4}\\ \mathbf{0} & \text { otherwise }\end{cases}
$$

The first case of equation (4.4) tells us that the population state $x^{p} \in X^{p}$ moves in the direction of the target state $m^{p} \sigma^{p} \in X^{p}$, the representative of the probability vector $\sigma^{p} \in \Delta^{p}$ in the state space $X^{p}=m^{p} \Delta^{p}$; moreover, motion toward the target state proceeds at rate λ^{p}. Figure 4.1.1(i) illustrates this idea in the single population case; since here the population's mass is 1 , the target state is just the probability vector $\sigma^{p} \in X^{p}=\Delta^{p}$.

Now suppose that protocol τ is an exact target protocol: a target protocol that is exact with clock rate $R=1$ (see equation (4.1) and the subsequent discussion). In this case, we call the resulting mean dynamic an exact target dynamic. Since exactness implies that $\lambda^{p} \equiv 1$, we often denote exact target protocols by σ rather than τ, emphasizing that the values of $\sigma^{p}: \mathbf{R}^{n^{p}} \times X^{p} \rightarrow \Delta^{n^{p}}$ are probability vectors. Exact target dynamics take the

Figure 4.1.1: Target dynamics in a single population.
especially simple form

$$
\begin{equation*}
\dot{x}^{p}=m^{p} \sigma^{p}\left(F^{p}(x), x^{p}\right)-x^{p} . \tag{4.5}
\end{equation*}
$$

The vector of motion in (4.5) can be drawn with its tail at the current state x^{p} and its head at the target state $m^{p} \sigma^{p}$, as illustrated in Figure 4.1.1(ii) in the single population case.

4.2 Examples

We now offer a number of examples of revision protocols and their mean dynamics that we will revisit throughout the remainder of the book. Recall that

$$
\bar{F}^{p}(x)=\frac{1}{m^{p}} \sum_{i \in S^{p}} x_{i}^{p} F_{i}^{p}(x)
$$

represents the average payoff obtained by members of population p. It is useful to define the excess payoff to strategy $i \in S^{p}$,

$$
\hat{F}_{i}^{p}(x)=F_{i}^{p}(x)-\bar{F}^{p}(x),
$$

as the difference between strategy i 's payoff and the average payoff in population p. The excess payoff vector for population p is written as

$$
\hat{F}^{p}(x)=F^{p}(x)-\mathbf{1} \bar{F}^{p}(x) .
$$

To conserve on notation, the examples to follow are stated for the single population setting. When introducing revision protocols, we let $\pi \in \mathbf{R}^{n}$ denote an arbitrary payoff vector; when the population state $x \in X$ is also given, we let $\hat{\pi}=\pi-\mathbf{1} x^{\prime} \pi$ denote the resulting excess payoff vector.

Example 4.2.1. Pairwise proportional imitation. Revision protocols of the form

$$
\begin{equation*}
\rho_{i j}(\pi, x)=x_{j} r_{i j}(\pi) \tag{4.6}
\end{equation*}
$$

are called imitative protocols. The natural interpretation of these protocols differs somewhat from the one presented in Section 4.1.1. Here, an agent who receives a revision opportunity chooses an opponent at random and observes her strategy. If our agent is playing strategy i and the opponent strategy j, the agent switches from i to j with probability proportional to $r_{i j}$. Note that the value of x_{j} need not be observed; instead, this term in equation (4.6) reflects the agent's observation of a randomly chosen opponent.

Suppose that after selecting an opponent, the agent imitates the opponent only if the opponent's payoff is higher than his own, doing so in with probability proportional to the payoff difference:

$$
\rho_{i j}(\pi, x)=x_{j}\left[\pi_{j}-\pi_{i}\right]_{+} .
$$

The mean dynamic generated by this revision protocol is

$$
\begin{aligned}
\dot{x}_{i} & =\sum_{j \in S} x_{j} \rho_{j i}(F(x), x)-x_{i} \sum_{j \in S} \rho_{i j}(F(x), x) \\
& =\sum_{j \in S} x_{j} x_{i}\left[F_{i}(x)-F_{j}(x)\right]_{+}-x_{i} \sum_{j \in S} x_{j}\left[F_{j}(x)-F_{i}(x)\right]_{+} \\
& =x_{i} \sum_{j \in S} x_{j}\left(F_{i}(x)-F_{j}(x)\right) \\
& =x_{i}\left(F_{i}(x)-\bar{F}(x)\right) .
\end{aligned}
$$

This equation, which we can rewrite as
(R) $\quad \dot{x}_{i}=x_{i} \hat{F}_{i}(x)$.
defines the replicator dynamic, the best known dynamic in evolutionary game theory. Under this dynamic, the percentage growth rate \dot{x}_{i} / x_{i} of each strategy currently in use is equal to that strategy's current excess payoff; unused strategies always remain so. §

Example 4.2.2. Pure imitation driven by dissatisfaction. Suppose that when a strategy i player receives a revision opportunity, he opts to switch strategies with a probability that is linearly decreasing in his current payoff. (For example, agents might revise when their payoffs do not meet a uniformly distributed random aspiration level.) In the event that the agent decides to switch, he imitates a randomly selected opponent. This leads to the revision protocol

$$
\rho_{i j}(\pi, x)=\left(K-\pi_{i}\right) x_{j},
$$

where the constant K is sufficiently large that conditional switch rates are always positive.
The mean dynamic generated by this revision protocol is

$$
\begin{aligned}
\dot{x}_{i} & =\sum_{j \in S} x_{j} \rho_{j i}(F(x), x)-x_{i} \sum_{j \in S} \rho_{i j}(F(x), x) \\
& =\sum_{j \in S} x_{j}\left(K-F_{j}(x)\right) x_{i}-x_{i}\left(K-F_{i}(x)\right) \\
& =x_{i}\left(K-\sum_{j \in S} x_{j} F_{j}(x)-K+F_{i}(x)\right) \\
& =x_{i} \hat{F}_{i}(x) .
\end{aligned}
$$

Thus, this protocol's mean dynamic is the replicator dynamic as well. §
Exercise 4.2.3. Imitation of success. Consider the revision protocol

$$
\rho_{i j}(\pi, x)=\tau_{j}(\pi, x)=x_{j}\left(\pi_{j}-K\right),
$$

where the constant K is smaller than any feasible payoff.
(i) Offer an interpretation of this protocol.
(ii) Show that this protocol generates the replicator dynamic as its mean dynamic.
(iii) Part (ii) implies that the replicator dynamic is a target dynamic. Compute the rate $\lambda(F(x), x)$ and target state $\sigma(F(x), x)$ corresponding to population state x. Describe how these vary as one changes the value of K.

Exercise 4.2.4. In the single population setting, we call a mean dynamic an anti-target
dynamic if it can be expressed as

$$
\dot{x}=\tilde{\lambda}(F(x), x)(x-\tilde{\sigma}(F(x), x)),
$$

where $\tilde{\lambda}(\pi, x) \in \mathbf{R}_{+}$and $\tilde{\sigma}(\pi, x) \in \Delta$.
(i) Give a geometric interpretation of anti-target dynamics.
(ii) Show that the replicator dynamic is an anti-target dynamic.

Unlike the imitative protocols introduced above, the protocols to follow have agents directly evaluate the payoffs of candidate strategies.

Example 4.2.5. Logit choice. Suppose that choices are made according to the logit choice protocol, the exact target protocol defined by

$$
\rho_{i j}(\pi, x)=\sigma_{j}(\pi, x)=\frac{\exp \left(\eta^{-1} \pi_{j}\right)}{\sum_{k \in S} \exp \left(\eta^{-1} \pi_{k}\right)} .
$$

The parameter $\eta>0$ is called the noise level. If η is large, choice probabilities under the logit rule are nearly uniform. But if η is near zero, choices are optimal with probability close to one, at least when the difference between the best and second best payoff is not too small. By equation (4.5), the exact target dynamic generated by protocol σ is

$$
\begin{align*}
\dot{x}_{i} & =\sigma_{i}(F(x), x)-x_{i} \tag{L}\\
& =\frac{\exp \left(\eta^{-1} F_{i}(x)\right)}{\sum_{k \in S} \exp \left(\eta^{-1} F_{k}(x)\right)}-x_{i} .
\end{align*}
$$

This is the logit dynamic with noise level η. §
Example 4.2.6. Comparison to the average payoff. Consider the target protocol

$$
\rho_{i j}(\pi, x)=\tau_{j}(\pi, x)=\left[\hat{\pi}_{j}\right]_{+} .
$$

When an agent's clock rings, he chooses a strategy at random. If that strategy's payoff is above average, the agent switches to it with probability proportional to its excess payoff. By equation (4.3), the induced target dynamic is
$(\mathrm{BNN}) \quad \dot{x}_{i}=\tau_{i}(F(x), x)-x_{i} \sum_{j \in S} \tau_{j}(F(x), x)$

$$
=\left[\hat{F}_{i}(x)\right]_{+}-x_{i} \sum_{k \in S}\left[\hat{F}_{k}(x)\right]_{+} .
$$

This is the Brown-von Neumann-Nash (BNN) dynamic. §
Example 4.2.7. Pairwise comparisons. Suppose that

$$
\rho_{i j}(\pi, x)=\left[\pi_{j}-\pi_{i}\right]_{+} .
$$

When an agent's clock rings, he selects a strategy at random. If the new strategy's payoff is higher than his current strategy's payoff, he switches strategies with probability proportional to the difference between the two payoffs. The resulting mean dynamic,

$$
\begin{align*}
\dot{x}_{i} & =\sum_{j \in S} x_{j} \rho_{j i}(F(x), x)-x_{i} \sum_{j \in S} \rho_{i j}(F(x), x) \tag{S}\\
& =\sum_{j \in S} x_{j}\left[F_{i}(x)-F_{j}(x)\right]_{+}-x_{i} \sum_{j \in S}\left[F_{j}(x)-F_{i}(x)\right]_{+}
\end{align*}
$$

is called the Smith dynamic. §

4.3 Evolutionary Dynamics

With this background established, we now provide a formal definition of evolutionary dynamics. Let $\mathcal{P}=\{1, \ldots, p\}$ be a set of populations with masses m^{p} and strategy sets S^{p}. Let X be the corresponding set of social states:

$$
X=\left\{x \in \mathbf{R}_{+}^{n}: x=\left(x^{1}, \ldots, x^{p}\right), \text { where } \sum_{i \in S^{p}} x_{i}^{p}=m^{p}\right\} .
$$

Define the sets \mathcal{F} and \mathcal{T} as follows:

$$
\begin{aligned}
& \mathcal{F}=\left\{F: X \rightarrow \mathbf{R}^{n}: F \text { is Lipschitz continuous }\right\} \\
& \mathcal{T}=\{x:[0, \infty) \rightarrow X: x \text { is continuous }\}
\end{aligned}
$$

\mathcal{F} is the set of population games with Lipschitz continuous payoffs; \mathcal{T} is the set of continuous forward-time trajectories through the state space X.
Definition. An evolutionary dynamic is a set-valued map $\mathbf{D}: \mathcal{F} \Rightarrow \mathcal{T}$. It assigns each population game $F \in \mathcal{F}$ a set of trajectories $\mathbf{D}(F) \subset \mathcal{T}$ satisfying

Existence and forward invariance: For each $\xi \in X$, there is a $\left\{x_{t}\right\}_{t \geq 0} \in \mathbf{D}(F)$ with $x_{0}=\xi$. Thus, for each game F and each initial condition $\xi \in X$, an evolutionary dynamic must specify at least one solution trajectory that begins at ξ and then remains in X at all positive times.

This definition of an evolutionary dynamic is rather general, in that it does not impose a uniqueness requirement (i.e., since it allows multiple trajectories in $\mathbf{D}(F)$ to emanate from a single initial condition). This generality allows us to handle dynamics defined by discontinuous differential equations and by differential inclusions-see Chapter 6. But for dynamics defined by Lipschitz continuous differential equations, this level of generality is unnecessary: in this case, standard results allow us to ensure not only existence of solutions, but also:

Uniqueness: For each $\xi \in X$, there is exactly one $\left\{x_{t}\right\}_{t \geq 0} \in \mathbf{D}(F)$ with $x_{0}=\xi$. Lipschitz continuity: For each $t, x_{t}=x_{t}(\xi)$ is a Lipschitz continuous function of ξ.

The basic results on existence and uniqueness of solutions to ordinary differential equations concern equations defined on open sets. To contend with the fact that our mean dynamics are defined on the compact, convex set X, we need conditions ensuring that solution trajectories do not leave this set. The required conditions are provided by Theorem 4.3.1: if the vector field $V_{F}: X \rightarrow \mathbf{R}^{n}$ is Lipschitz continuous, and if at each state $x \in X$, the growth rate vector $V_{F}(x)$ is contained in the tangent cone $T X(x)$, the set of directions of motion from x that do not point out of X, then all of our desiderata for solution trajectories are satisfied.

Theorem 4.3.1. Suppose $V_{F}: X \rightarrow \mathbf{R}^{n}$ is Lipschitz continuous, and let $S\left(V_{F}\right) \subset \mathcal{T}$ be the set of solutions $\left\{x_{t}\right\}_{t \geq 0}$ to $\dot{x}=V_{F}(x)$. If $V_{F}(x) \in T X(x)$ for all $x \in X$, then $S\left(V_{F}\right)$ satisfies existence, forward invariance, uniqueness, and Lipschitz continuity.

Theorem 4.3.1 follows directly from Theorems 4.A.2, 4.A.6, and 4.A.8 in Appendix 4.A. Its implications for evolutionary dynamics are as follows.

Corollary 4.3.2. Let the map $F \mapsto V_{F}$ assign each population game $F \in \mathcal{F}$ a Lipschitz continuous vector field $V_{F}: X \rightarrow \mathbf{R}^{n}$ that satisfies $V_{F}(x) \in T X(x)$ for all $x \in X$. Define $\mathbf{D}: \mathcal{F} \Rightarrow \mathcal{T}$ by

$$
\mathbf{D}(F)=\left\{\left\{x_{t}\right\} \in \mathcal{T}:\left\{x_{t}\right\} \text { solves } \dot{x}=V_{F}(x)\right\} .
$$

Then \mathbf{D} is an evolutionary dynamic. Indeed, for each $F \in \mathcal{F}$, the set $\mathbf{D}(F) \subset \mathcal{T}$ satisfies not only existence and forward invariance, but also uniqueness and Lipschitz continuity.

In light of Corollary 4.3.2, we can identify an evolutionary dynamic \mathbf{D} with a map $F \mapsto V_{F}$ that assigns population games to vector fields on X. We sometimes use the notation $V_{(\cdot)}$ to refer to an evolutionary dynamic as a map in this sense.

To link these results with revision protocols and mean dynamics, we characterize the tangent cone requirement explicitly: for $V_{F}(x)$ to lie in $T X(x)$, the growth rates of each population's strategies must sum to zero, so that population masses stay constant over time, and the growth rates of unused strategies must be nonnegative.

Proposition 4.3.3. $V(x) \in T X(x)$ if and only if these two conditions hold:
(i) $\sum_{i \in S^{p}} V_{i}^{p}(x)=0$ for all $p \in \mathcal{P}$.
(ii) For all $i \in S^{p}$ and $p \in \mathcal{P}, x_{i}^{p}=0$ implies that $V_{i}^{p}(x) \geq 0$.

Thus, if $V: X \rightarrow \mathbf{R}^{n}$ is the mean dynamic generated by a game F and a revision protocol ρ, then $V(x) \in T X(x)$ for all $x \in X$.

Exercise 4.3.4. Verify these claims.

Appendix

4.A Ordinary Differential Equations

4.A. 1 Basic Definitions

Every continuous vector field $V: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ defines an ordinary differential equation (ODE) on \mathbf{R}^{n}, namely

$$
\frac{d}{d t} x_{t}=V\left(x_{t}\right) .
$$

Often we write \dot{x}_{t} for $\frac{d}{d t} x_{t}$; we also express the previous equation as
(D) $\quad \dot{x}=V(x)$.

Equation (D) describes the evolution of a state variable x_{t} over time. When the current state is x_{t}, the current velocity of state-in other words, the speed and direction of the change in the state-is $V\left(x_{t}\right)$. The trajectory $\left\{x_{t}\right\}_{t \in I}$ is a solution to (D) if $\dot{x}_{t}=V\left(x_{t}\right)$ at all times t in the interval I, so that at each moment, the time derivative of the trajectory is described by the vector field V (see Figure 4.A.1).

In many applications, one is interested in solving an initial value problem: that is, in characterizing the behavior of solution(s) to (D) that start at a given initial condition $\xi \in \mathbf{R}^{n}$.

Example 4.A.1. Exponential growth and decay. The simplest differential equation is the linear equation $\dot{x}=a x$ on the real line. What are the solutions to this equation starting from

Figure 4.A.1: A solution of an ordinary differential equation.
initial condition $\xi \in \mathbf{R}$? It is easy to verify that $x_{t}=\xi \exp (a t)$ is a solution to this equation on the full time interval $(-\infty, \infty)$, since

$$
\frac{d}{d t} x_{t}=\frac{d}{d t}(\xi \exp (a t))=a(\xi \exp (a t))=a x_{t},
$$

as required. This solution describes a process of exponential growth or decay according to whether a is positive or negative.

In fact, $x_{t}=\xi \exp (a t)$ is the only solution to $\dot{x}=a x$ from initial condition ξ. If $\left\{y_{t}\right\}$ is a solution to $\dot{x}=a x$ from any initial condition, then

$$
\frac{d}{d t}\left(y_{t} \exp (-a t)\right)=\dot{y}_{t} \exp (-a t)-a y_{t} \exp (-a t)=0 .
$$

Hence, $y_{t} \exp (-a t)$ is constant, and so $y_{t}=\psi \exp (a t)$ for some $\psi \in \mathbf{R}$. Since $y_{0}=\xi$, it must be that $\psi=\xi$. §

4.A. 2 Existence, Uniqueness, and Continuity of Solutions

Except in cases where the state variable x is one dimensional or the vector field V is linear, explicit solutions to ODEs are usually impossible to obtain. To investigate dynamics for which explicit solutions are unavailable, one begins by verifying that a solution exists and is unique, and then uses various indirect methods to determine its properties.

The main tool for ensuring existence and uniqueness of solutions to ODEs is the

Picard-Lindelöf Theorem. To state this result, fix an open set $O \subseteq \mathbf{R}^{n}$. We call the function $f: O \rightarrow \mathbf{R}^{m}$ Lipschitz continuous if there exists a scalar K such that

$$
|f(x)-f(y)| \leq K|x-y| \text { for all } x, y \in O
$$

More generally, we say that f is locally Lipschitz continuous if for all $x \in O$, there exists an open neighborhood $O_{x} \subseteq O$ containing x such that the restriction of f to O_{x} is Lipschitz continuous. It is easy to verify that every C^{1} function is locally Lipschitz.

Theorem 4.A. 2 (The Picard-Lindelöf Theorem). Let $V: O \rightarrow \mathbf{R}^{n}$ be locally Lipschitz continuous. Then for each $\xi \in O$, there exists a scalar $T>0$ and a unique trajectory $x:(-T, T) \rightarrow O$ such that $\left\{x_{t}\right\}$ is a solution to (D) with $x_{0}=\xi$.

The Picard-Lindelöf Theorem is proved using the method of successive approximations. Given an approximate solution $x^{k}:(-T, T) \rightarrow O$ with $x_{0}^{k}=\xi$, one constructs a new trajectory $x^{k+1}:(-T, T) \rightarrow O$ using the map C that is defined as follows:

$$
x_{t}^{k+1}=\mathcal{C}\left(x^{k}\right)_{t} \equiv \xi+\int_{0}^{t} V\left(x_{s}^{k}\right) \mathrm{d} s
$$

It is easy to see the trajectories $\left\{x_{t}\right\}$ that are fixed points of \mathcal{C} are the solutions to (D) with $x_{0}=\xi$. Thus, if \mathcal{C} has a unique fixed point, the theorem is proved. But it is possible to show that if T is sufficiently small, then \mathcal{C} is a contraction in the supremum norm; therefore, the desired conclusion follows from the Banach (or Contraction Mapping) Fixed Point Theorem.

If V is continuous but not Lipschitz, Peano's Theorem tells us that solutions to (D) exist, but in this case solutions need not be unique. The following example shows that when V does not satisfy a Lipschitz condition, so that small changes in x can lead to arbitrarily large changes in $V(x)$, it is possible for solution trajectories to escape from states at which the velocity under V is zero.

Example 4.A.3. Consider the $\operatorname{ODE} \dot{x}=\frac{3}{2} x^{1 / 3}$ on \mathbf{R}. The right hand side of this equation is continuous, but it fails to be Lipschitz at $x=0$. One solution to this equation from initial condition $\xi=0$ is the stationary solution $x_{t} \equiv 0$. Another solution is given by $x_{t}=t^{3 / 2}$. In fact, for each $t_{0} \in[0, \infty)$, the trajectory that equals 0 until time t_{0} and satisfies $x_{t}=\left(t-t_{0}\right)^{3 / 2}$ thereafter is also a solution; so is the trajectory that satisfies $x_{t}=-\left(t-t_{0}\right)^{3 / 2}$ after time t_{0}. §

The Picard-Lindelöf Theorem guarantees the existence of a solution to (D) over some open interval of times. This open interval need not be the full time interval $(-\infty, \infty)$, as the following example illustrates.

Example 4.A.4. Consider the $C^{1} \mathrm{ODE} \dot{x}=x^{2}$ on \mathbf{R}. The unique solution with initial condition $\xi=1$ is $x_{t}=\frac{1}{1-t}$. This solution exists for all negative times, but it "explodes" in forward time at $t=1$. \S

When V is locally Lipschitz, one can always find a maximal open time interval over which the solution to (D) from initial condition ξ exists in the domain O. If V is defined throughout \mathbf{R}^{n} and is bounded, then the speed of all solution trajectories is bounded as well, which implies that solutions exist for all time.

Theorem 4.A.5. If $V: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is locally Lipschitz continuous and bounded, then for each $\xi \in \mathbf{R}^{n}$, then $\left\{x_{t}\right\}$, the unique solution to (D) with $x_{0}=\xi$, exists for all $t \in(-\infty, \infty)$.

We will often find it convenient to discuss solutions to (D) from more than one initial condition at the same time. To accomplish this most easily, we introduce the flow of differential equation (D).

Suppose that $V: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is Lipschitz continuous, and let $A \subset \mathbf{R}^{n}$ be an invariant set under (D): that is, solutions to (D) with initial conditions in A exist and remain in A at all times $t \in(-\infty, \infty)$. Then the flow $\phi:(-\infty, \infty) \times A \rightarrow A$ generated by (D) is defined by $\phi_{t}(\xi)=x_{t}$, where $\left\{x_{t}\right\}_{t \in(-\infty, \infty)}$ is the solution to (D) with initial condition $x_{0}=\xi$. If we fix $\xi \in A$ and vary t, then $\left\{\phi_{t}(\xi)\right\}_{t \in(-\infty, \infty)}$ is the solution orbit of (D) through initial condition ξ; note also that ϕ satisfies the group property $\phi_{t}\left(\phi_{s}(\xi)\right)=\phi_{s+t}(\xi)$. If we instead fix t and vary ξ, then $\left\{\phi_{t}(\xi)\right\}_{\xi \in A^{\prime}}$ describes the positions at time t of solutions to (D) with initial conditions in $A^{\prime} \subseteq A$.

Using this last notational device, we can describe the continuous variation of solutions to (D) in their initial conditions.

Theorem 4.A.6. Suppose that $V: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is Lipschitz continuous with Lipschitz constant K, and that $A \subset \mathbf{R}^{n}$ is invariant under (D). Let ϕ be the flow of (D), and fix $t \in(-\infty, \infty)$. Then $\phi_{t}(\cdot)$ is Lipschitz continuous with Lipschitz constant $e^{K|t|}:$ for all $\xi, \chi \in A$, we have that $\left|\phi_{t}(\xi)-\phi_{t}(\chi)\right| \leq|\xi-\chi| e^{K|t|}$.

The assumption that A is invariant is only made for notational convenience; the theorem is valid as long as solutions to (D) from ξ and χ exist throughout the time interval from 0 to t.

The proof of Theorem 4.A. 6 is a direct consequence of the following inequality, which is of importance in its own right.

Lemma 4.A. 7 (Grönwall's Inequality). Let $z_{t}:[0, T] \rightarrow \mathbf{R}_{+}$be continuous. Suppose $C \geq 0$ and $K \geq 0$ are such that $z_{t} \leq C+\int_{0}^{t} K z_{s}$ ds for all $t \in[0, T]$. Then $z_{t} \leq C \mathrm{e}^{K t}$ for all $t \in[0, T]$.

If we set $z_{t}=\left|\phi_{t}(\xi)-\phi_{t}(\chi)\right|$, then the antecedent inequality in the lemma is satisfied when $C=|\xi-\chi|$ and K is the Lipschitz constant for V, so Theorem 4.A. 6 immediately follows. Also note that setting $\xi=\chi$ establishes the uniqueness of solutions to (D) from each initial condition.

4.A. 3 Ordinary Differential Equations on Compact Convex Sets

The Picard-Lindelöf Theorem concerns ODEs defined on open subsets of \mathbf{R}^{n}. In contrast, evolutionary dynamics for population games are defined on the set of population states X, which is compact and convex. Fortunately, existence and uniqueness of forward time solutions can still be established in this setting.

To begin, we introduce the notion of forward invariance. The set $C \subseteq \mathbf{R}^{n}$ is forward invariant under the Lipschitz ODE (D) if every solution to (D) that starts in C at time 0 remains in C at all positive times: if $\left\{x_{t}\right\}$ is the solution to (D) from $\xi \in C$, then x_{t} exists and lies in C at all $t \in[0, \infty)$.

When C is forward invariant but not necessarily invariant under (D), we can speak of the semiflow $\phi:[0, \infty) \times A \rightarrow A$ generated by (D). While semiflows are not defined for negative times, they resemble flows in many other respects: by definition, $\phi_{t}(\xi)=x_{t}$, where $\left\{x_{t}\right\}_{t \geq 0}$ is the solution to (D) with initial condition $x_{0}=\xi$; also, ϕ is continuous in t and ξ, and ϕ satisfies the group property $\phi_{t}\left(\phi_{s}(\xi)\right)=\phi_{s+t}(\xi)$.

Now suppose that the domain of the vector field V is a compact, convex set C. Intuition suggests that as long as V never points outward from C, solutions to (D) should be well defined and remain in C for all positive times.

Theorem 4.A. 8 tells us that if we are given a Lipschitz continuous vector field V that is defined on a compact convex set C and that never points outward from the boundary of C, then the ODE $\dot{x}=V(x)$ leaves C forward invariant. If in addition the negation of V never points outward from the boundary of C, then C is both forward and backward invariant under the ODE.

Theorem 4.A.8. Let $C \subset \mathbf{R}^{n}$ be a compact convex set, and let $V: C \rightarrow \mathbf{R}^{n}$ be Lipschitz continuous.
(i) Suppose that $V(\hat{x}) \in T C(\hat{x})$ for all $\hat{x} \in C$. Then for each $\xi \in C$, there exists a unique $x:[0, \infty) \rightarrow C$ with $x_{0}=\xi$ that solves (D).
(ii) Suppose that $V(\hat{x}) \in T C(\hat{x}) \cap(-T C(\hat{x}))$ for all $\hat{x} \in C$. Then for each $\xi \in C$, there exists a unique $x:(-\infty, \infty) \rightarrow C$ with $x_{0}=\xi$ that solves (D).

Proof. (i) Let $\bar{V}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the extension of $V: C \rightarrow \mathbf{R}^{n}$ defined by $\bar{V}(y)=V\left(\Pi_{C}(y)\right)$, where $\Pi_{C}: \mathbf{R}^{n} \rightarrow C$ is the closest point projection onto C (see Section 2.B). Then \bar{V} is

Lipschitz continuous and bounded. Thus, Theorem 4.A.5 tells us that the ODE

$$
\begin{equation*}
\dot{y}=\bar{V}(y) \tag{4.7}
\end{equation*}
$$

admits unique solutions from all initial conditions in \mathbf{R}^{n}, and that these solutions exist for all (forward and backward) time. Now let $\xi \in C$, let $\left\{x_{t}\right\}_{t \in(-\infty, \infty)}$ be the unique solution to (4.7) with $x_{0} \in C$, and suppose that $x_{t} \in C$ for all positive t; then since V and \bar{V} agree on C, $\left\{x_{t}\right\}_{t \geq 0}$ must be the unique forward solution to (D) with $x_{0}=\xi$. Thus, to prove our result, it is enough to show that the set C is forward invariant under the dynamic (4.7).

Define the squared distance function $\delta_{C}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ by

$$
\delta_{C}(y)=\min _{x \in C}|y-x|^{2}
$$

One can verify that δ_{C} is differentiable with gradient

$$
\nabla \delta_{C}(y)=2\left(y-\Pi_{C}(y)\right)
$$

Hence, if $\left\{y_{t}\right\}$ is a solution to (4.7), then the chain rule tells us that

$$
\begin{equation*}
\frac{d}{d t} \delta_{C}\left(y_{t}\right)=\nabla \delta_{C}\left(y_{t}\right)^{\prime} \dot{y}_{t}=2\left(y_{t}-\Pi_{C}\left(y_{t}\right)\right)^{\prime} \bar{V}\left(y_{t}\right)=2\left(y_{t}-\Pi_{C}\left(y_{t}\right)\right)^{\prime} V\left(\Pi_{C}\left(y_{t}\right)\right) . \tag{4.8}
\end{equation*}
$$

Suppose we could show that this quantity is bounded above by zero (i.e., that when $y_{t}-\Pi_{C}\left(y_{t}\right)$ and $V\left(\Pi_{C}\left(y_{t}\right)\right)$ are nonzero, the angle between them is weakly obtuse.) This would imply that the distance between y_{t} and C is nonincreasing over time-in other words, that δ_{C} is a Lyapunov function for the set C under the dynamic (4.7)—which would in turn imply that C is forward invariant under (4.7).

We divide the analysis into two cases. If $y_{t} \in C$, then $y_{t}=\Pi_{C}\left(y_{t}\right)$, so expression (4.8) evaluates to zero. On the other hand, if $y_{t} \notin C$, then the difference $y_{t}-\Pi_{C}\left(y_{t}\right)$ is in the normal cone $N C\left(\Pi_{C}\left(y_{t}\right)\right)$ (see Figure 4.A.2). Since $V\left(\Pi_{C}\left(y_{t}\right)\right) \in T C\left(\Pi_{C}\left(y_{t}\right)\right)$, it follows that $\left(y_{t}-\Pi_{C}\left(y_{t}\right)\right)^{\prime} V\left(\Pi_{C}\left(y_{t}\right)\right) \leq 0$, so the proof is complete.
(ii) If $V(\hat{x}) \in T C(\hat{x}) \cap(-T C(\hat{x}))$, then a slight modification of the argument above shows that $\frac{d}{d t} \delta_{C}\left(y_{t}\right)=2\left(y_{t}-\Pi_{C}\left(y_{t}\right)\right)^{\prime} V\left(\Pi_{C}\left(y_{t}\right)\right)=0$, and so that the distance between y_{t} and C is constant over time under the dynamic (4.7). Therefore, C is both forward and backward invariant under (4.7), and hence under (D) as well.

Figure 4.A.2: The proof of Theorem 4.A.8.

4.N Notes

Section 4.1: Björnerstedt and Weibull (1996) introduce a version of the revision protocol model and derive the mean dynamics associated with certain imitative decision rules; see Weibull (1995, Sections 4.4 and 5.3) for a summary. The model studied here builds on Benaïm and Weibull (2003) and Sandholm (2003, 2008d). Versions of target dynamics are considered in Sandholm (2005a) and Hofbauer and Sandholm (2008).

Section 4.2: The replicator dynamic was introduced by Taylor and Jonker (1978), but is closely related to a number of older models from mathematical biology-see Schuster and Sigmund (1983). The latter authors coined the term "replicator dynamic", borrowing the term "replicator" from Dawkins $(1976,1982)$. Example 4.2.1, Example 4.2.2, and Exercise 4.2.3 are due to Schlag (1998), Björnerstedt and Weibull (1996), and Hofbauer (1995a), respectively.

The logit dynamic is studied by Fudenberg and Levine (1998) and Hofbauer and Sandholm $(2002,2007)$. The BNN dynamic was introduced in the context of symmetric zero sum games by Brown and von Neumann (1950). Nash (1951) uses a discrete version of this dynamic to devise a proof of existence of Nash equilibrium in normal form games based on Brouwer's fixed point theorem. The Smith dynamic, also known as the pairwise difference dynamic, was introduced by Smith (1984) to study the dynamics of traffic flow. Generalizations of all of the dynamics from this section are studied in the next two chapters, where additional references can be found.

Appendix 4.A: Hirsch and Smale (1974) and Robinson (1995) are fine introductions to ordinary differential equations at the undergraduate and graduate levels, respectively. Theorem 4.A. 8 is adapted from Smirnov (2002, Theorem 5.7).

Deterministic Dynamics: Families and Properties

5.0 Introduction

In the model of evolution introduced in Chapter 4, a large society of agents recurrently play a population game F by applying a revision protocol ρ. Through an informal appeal to the law of large numbers, we argued that aggregate behavior in the society can be described by a differential equation
(M) $\quad \dot{x}=V_{F}(x)$
on the state space X. Alternatively, by fixing the revision protocol ρ, we can define a map from population games F to differential equations (M), a map that we call an evolutionary dynamic.

In this chapter and the next, we introduce families of evolutionary dynamics, where the dynamics within each family are defined by qualitatively similar revision protocols. We investigate the properties of the dynamics in each family. One of our goals in doing so is to provide an evolutionary justification of the prediction of Nash equilibrium play (see Section 4.0).

The first part of this chapter sets the stage for this analysis. We begin in Section 5.1 by stating general principles for evolutionary modeling in game theory. While some of these principles are implicit in our formulation of evolutionary dynamics, others must be imposed directly on our revision protocols.

We do so by introducing two desiderata for revision protocols in Section 5.2. Continuity (C) asks that revision protocols depend continuously on their inputs. Scarcity of data (SD) demands that the conditional switch rate from strategy i to strategy j only depend on the
payoffs of these two strategies. Protocols that respect these two properties do not make unrealistic demands on the amount of information that agents in an evolutionary model must possess.

Section 5.2 also offers two conditions that relate aggregate behavior under evolutionary dynamics to incentives in the underlying games. Nash stationarity (NS) asks that the rest points of the mean dynamic be precisely the Nash equilibria of the game being played. Positive correlation (PC) requires that out of equilibrium, strategies' growth rates be positively correlated with their payoffs. Evolutionary dynamics satisfying these two properties respect payoffs in the underlying strategic interaction, and so agree with the traditional, rationalistic approach to game theory in some primitive way. Section 5.3 previews the performance of each of our families of dynamics under the four desiderata, and uses examples to highlight the properties of each.

Our study of the families themselves begins in Section 5.4, which introduces imitative dynamics. These dynamics, whose prototype is the replicator dynamic, are the most thoroughly studied in the evolutionary literature. While imitative dynamics have many appealing properties, they admit rest points that are not Nash equilibria; thus, they fail Nash stationarity (NS), and so fail to provide a full justification of the Nash prediction.

We continue to work toward this justification in Section 5.5, where we introduce excess payoff dynamics. These dynamics satisfy Nash stationarity, but as they require agents to know the average payoffs obtained by members of their population, they fail scarcity of data (SD), and so do not provide the justification we seek.

We come to this justification at last in Section 5.6, where we define pairwise comparison dynamics. These dynamics, whose revision protocols only require agents to compare the payoffs of the pair of strategies at issue, satisfy all four of our desiderata, and so provide our justification of the Nash prediction. This justification is developed further in Section 5.7, which shows that any dynamic that combines imitation and pairwise comparison satisfies all of our desiderata as well.

Of course, a more compelling justification of the Nash prediction would not only link Nash equilibrium with stationary states of an evolutionary dynamic, but would also show that evolution leads to Nash equilibrium from disequilibrium states. This key issue will be the focus of Part III of the book.

5.1 Principles for Evolutionary Modeling

We begin our discussion by proposing five principles for evolutionary modeling:
(i) Large populations
(ii) Inertia
(iii) Myopia
(iv) Limited information
(v) Insensitivity to modeling details

The first principle, that populations are large, is not only part of the definition of a population games; it is also a key component of the deterministic approximation theorem.

This principle buttresses the next two: inertia, that players only occasionally consider switching strategies; and myopia, that agents condition choices on current behavior and payoffs, and do not attempt to incorporate beliefs about the future course of play into their decisions. Both of these principles are built into the definition of a revision protocol: agents wait a random amount of time before revising, using procedures that only condition on current payoffs and the current social state. All of the first three principles are mutually reinforcing: myopic behavior is most sensible when opponents' behavior adjusts slowly, and when populations are large enough that individual members become anonymous, inhibiting repeated game effects.

The fourth principle holds that agents possess limited information about opponents' behavior. This principle fits in easily with the previous three. When the number of agents in an interaction is large, exact information about their aggregate behavior typically is difficult to obtain. If agents make costly efforts to gather such information, it would be incongruous to then assume that they act upon it in a shortsighted fashion. The principle of limited information is expressed in our model through restrictions on allowable revision protocols, as we discuss below.

The fifth principle for evolutionary modeling, insensitivity to modeling details, is of a different nature than the others. According to this principle, one should be most satisfied with properties of evolutionary dynamics that are not sensitive to the exact specification of the revision protocol. If a property holds for all revision protocols with a certain "family resemblance", then one can argue that the property is not a consequence of particular choices of functional forms, but of more fundamental assumptions about how individuals make decisions. It is because of this principle that our analyses to come focus on families of evolutionary dynamics, and on establishing properties of dynamics that hold for all family members.

The principle of insensitivity to modeling details provides a defense against a well known critique of evolutionary analysis of games: that it is inherently arbitrary. According to this critique, modelers who depart from the assumption of perfect rationality are left with an overwhelming array of alternative assumptions; since the choice among these assumptions is ultimately made in an ad hoc fashion, the predictions of boundedly
rational models must be viewed with suspicion. Heeding the fifth principle enables us to dispel this critique: if all qualitatively similar models generate the same predictions, then arbitrariness is no longer an issue.

5.2 Desiderata for Revision Protocols and Evolutionary Dynamics

We now turn from general principles for evolutionary modeling to specific desirable properties for revision protocols and their mean dynamics.

5.2.1 Limited Information

Since revision protocols can be essentially arbitrary functions of the payoff vector $F^{p}(x)$ and the population state x^{p}, they allow substantial freedom to specify how agents respond to current strategic conditions. But as we argued in the introduction, it is most in keeping with the evolutionary paradigm to specify models of choice in which agents only possess limited information about their strategic environment. Our first two desiderata capture this idea.
(C) Continuity: $\quad \rho$ is Lipschitz continuous.
(SD) \quad Scarcity of data: For all $i, j \in S^{p}$ and $p \in \mathcal{P}, \rho_{i j}^{p}$ only depends on π_{i}^{p}, π_{j}^{p}, and x_{j}^{p}.
It is contrary to the evolutionary paradigm to posit revision protocols that are extremely sensitive to the exact values of payoffs or of the population state. When the population size is large, exact information about these quantities can be difficult to obtain; myopic agents are unlikely to make the necessary efforts. These concerns are reflected in condition (C), which requires that agents' revision protocols be Lipschitz continuous functions of payoffs and the state. Put differently, condition (C) asks that small changes in aggregate behavior not lead to large changes in players' responses.

The information that agents in an evolutionary model possess depends on the application at hand: in some settings-for instance, if information is provided by a central planner-agents might have every bit of information that could conceivably be of use. But in others agents might know very little about their strategic environment.

Condition (SD), scarcity of data, imposes a stringent restriction on the nature of agents' information, allowing agents to know only those facts that are most germane to the decision at hand. Under this condition, an agent who receives a revision opportunity chooses a candidate strategy j either by observing the strategy of a randomly chosen opponent or by selecting a strategy at random from the set S^{p}. Then, the agent's decision
about whether to switch is based only on the payoffs of the current strategy i and the candidate strategy j.

Some of the protocols we consider require agents to know the payoffs of all strategies in S^{p}. While such protocols fail condition (SD), one can imagine environments where this payoff information might be within the agents' grasp. We therefore also propose this weaker scarcity of data condition:
$\left(\mathrm{SD}^{*}\right) \quad$ For all $i, j \in S^{p}$ and $p \in \mathcal{P}, \rho_{i j}^{p}$ only depends on $\pi_{1}^{p}, \pi_{2}^{p}, \ldots, \pi_{n^{p}}^{p}$, and x_{j}^{p}.
To illustrate the use of these conditions, we recall some examples of revision protocols from Chapter 4. As all of these examples satisfy continuity (C), we focus our attention on scarcity of data.

Example 5.2.1. The following three revision protocols generate the replicator dynamic as their mean dynamics:

$$
\begin{align*}
& \rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)=\frac{x_{j}^{p}}{m^{p}}\left[\pi_{j}^{p}-\pi_{i}^{p}\right]_{+}, \tag{5.1}\\
& \rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)=\left(K^{p}-\pi_{i}^{p}\right) \frac{x_{j}^{p}}{m^{p}}, \tag{5.2}\\
& \rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)=\frac{x_{j}^{p}}{m^{p}}\left(\pi_{j}^{p}-K^{p}\right) . \tag{5.3}
\end{align*}
$$

(In equations (5.2) and (5.3), we assume the constant K^{p} is chosen so that $\rho_{i j}^{p}\left(\pi^{p}, x^{p}\right) \geq 0$.) Protocol (5.1) is pairwise proportional imitation, protocol (5.2) is pure imitation driven by dissatisfaction, and protocol (5.3) is imitation of success. All three of these protocols satisfy condition (SD). §

Example 5.2.2. The logit dynamic is derived from the exact target protocol

$$
\rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)=\sigma_{j}^{p}\left(\pi^{p}, x^{p}\right)=\frac{\exp \left(\eta^{-1} \pi_{j}^{p}\right)}{\sum_{k \in S^{p}} \exp \left(\eta^{-1} \pi_{k}^{p}\right)} .
$$

This protocol fails condition (SD), but it satisfies condition (SD*). §
Example 5.2.3. The target protocol

$$
\rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)=\tau_{j}^{p}\left(\pi^{p}, x^{p}\right)=\left[\hat{\pi}_{j}^{p}\right]_{+}
$$

induces the BNN dynamic as its mean dynamic. This protocol conditions on strategy j 's excess payoff $\hat{\pi}_{j}^{p}=\pi_{j}^{p}-\frac{1}{m^{p}}\left(x^{p}\right)^{\prime} \pi^{p}$, and hence on the population average payoff $\frac{1}{m^{p}}\left(x^{p}\right)^{\prime} \pi^{p}$.

Since computing this average payoff requires knowledge of the payoffs and utilization levels of all strategies, this protocol fails both condition (SD) and condition (SD*). §

5.2.2 Incentives and Aggregate Behavior

Our two remaining desiderata impose restrictions on mean dynamics, linking the evolution of aggregate behavior to the incentives in the underlying game. The first of the two constrains equilibrium behavior, the second disequilibrium dynamics.
(NS) Nash stationarity: $\quad V_{F}(x)=\mathbf{0}$ if and only if $x \in N E(F)$.
(PC) Positive correlation: $V_{F}^{p}(x) \neq \mathbf{0}$ implies that $V_{F}^{p}(x)^{\prime} F^{p}(x)>0$.
Nash stationarity (NS) requires that the Nash equilibria of the game F and the rest points of the dynamic V_{F} coincide. It can be split into two distinct restrictions. First, (NS) asks that every Nash equilibrium of F be a rest point of V_{F}. If state x is a Nash equilibrium, then no agent benefits from switching strategies; (NS) demands that in this situation, the state be at rest under V_{F}. This does not mean that the agents never switch strategies at this state; instead, it requires that the expected aggregate impact of switches is nil.

Second, condition (NS) asks that every rest point of V_{F} be a Nash equilibrium of F. If the current population state is not a Nash equilibrium, then by definition there are agents who would benefit from switching strategies. Condition (NS) requires that some of these agents eventually avail themselves of this opportunity.

Positive correlation (PC) is a mild payoff monotonicity condition that has force whenever a population is not at rest. To understand its name, view the strategy set $S^{p}=\left\{1, \ldots, n^{p}\right\}$ as a probability space endowed with the uniform probability measure. Then the vectors $V_{F}^{p}(x) \in \mathbf{R}^{n^{p}}$ and $F^{p}(x) \in \mathbf{R}^{n^{p}}$ can be interpreted as random variables on S^{p}, making it meaningful to ask about their covariance.

To evaluate this quantity, we make a simple observation: if Y and Z are random variables and the expectation of Y is zero, then the covariance of Y and Z is just the expectation of their product:

$$
\operatorname{Cov}(Y, Z)=E(Y Z)-E(Y) E(Z)=E(Y Z) .
$$

Since the dynamic V_{F} keeps population masses constant (in other words, since $V_{F}^{p}(x) \in$ $T X^{p}$), we know that the components of $V_{F}^{p}(x)$ sum to zero. Thus

$$
E\left(V^{p}(x)\right)=\sum_{k \in S^{p}} \frac{1}{n^{p}} V_{k}^{p}(x)=0, \text { and so }
$$

$$
\operatorname{Cov}\left(V^{p}(x), F^{p}(x)\right)=E\left(V^{p}(x) F^{p}(x)\right)=\sum_{k \in S^{p}} \frac{1}{n^{p}} V_{k}^{p}(x) F_{k}^{p}(x)=\frac{1}{n^{p}} V^{p}(x)^{\prime} F^{p}(x)
$$

We can therefore restate condition (PC) as follows: if $V_{F}^{p}(x) \neq \mathbf{0}$, then $\operatorname{Cov}\left(V_{F}^{p}(x), F^{p}(x)\right)>0$.
One can visualize condition (PC) through its geometric interpretation: whenever the growth rate vector $V_{F}^{p}(x)$ is nonzero, it forms a strictly acute angle with the vector of payoffs $F^{p}(x)$ (see Examples 5.2.5 and 5.2.7 below). In rough terms, this means that the direction of motion does not overly distort the direction of the payoff vector.

In this connection, it is worth emphasizing that while the payoff vector $F^{p}(x)$ can be any vector in $\mathbf{R}^{n^{p}}$, forward invariance requires the growth rate vector $V_{F}^{p}(x)$ to be an element of the tangent cone $T X^{p}\left(x^{p}\right)$: its components must sum to zero, and it must not assign negative growth rates to unused strategies (Proposition 4.3.3). This means that in most games, evolutionary dynamics must distort payoff vectors in order to remain feasible. The dynamic that minimizes this distortion, the projection dynamic, is studied in Chapter 6.

There is an important link between our two conditions: the out-of-equilibrium condition (PC) implies half of the equilibrium condition (NS). In particular, if positive correlation holds, then every Nash equilibrium of F is a rest point under V_{F}.

This is easiest to see in the single population setting. If x is a Nash equilibrium of F, then $F(x)$ is in the normal cone of X at x. Since $V_{F}(x)$ is a feasible direction of motion from x, it is in the tangent cone of X at x; thus, the angle between $F(x)$ and $V_{F}(x)$ cannot be acute. Positive correlation therefore implies that x is a rest point of V_{F}.

More generally, we have the following result.
Proposition 5.2.4. If V_{F} satisfies (PC), then $x \in N E(F)$ implies that $V_{F}(x)=\mathbf{0}$.
Proof. Suppose that V_{F} satisfies (PC) and that $x \in N E(F)$. Recall that

$$
x \in N E(F) \Leftrightarrow F(x) \in N X(x) \Leftrightarrow\left[v^{\prime} F(x) \leq 0 \text { for all } v \in T X(x)\right] .
$$

Now fix $p \in \mathcal{P}$, and define the vector $v \in \mathbf{R}^{n}$ by $v^{p}=V_{F}^{p}(x)$ and $v^{q}=\mathbf{0}$ for $q \neq p$. Then $v \in T X(x)$ by construction, and so $V_{F}^{p}(x)^{\prime} F^{p}(x)=v^{\prime} F(x) \leq 0$. Condition (PC) then implies that $V_{F}^{p}(x)=\mathbf{0}$. Since p was arbitrary, we conclude that $V_{F}(x)=0$.

Example 5.2.5. Consider the two-strategy coordination game

$$
F(x)=\binom{F_{1}(x)}{F_{2}(x)}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{x_{1}}{2 x_{2}},
$$

Figure 5.2.1: Condition (PC) in 12 Coordination.
and the replicator dynamic for this game,

$$
V(x)=\binom{V_{1}(x)}{V_{2}(x)}=\binom{x_{1} \hat{F}_{1}(x)}{x_{2} \hat{F}_{2}(x)}=\binom{x_{1}\left(x_{1}-\left(\left(x_{1}\right)^{2}+2\left(x_{2}\right)^{2}\right)\right)}{x_{2}\left(2 x_{2}-\left(\left(x_{1}\right)^{2}+2\left(x_{2}\right)^{2}\right)\right)}
$$

both of which are graphed in Figure 5.2.1. At each state that is not a rest point, the angle between $F(x)$ and $V(x)$ is acute. At each Nash equilibrium, no vector that forms an acute angle with the payoff vector is a feasible direction of motion; thus, all Nash equilibria must be rest points under V. \S

Exercise 5.2.6. Suppose that F is a two-strategy game, and let V_{F} and \hat{V}_{F} be Lipschitz continuous dynamics that satisfy condition (PC). Show that if neither dynamic is at rest at state $x \in X$, then $\hat{V}_{F}(x)$ is a positive multiple of $V_{F}(x)$. Conclude that if V_{F} and \hat{V}_{F} also satisfy condition (NS), then $\hat{V}_{F}(x)=k(x) V_{F}(x)$ for some positive function $k: X \rightarrow(0, \infty)$. In this case, the phase diagrams of V_{F} and \hat{V}_{F} are identical, and solutions to V_{F} and \hat{V}_{F} differ only by a change in speed (cf Exercise 5.4.10 below). §

Example 5.2.7. Consider the three-strategy coordination game

$$
F(x)=\left(\begin{array}{l}
F_{1}(x) \\
F_{2}(x) \\
F_{2}(x)
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
2 x_{2} \\
3 x_{2}
\end{array}\right) .
$$

Since payoffs are now vectors in \mathbf{R}^{3}, they can no longer be drawn in a two-dimensional picture, so we draw the projected payoff vectors

$$
\Phi F(x)=\left(I-\frac{1}{3} \mathbf{1 1 ^ { \prime }}\right) F(x)=\left(\begin{array}{c}
x_{1}-\frac{1}{3}\left(x_{1}+2 x_{2}+3 x_{3}\right) \\
2 x_{2}-\frac{1}{3}\left(x_{1}+2 x_{2}+3 x_{3}\right) \\
3 x_{3}-\frac{1}{3}\left(x_{1}+2 x_{2}+3 x_{3}\right)
\end{array}\right)
$$

instead. Since dynamic V_{F} also takes values in $T X$, drawing the growth rate vectors $V_{F}(x)$ and the projected payoff vectors $\Phi F(x)$ is enough to evaluate property (PC) (cf Exercise 5.2.8). In Figure 5.2.2(i), we plot the projected payoffs ΦF and the replicator dynamic; in Figure 5.2.2(ii) we plot the projected payoffs ΦF and the BNN dynamic. In both cases, except when $V_{F}(x)=\mathbf{0}$, the angles between $V_{F}(x)$ and $\Phi F(x)$ are always acute. At each Nash equilibrium x, all directions of motion from x that form an acute angle with $\Phi F(x)$ are infeasible, and so both dynamics are at rest. §

Exercise 5.2.8. Let V_{F} be an evolutionary dynamic for the single population game F. Show that $\operatorname{sgn}\left(V_{F}(x)^{\prime} F(x)\right)=\operatorname{sgn}\left(V_{F}(x)^{\prime} \Phi F(x)\right)$. Thus, to check that (PC) holds, it is enough to verify that it holds with respect to projected payoffs.

5.3 Families of Evolutionary Dynamics

In the remainder of this chapter and in Chapter 6, we introduce various families and examples of evolutionary dynamics, and we evaluate them in terms of our four desiderata: continuity (C), scarcity of data (SD), Nash stationarity (NS), and positive correlation (PC). Table 5.1 summarizes the results. Let us briefly mention a few of the main ideas from the analyses to come.

- Imitative dynamics, including the replicator dynamic, satisfy all of the desiderata except for Nash stationarity (NS): these dynamics admit rest points that are not Nash equilibria.
- Excess payoff dynamics, including the BNN dynamic, satisfy all of our desiderata except scarcity of data (SD): the revision protocols that generate these dynamics involve comparisons between the individual strategies' payoffs and the population's average payoff.
- By introducing revision protocols that only require pairwise comparisons of payoffs, we obtain a family of evolutionary dynamics that satisfy all four desiderata.

Figure 5.2.2: Condition (PC) in 123 Coordination.

Family	Leading example	(C)	(SD)	(NS)	(PC)
imitation	replicator	yes	yes	no	yes
excess payoff	BNN	yes	no	yes	yes
pairwise comparison	Smith	yes	yes	yes	yes
	best response	no	yes a	yes b	yes b
perturbed best response	logit	yes	yes a	no	no
	projection	no	no	yes	yes

${ }^{a}$ These dynamics fail condition (SD), but satisfy the weaker requirement (SD*).
${ }^{b}$ The best response dynamics satisfy versions of conditions (NS) and (PC) defined for differential inclusions.
Table 5.1: Families of evolutionary dynamics and their properties.

- The best response dynamic satisfies versions of all of the desiderata except continuity: its revision protocol depends discontinuously on payoffs.
- We can eliminate the discontinuity of the best response dynamic by introducing perturbations, but at the cost of violating the incentive conditions. In fact, choosing the level of perturbations involves a tradeoff between condition (C) and conditions (NS) and (PC): smaller perturbations reduce the degree of smoothing, while larger perturbations make the failures of the incentive conditions more severe.
- The projection dynamic minimizes the discrepancy at each state between the vector of payoffs and the vector representing the directions of motion. It satisfies both of incentive conditions, but neither of the limited information conditions. There are a variety of close connections between the projection dynamic and the replicator dynamic.

Figure 5.3.1 presents phase diagrams for the six basic dynamics in the standard Rock-Paper-Scissors game

$$
F(x)=\left(\begin{array}{l}
F_{R}(x) \\
F_{P}(x) \\
F_{S}(x)
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{R} \\
x_{P} \\
x_{S}
\end{array}\right)=\left(\begin{array}{l}
x_{S}-x_{P} \\
x_{R}-x_{S} \\
x_{P}-x_{R}
\end{array}\right) .
$$

The unique Nash equilibrium of RPS places equal mass on each strategy: $x^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. In the phase diagrams, colors represent speed of motion: within each diagram, motion is fastest in the red regions and slowest in the blue ones. In this example, the maximum

Figure 5.3.1: Six basic dynamics in the Rock-Paper-Scissors game.
speed under the replicator dynamic is $\frac{\sqrt{2}}{4} \approx .3536$, while the maximum speed under the other five dynamics is $\sqrt{2} \approx 1.4142$. Some remarks on the phase diagrams:

- The replicator and projection dynamics exhibit closed orbits around the Nash equilibrium. Under the other four dynamics, the Nash equilibrium is globally asymptotically stable.
- The replicator dynamic has rest points at the Nash equilibrium and at each of the pure states. Under the other dynamics, the only rest point is the Nash equilibrium.
- The phase diagram for the BNN dynamic can be divided into six regions. In the "odd" regions, exactly one strategy has above average payoffs, so the dynamic moves directly toward a pure state, just as under the best response dynamic. In the "even" regions, two strategies have above average payoffs; as these regions are traversed, the "target point" of the dynamic passes from one pure state to the next.
- Compared to those of the BNN dynamic, solutions of the Smith dynamic approach the Nash equilibrium at closer angles and at higher speeds.
- Under the best response dynamic, solution trajectories always aim directly toward the state representing the current best response. The trajectories are kinked whenever best responses change.
- Unlike those of the best response dynamic, solutions trajectories of the logit dynamic are smooth. The directions of motion under the two dynamics are similar, except at states near the boundaries of the best response regions.
- Under the replicator dynamic, the boundary consists of three rest points and three heteroclinic orbits that connect distinct rest points. All told, the boundary forms what is known as a heteroclinic cycle.
- Under the projection dynamic, there is a unique forward solution from each initial condition, but backward solutions are not unique. For example, the outermost closed orbit (the inscribed circle) is reached in finite time by every solution trajectory that starts outside of it. In addition, there are solution trajectories that start in the interior of the state space and reach the boundary in finite time-an impossibility under any of the other dynamics

We develop these and many other observations in the sections to come.

5.4 Imitative Dynamics

5.4.1 Definition

Imitative dynamics are based on revision protocols of the form

$$
\begin{equation*}
\rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)=\hat{x}_{j}^{p} r_{i j}^{p}\left(\pi^{p}, x^{p}\right), \tag{5.4}
\end{equation*}
$$

where $\hat{x}_{j}^{p}=x_{j}^{p} / m^{p}$ is the proportion of population p members playing strategy $j \in S^{p}$. We can interpret these protocols as follows: When an agent's clock rings, he randomly chooses an opponent from his population. If the agent is playing strategy $i \in S^{p}$ and the opponent strategy $j \in S^{p}$, then the agent imitates the opponent with probability proportional to the conditional imitation rate $r_{i j}^{p}$.

The revision protocol (5.4) generates a mean dynamic of the form

$$
\begin{align*}
\dot{x}_{i}^{p} & =\sum_{k \in S^{p}} x_{k}^{p} \rho_{k i}^{p}\left(F^{p}(x), x^{p}\right)-x_{i}^{p} \sum_{k \in S^{p}} \rho_{i k}^{p}\left(F^{p}(x), x^{p}\right) \tag{5.5}\\
& =\sum_{k \in S^{p}} x_{k}^{p} \hat{x}_{i}^{p} r_{k i}^{p}\left(F^{p}(x), x^{p}\right)-x_{i}^{p} \sum_{k \in S^{p}} \hat{x}_{k}^{p} r_{i k}^{p}\left(F^{p}(x), x^{p}\right) \\
& =x_{i}^{p} \sum_{k \in S^{p}} \hat{x}_{k}^{p}\left(r_{k i}^{p}\left(F^{p}(x), x^{p}\right)-r_{i k}^{p}\left(F^{p}(x), x^{p}\right)\right) .
\end{align*}
$$

If the revision protocol satisfies the requirements below, the differential equation above defines an imitative dynamic.

Definition. Suppose that the conditional imitation rates $r_{i j}^{p}$ are Lipschitz continuous, and that net conditional imitation rates are monotone:

$$
\begin{equation*}
\pi_{j}^{p} \geq \pi_{i}^{p} \Leftrightarrow r_{k j}^{p}\left(\pi^{p}, x^{p}\right)-r_{j k}^{p}\left(\pi^{p}, x^{p}\right) \geq r_{k i}^{p}\left(\pi^{p}, x^{p}\right)-r_{i k}^{p}\left(\pi^{p}, x^{p}\right) \text { for all } i, j, k \in S^{p} \text { and } p \in \mathscr{P} . \tag{5.6}
\end{equation*}
$$

Then the map from population games $F \in \mathcal{F}$ to differential equations (5.5) is called an imitative dynamic.

Condition (5.6) says that whenever strategy $j \in S^{p}$ has a higher payoff than strategy $i \in S^{p}$, then the net rate of imitation from any strategy $k \in S^{p}$ to j exceeds the net rate of imitation from k to i. We illustrate this condition in the next subsection using a variety of examples; the condition's implications for aggregate behavior are developed thereafter.

Example 5.4.1. The replicator dynamic. The fundamental example of an imitative dynamic
is the replicator dynamic, defined by

$$
\text { (R) } \quad \dot{x}_{i}^{p}=x_{i}^{p} \hat{F}_{i}^{p}(x)
$$

Under the replicator dynamic, the percentage growth rate of each strategy $i \in S^{p}$ currently in use equals its excess payoff $\hat{F}_{i}^{p}(x)=F_{i}^{p}(x)-\bar{F}^{p}(x)$; unused strategies remain so. We provide a variety of derivations of the replicator dynamic below. \S

5.4.2 Examples

The examples to follow are expressed in the setting of a single, unit mass population, so that $\hat{x}_{i}=x_{i}$. They are easily recast for multipopulation settings.

Example 5.4.2. Imitation via pairwise comparisons. Suppose that $\rho_{i j}(\pi, x)=x_{j} \phi\left(\pi_{j}-\pi_{i}\right)$, where $\phi: \mathbf{R} \rightarrow \mathbf{R}_{+}$equals 0 on $(-\infty, 0]$ and is strictly increasing on $[0, \infty)$. In this case, an agent only imitates his randomly chosen opponent when the opponent's payoff is higher than the agent's own. Protocols of this form satisfy condition (5.6). If we write $\psi(d)=\phi(d)-\phi(-d)$, then we can express the corresponding mean dynamic as

$$
\begin{aligned}
\dot{x}_{i} & =x_{i} \sum_{k \in S} x_{k}\left(\phi\left(F_{i}(x)-F_{k}(x)\right)-\phi\left(F_{k}(x)-F_{i}(x)\right)\right) \\
& =x_{i} \sum_{k \in S} x_{k} \psi\left(F_{i}(x)-F_{k}(x)\right) .
\end{aligned}
$$

Setting $\phi(d)=[d]_{+}$gives us the pairwise proportional imitation protocol from Example 4.2.1. In this case $\psi(d)=d$, and the mean dynamic is the replicator dynamic (R). §

Exercise 5.4.3. Suppose we generalize the Example 5.4 .2 by letting $\rho_{i j}(\pi, x)=x_{j} \phi_{i j}\left(\pi_{j}-\pi_{i}\right)$, where each function $\phi_{i j}$ equals 0 on ($-\infty, 0$] and is strictly increasing on $[0, \infty)$. Explain why the resulting mean dynamic need not satisfy condition (5.6), and so need not be an imitative dynamic. (For an interesting contrast, see Section 5.6.)

Example 5.4.4. Pure imitation driven by dissatisfaction. Suppose that $\rho_{i j}(\pi, x)=a\left(\pi_{i}\right) x_{j}$. Then when the clock of an i player rings, he abandons his current strategy with probability proportional to the abandonment rate $a\left(\pi_{i}\right)$; in such instances, he imitates a randomly chosen opponent. In this case, condition (5.6) requires that $a: \mathbf{R} \rightarrow \mathbf{R}_{+}$be strictly decreasing, and the mean dynamic becomes

$$
\begin{equation*}
\dot{x}_{i}=x_{i} \sum_{k \in S} x_{k}\left(a\left(F_{k}(x)\right)-a\left(F_{i}(x)\right)\right)=x_{i}\left(\sum_{k \in S} x_{k} a\left(F_{k}(x)\right)-a\left(F_{i}(x)\right)\right) . \tag{5.7}
\end{equation*}
$$

If abandonment rates take the linear form $a\left(\pi_{i}\right)=K-\pi_{i}$ (where K is large enough), then (5.7) is again the replicator dynamic (R). §

Example 5.4.5. Imitation of success. Suppose $\rho_{i j}(\pi, x)=x_{j} c\left(\pi_{j}\right)$. Then when an agent's clock rings, he picks an opponent at random; if the opponent is playing strategy j, the player imitates him with probability proportional to the copying rate $c\left(\pi_{j}\right)$. In this case, condition (5.6) requires that $c: \mathbf{R} \rightarrow \mathbf{R}_{+}$be strictly increasing, and the mean dynamic becomes

$$
\begin{equation*}
\dot{x}_{i}=x_{i} \sum_{k \in S} x_{k}\left(c\left(F_{i}(x)\right)-c\left(F_{k}(x)\right)\right)=x_{i}\left(c\left(F_{i}(x)\right)-\sum_{k \in S} x_{k} c\left(F_{k}(x)\right)\right) . \tag{5.8}
\end{equation*}
$$

Since ρ is a target protocol (i.e., since $\rho_{i j} \equiv \tau_{j}$), the mean dynamic (5.8) is actually a target dynamic:

$$
\dot{x}_{i}= \begin{cases}\sum_{k \in S} x_{k} c\left(F_{k}(x)\right)\left(\frac{x_{i} c\left(F_{i}(x)\right)}{\sum_{k \in S} x_{k} c\left(F_{k}(x)\right)}-x_{i}\right) & \text { if } x_{j} c\left(F_{j}(x)\right) \neq 0 \text { for some } j \in S \\ 0 & \text { otherwise }\end{cases}
$$

If copying rates are of the linear form $c\left(\pi_{j}\right)=\pi_{j}+K$ (for K large enough), then (5.8) is once again the replicator dynamic (R). If in addition payoffs are nonnegative and average payoffs are positive, we can choose $c\left(\pi_{j}\right)=\pi_{j}$, so that (5.8) becomes

$$
\begin{equation*}
\dot{x}_{i}=\bar{F}(x)\left(\frac{x_{i} F_{i}(x)}{\bar{F}(x)}-x_{i}\right) . \tag{5.9}
\end{equation*}
$$

Here, the target state is proportional to the vector of popularity-weighted payoffs $x_{i} F_{i}(x)$, with the rate of motion toward this state governed by average payoffs $\bar{F}(x)$. §

Exercise 5.4.6. Why is the restriction on payoffs needed to obtain equation (5.9)?
Example 5.4.7. Imitation of success with repeated sampling. Suppose that

$$
\begin{equation*}
\rho_{i j}(\pi, x)=\frac{x_{j} w\left(\pi_{j}\right)}{\sum_{k \in S} x_{k} w\left(\pi_{k}\right)}, \tag{5.10}
\end{equation*}
$$

where $\sum_{k \in S} x_{k} w\left(\pi_{k}\right)>0$. Here, when an agent's clock rings he chooses an opponent at random. If the opponent is playing strategy j, the agent imitates him with probability proportional to the copying weight $w\left(\pi_{j}\right)$. If the agent does not imitate this opponent, he draws a new opponent at random and repeats the procedure. In this case, condition (5.6) requires that $w: \mathbf{R} \rightarrow \mathbf{R}_{+}$be strictly increasing. Since ρ is an exact target protocol (i.e.,

Figure 5.4.1: Two imitative dynamics in 123 Coordination.
since $\rho_{i j} \equiv \sigma_{j}$ and $\sum_{j \in S} \sigma_{j} \equiv 1$), it induces the exact target dynamic

$$
\begin{equation*}
\dot{x}_{i}=\frac{x_{i} w\left(F_{i}(x)\right)}{\sum_{k \in S} x_{k} w\left(F_{k}(x)\right)}-x_{i} . \S \tag{5.11}
\end{equation*}
$$

We conclude with two important instances of repeated sampling.
Example 5.4.8. The Maynard Smith replicator dynamic. If payoffs are nonnegative and average payoffs are positive, we can let copying weights equal payoffs: $w\left(\pi_{j}\right)=\pi_{j}$. The resulting exact target dynamic,

$$
\begin{equation*}
\dot{x}_{i}=\frac{x_{i} F_{i}(x)}{\bar{F}(x)}-x_{i}=\frac{x_{i} \hat{F}_{i}(x)}{\bar{F}(x)} \tag{5.12}
\end{equation*}
$$

is known as the Maynard Smith replicator dynamic.
Example 5.4 .5 showed that under the same assumptions on payoffs, the replicator dynamic takes the form (5.9). The Maynard Smith replicator dynamic (5.12) differs from (5.9) only in that the target state is approached at a unit rate rather than at a rate determined by average payoffs; thus, motion under (5.9) is relatively fast when average payoffs are relatively high. Comparing the protocol here to the one from Example 5.4.5 reveals the source of the difference in speeds: under repeated sampling, the overall payoff level has little influence on the probability that a revising agent winds up switching strategies.

In the single population setting, the phase diagrams of (5.9) and (5.12) are identical, and

Figure 5.4.2: Two imitative dynamics in Matching Pennies.
the dynamics only differ in terms of the speed at which solution trajectories are traversed (cf Exercise 5.4.10). We illustrate this in Figure 5.4.1, which presents phase diagrams for the two dynamics in 123 Coordination.

When there are multiple populations, the fact that average payoffs differ across populations implies that the phase diagrams of (5.9) and (5.12) no longer coincide. This is illustrated in Figure 5.4.2, which presents phase diagrams for this Matching Pennies game:

	h	t
H	2,1	1,2
T	1,2	2,1

While interior solutions of (5.9) form closed orbits around the unique Nash equilibrium $x^{*}=\left(\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}\right)\right)$, interior solutions of (5.12) converge to x^{*}. §

In the biology literature, the stochastic evolutionary process generated by the revision protocol in the previous example is known as a frequency-dependent Moran process-see the Notes for further discussion.

Example 5.4.9. The i-logit dynamic. If the copying weights $w\left(\pi_{j}\right)=\exp \left(\eta^{-1} \pi_{j}\right)$ are exponential functions of payoffs, the exact target dynamic (5.11) becomes the i-logit dynamic with noise level $\eta>0$.

$$
\dot{x}_{i}=\frac{x_{i} \exp \left(\eta^{-1} F_{i}(x)\right)}{\sum_{k \in S} x_{k} \exp \left(\eta^{-1} F_{k}(x)\right)}-x_{i} .
$$

Here, the i th component of the target state is proportional both to the mass of agents playing strategy i and to an exponential function of strategy i s payoff. If η is small, and x is not too close to the boundary of X or of any best response region, then the target state is close to $e_{b(x)}$, the vertex of X corresponding to the current best response. Therefore, in most games, the i-logit dynamic with small η approximates the best response dynamic $\dot{x} \in B(x)-x$ on much of $\operatorname{int}(X)$. We illustrate this in Figure 5.4.3, which presents four i-logit dynamics (with $\eta=.5, .1, .05$, and .01) and the best response dynamic for the anticoordination game

$$
F(x)=A x=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
-x_{1} \\
-x_{2} \\
-x_{3}
\end{array}\right) . \S
$$

Exercise 5.4.10. Changes of speed and reparameterizations of time. Let $V: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a Lipschitz continuous vector field and let $k: \mathbf{R}^{n} \rightarrow(0, \infty)$ be a positive Lipschitz continuous function. Let $\left\{x_{t}\right\}$ be a solution to $\dot{x}=V(x)$ with initial condition ξ, and let $\left\{y_{t}\right\}$ be a solution to $\dot{x}=k(x) V(x)$, also with initial condition ξ. Show that $y_{t}=x_{I(t)}$, where $I(t)=\int_{0}^{t} k\left(y_{s}\right) \mathrm{d} s$.

5.4.3 Biological Derivations of the Replicator Dynamic

While we have derived the replicator dynamic from models of imitation, its origins lie in mathematical biology, where it arises from models of intra- and inter-species competition. The next two exercises, which are set in a single population, consider the replicator dynamic from this point of view.

Exercise 5.4.11. In the basic game theoretic model of natural selection within a single animal species, each strategy $i \in S$ represents a behavioral type. The value of $F_{i}(x)$ represents the (reproductive) fitness of type i when the current proportions of types are described by $x \in \operatorname{int}(X)$. In particular, if we let $y_{i} \in(0, \infty)$ represent the (absolute) number animals of type i in the population, then the evolution of the population is described by

$$
\begin{equation*}
\dot{y}_{i}=y_{i} F_{i}(x), \quad \text { where } x_{i}=\frac{y_{i}}{\sum_{j \in S} y_{j}} . \tag{5.13}
\end{equation*}
$$

Show that under equation (5.13), the vector x describing the proportions of animals of each of each type evolves according to the replicator equation (R).

Exercise 5.4.12. The Lotka-Volterra equation. The Lotka-Volterra equation is a fundamental model of biological competition among members of multiple species. When there are

Figure 5.4.3: i-logit and best response dynamics in Anticoordination.
$n-1$ species, the equation takes the form

$$
\begin{equation*}
\dot{y}_{k}=y_{k}\left(b_{k}+(M y)_{k}\right), \quad k \in\{1, \ldots, n-1\}, \tag{5.14}
\end{equation*}
$$

where b_{k} is the baseline growth rate for species k, and the interaction matrix $M \in \mathbf{R}^{(n-1) \times(n-1)}$ governs cross-species effects. Show that after the change of variable

$$
x_{i}=\frac{y_{i}}{1+\sum_{l=1}^{n-1} y_{l}} \text { and } x_{n}=\frac{1}{1+\sum_{l=1}^{n-1} y_{l}},
$$

the $n-1$ dimensional Lotka-Volterra equation (5.14) is equivalent up to a change of speed (cf Exercise 5.4.10) to the n strategy replicator dynamic

$$
\dot{x}_{i}=x_{i}\left((A x)_{i}-x^{\prime} A x\right), \quad i \in\{1, \ldots, n\},
$$

where the payoff matrix $A \in \mathbf{R}^{n \times n}$ is related to $M \in \mathbf{R}^{(n-1) \times(n-1)}$ and $b \in \mathbf{R}^{n-1}$ by the $\mathbf{R}^{(n-1) \times n}$ matrix equation

$$
(M b)=(I(-\mathbf{1})) A .
$$

If M and b are given, this equation determines A up to an additive constant in each column. Thus, A can always be chosen so that either the elements of its last row or the elements of its diagonal are all 0 .

5.4.4 Extinction and Invariance

We now derive properties shared by all imitative dynamics. First of all, it follows immediately from equation (5.5) that all imitative dynamics satisfy extinction: if a strategy is unused, its growth rate is zero.

$$
\begin{equation*}
\text { If } x_{i}^{p}=0 \text {, then } V_{i}^{p}(x)=0 \tag{5.15}
\end{equation*}
$$

Extinction implies that the growth rate vectors $V(x)$ are always tangent to the boundaries of X: formally, $V(x)$ is not only in $T X(x)$, but also in $-T X(x)$ (cf Proposition 4.3.3). Thus, since imitative dynamics are Lipschitz continuous, it follows from Theorem 4.A.8 in Chapter 4 that solutions to imitative dynamics exist for all positive and negative times.

Proposition 5.4.13 (Forward and backward invariance). Let $\dot{x}=V_{F}(x)$ be an imitative dynamic. Then for each initial condition $\xi \in X$, this dynamic admits a unique solution trajectory in $\mathcal{I}_{(-\infty, \infty)}=\{x:(-\infty, \infty) \rightarrow X: x$ is continuous $\}$.

Extinction also implies a second invariance property: if $\left\{x_{t}\right\}$ is a solution trajectory of an imitative dynamic, then the support of x_{t} is independent of t. Uniqueness of solution trajectories, which is implied by the Lipschitz continuity of the dynamic, is an essential ingredient of the proof of this result.

Theorem 5.4.14 (Support invariance). If $\left\{x_{t}\right\}$ is a solution trajectory of an imitative dynamic, then the sign of component $\left(x_{t}\right)_{i}^{p}$ is independent of $t \in(-\infty, \infty)$.

Proof. Let $\left\{x_{t}\right\}$ be a solution to the imitative dynamic $\dot{x}=V(x)$, and suppose that $x_{0}=\xi$. Suppose that $\xi_{i}^{p}=0$; we want to show that $\left(x_{t}\right)_{i}^{p}=0$ for all $t \in(-\infty, \infty)$. To accomplish this, we define a new vector field $\hat{V}: X \rightarrow \mathbf{R}^{n}$ as follows:

$$
\hat{V}_{j}^{q}(x)= \begin{cases}0 & \text { if } j=i \text { and } q=p \\ V_{j}^{q}(x) & \text { otherwise }\end{cases}
$$

If $\left\{\hat{x}_{t}\right\} \subset X$ is the unique solution to $\dot{x}=\hat{V}(x)$ with $\hat{x}_{0}=\xi$, then $\left(\hat{x}_{t}\right)_{i}^{p}=0$ for all t. But V and \hat{V} are identical whenever $x_{i}^{p}=0$ by extinction (5.15); therefore, $\left\{\hat{x}_{t}\right\}$ is also a solution to $\dot{x}=V(x)$. Since solutions to $\dot{x}=V(x)$ are unique, it must be that $\left\{\hat{x}_{t}\right\}=\left\{x_{t}\right\}$, and hence that $\left(x_{t}\right)_{i}^{p}=0$ for all t.

Now suppose that $\xi_{i}^{p}>0$. If $x_{t}=\chi$ satisfied $\chi_{i}^{p}=0$, then the preceding analysis would imply that there are two distinct solutions to $\dot{x}=V(x)$ with $x_{t}=\chi$, one that is contained in the boundary of X and one that is not. As this would contradict uniqueness of solutions, we conclude $\left(x_{t}\right)_{i}^{p}>0$ at all times t.

All of the phase diagrams presented in this section illustrate the face invariance property. The next example points out one of its more subtle consequences.

Example 5.4.15. Figure 5.4 .4 presents the phase diagram of the replicator dynamic for a game with a strictly dominant strategy: for all $x \in X, F_{1}(x)=1$ and $F_{2}(x)=F_{3}(x)=0$. There are two connected components of rest points: one consisting solely of the unique Nash equilibrium e_{1}, and the other containing those states at which strategy 1 is unused. Clearly, the latter component is unstable, as all nearby solution trajectories lead away from it and toward the Nash equilibrium. But as the coloring of the figure indicates, the speed of motion away from the unstable component is very slow: if a small behavior disturbance pushes the state off of the component, it may take a long time before the stable equilibrium is reached. §

Figure 5.4.4: The replicator dynamic in a game with a strictly dominant strategy.

5.4.5 Monotone Percentage Growth Rates and Positive Correlation

We now turn to monotonicity properties of imitative dynamics. All dynamics of form (5.5) can be expressed as

$$
\begin{equation*}
\dot{x}_{i}^{p}=V_{i}^{p}(x)=x_{i}^{p} G_{i}^{p}(x), \text { where } G_{i}^{p}(x)=\sum_{k \in S^{p}} \hat{x}_{k}^{p}\left(r_{k i}^{p}\left(F^{p}(x), x^{p}\right)-r_{i k}^{p}\left(F^{p}(x), x^{p}\right)\right) \tag{5.16}
\end{equation*}
$$

If strategy $i \in S^{p}$ is in use, then $G_{i}^{p}(x)=V_{i}^{p}(x) / x_{i}^{p}$ represents the percentage growth rate of the number of agents using this strategy.

Observation 5.4.16 notes that under every imitative dynamic (as defined in Section 5.4.1), strategies' percentage growth rates are ordered by their payoffs.

Observation 5.4.16. All imitative dynamics exhibit monotone percentage growth rates:

$$
\begin{equation*}
G_{i}^{p}(x) \geq G_{j}^{p}(x) \text { if and only if } F_{i}^{p}(x) \geq F_{j}^{p}(x) . \tag{5.17}
\end{equation*}
$$

This observation is immediate from condition (5.6), which defines imitative dynamics.
Condition (5.17) is a strong restriction on strategies' percentage growth rates. We now show that it implies our basic payoff monotonicity condition, which imposes a weak restriction on strategies' absolute growth rates.

Theorem 5.4.17. All imitative dynamics satisfy positive correlation (PC).
Proof. Let x be a social state at which $V^{p}(x) \neq 0$; we need to show that $V^{p}(x)^{\prime} F^{p}(x)>0$. To do so, we define

$$
S_{+}^{p}(x)=\left\{i \in S^{p}: V_{i}^{p}(x)>0\right\} \quad \text { and } S_{-}^{p}(x)=\left\{j \in S^{p}: V_{j}^{p}(x)<0\right\}
$$

to be the sets of population p strategies with positive and negative absolute growth rates, respectively. By extinction (5.15), these sets are contained in the support of x^{p}. It follows that

$$
S_{+}^{p}(x)=\left\{i \in S^{p}: x_{i}^{p}>0 \text { and } \frac{V_{i}^{p}(x)}{x_{i}^{p}}>0\right\} \text { and } S_{-}^{p}(x)=\left\{j \in S^{p}: x_{j}^{p}>0 \text { and } \frac{V_{j}^{p}(x)}{x_{j}^{p}}<0\right\} .
$$

Since $V(x) \in T X$, we know from Proposition 4.3.3 that

$$
\sum_{k \in S_{+}^{p}(x)} V_{k}^{p}(x)=-\sum_{k \in S_{-}^{p}(x)} V_{k}^{p}(x),
$$

and since $V^{p}(x) \neq \mathbf{0}$, these expressions are positive. Therefore, condition (5.17) enables us to conclude that

$$
\begin{aligned}
V^{p}(x)^{\prime} F^{p}(x) & =\sum_{k \in S_{+}^{p}(x)} V_{k}^{p}(x) F_{k}^{p}(x)+\sum_{k \in S_{-}^{p}(x)} V_{k}^{p}(x) F_{k}^{p}(x) \\
& \geq \min _{i \in S_{+}^{p}(x)} F_{i}^{p}(x) \sum_{k \in S_{+}^{p}(x)} V_{k}^{p}(x)+\max _{j \in S_{-}^{p}(x)} F_{j}^{p}(x) \sum_{k \in S_{-}^{p}(x)} V_{k}^{p}(x) \\
& =\left(\min _{i \in S_{+}^{p}(x)} F_{i}^{p}(x)-\max _{j \in S_{-}^{p}(x)} F_{j}^{p}(x)\right) \sum_{k \in S_{+}^{p}(x)} V_{k}^{p}(x)>0 .
\end{aligned}
$$

We conclude this section by considering two other monotonicity conditions that appear in the literature.

Exercise 5.4.18. In the single population setting, an imitative dynamic (5.16) has aggregate monotone percentage growth rates if

$$
\begin{equation*}
\hat{y}^{\prime} G(x) \geq y^{\prime} G(x) \text { if and only if } \hat{y}^{\prime} F(x) \geq y^{\prime} F(x) \tag{5.18}
\end{equation*}
$$

for all population states $x \in X$ and mixed strategies $\hat{y}, y \in \Delta$.
(i) Show that any imitative dynamic satisfying condition (5.18) is equivalent to the replicator dynamic up to a reparameterization of time (see Exercise 5.4.10). (Hint:

Use Proposition 3.B. 6 to show that condition (5.18) implies that $\Phi G(x)=c(x) \Phi F(x)$ for some $c(x)>0$. Then use the fact that $G(x)^{\prime} x=0$ (why?) to conclude that $\left.\dot{x}_{i}=k(x) x_{i} \hat{F}_{i}(x).\right)$
(ii) If a multipopulation imitative dynamic satisfies the natural analogue of condition (5.18), what can we conclude about the dynamic?

Exercise 5.4.19. An dynamic of form (5.16) has sign-preserving percentage growth rates if

$$
\begin{equation*}
\operatorname{sgn}\left(G_{i}^{p}(x)\right)=\operatorname{sgn}\left(\hat{F}_{i}^{p}(x)\right) \tag{5.19}
\end{equation*}
$$

Show that any such dynamic satisfies positive correlation (PC). (Note that dynamics satisfying condition (5.19) need not satisfy condition (5.6), and so need not be imitative dynamics as we have defined them here. We do not know of an intuitive restriction on revision protocols that leads to condition (5.19).)

5.4.6 Rest Points and Restricted Equilibria

Since all imitative dynamics satisfy positive correlation (PC), Proposition 5.2.4 tells us that their rest points include all Nash equilibria of the underlying game F. On the other hand, face invariance tells us that non-Nash rest points can exist-for instance, while pure states in X are not always Nash equilibria of F, they are necessarily rest points of V_{F}.

To characterize the set of rest points, we first recall the definition of Nash equilibrium:

$$
N E(F)=\left\{x \in X: x_{i}^{p}>0 \Rightarrow F_{i}^{p}(x)=\max _{j \in S^{p}} F_{j}^{p}(x)\right\} .
$$

Bearing this definition in mind, we define the set of restricted equilibria of F by

$$
R E(F)=\left\{x \in X: x_{i}^{p}>0 \Rightarrow F_{i}^{p}(x)=\max _{j \in S^{P}: x_{j}>0} F_{j}^{p}(x)\right\} .
$$

In words, x is a restricted equilibrium of F if it is a Nash equilibrium of a restricted version of F in which only strategies in the support of x can be played.
Exercise 5.4.20. Alternate definitions of restricted equilibrium.
(i) Show that $x \in R E(F)$ if and only if within each population p, all strategies in the support of x^{p} achieve the same payoff: $R E(F)=\left\{x \in X: x_{i}^{p}>0 \Rightarrow F_{i}^{p}(x)=\pi^{p}\right\}$.
(ii) We can also offer a geometric definition of restricted equilibrium. Let $X_{[x]}$ be the set of social states whose supports are contained in the support of $\hat{x}: X_{[\hat{x}]}=\{x \in$ $\left.X: \hat{x}_{i}^{p}=0 \Rightarrow x_{i}^{p}=0\right\}$. Show that $x \in R E(F)$ if and only if the payoff vector $F(x)$ is contained in the normal cone of $X_{[x]}$ at $x: R E(F)=\left\{x \in X: F(x) \in N X_{[x]}(x)\right\}$.

Because imitative dynamics exhibit face invariance, strategies that are initially unused are never subsequently chosen. This suggests a link between rest points of imitative dynamics and the restricted equilibria of the underlying game that is established in the following theorem.

Theorem 5.4.21. If $\dot{x}=V_{F}(x)$ is an imitative dynamic, then $R P\left(V_{F}\right)=R E(F)$.

$$
\text { Proof. } \begin{aligned}
x \in R P(V) & \Leftrightarrow V_{i}^{p}(x)=0 \text { for all } i \in S^{p}, p \in \mathcal{P} \\
& \Leftrightarrow \frac{V_{i}^{p}(x)}{x_{i}^{p}}=0 \text { whenever } x_{i}^{p}>0, p \in \mathcal{P} \quad \text { (by (5.15)) } \\
& \Leftrightarrow F_{i}^{p}(x)=\pi^{p} \text { whenever } x_{i}^{p}>0, p \in \mathcal{P} \quad \text { (by (5.17)) } \\
& \Leftrightarrow x \in R E(F) .
\end{aligned}
$$

While there are rest points of imitative dynamics that are not Nash equilibria, we will see that non-Nash rest points are locally unstable—see Chapter 8. On the other hand, as Example 5.4.15 illustrates, the speed of motion away from these unstable rest points is initially rather slow.

Exercise 5.4.22. (i) Suppose that the payoffs of one population game are the negation of the payoffs of another. What is the relationship between the replicator dynamics of the two games?
(ii) Give an example of a three-strategy game whose Nash equilibrium is unique and whose replicator dynamic admits seven rest points.

5.5 Excess Payoff Dynamics

In the next two subsections we consider revision protocols that are not based on imitation of successful opponents, but rather on the direct evaluation of alternative strategies. Under such protocols, good unused strategies will be discovered and chosen, raising the possibility that the dynamics satisfy Nash stationarity (NS).

5.5.1 Definition and Interpretation

In some settings, particularly those in which information about population aggregates is provided by a central planner, agents may know their population's current average payoff. (Of course, this violates of scarcity of data (SD).) Suppose that each agent's choices are based on comparisons between the various strategies' current payoffs and the
population's average payoff, and that these choices do not condition on the agent's current strategy. Then the agents' choice procedure can be described using a target protocol of the form

$$
\rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)=\tau_{j}^{p}\left(\hat{\pi}^{p}\right),
$$

where $\hat{\pi}_{i}^{p}=\pi_{i}^{p}(x)-\frac{1}{m^{p}}\left(x^{p}\right)^{\prime} \pi^{p}$ represents the excess payoff to strategy $i \in S^{p}$. Such a protocol generates the target dynamic

$$
\begin{align*}
\dot{x}_{i}^{p} & =m^{p} \tau_{i}^{p}\left(\hat{F}^{p}(x)\right)-x_{i}^{p} \sum_{j \in S^{p}} \tau_{j}^{p}\left(\hat{F}^{p}(x)\right) \tag{5.20}\\
& = \begin{cases}\sum_{j \in S} \tau_{j}^{p}\left(\hat{F}^{p}(x)\right)\left(m^{p} \frac{\tau_{i}^{p}\left(\hat{F}^{p}(x)\right)}{\sum_{j \in S} \tau_{j}^{p}\left(\hat{F}^{p}(x)\right)}-x^{p}\right) & \text { if } \tau^{p}\left(\hat{F}^{p}(x)\right) \neq \mathbf{0}, \\
\mathbf{0} & \text { otherwise. }\end{cases}
\end{align*}
$$

To obtain our new class of dynamics, we introduce a monotonicity condition for the protocol τ. To do so, let us first observe that the excess payoff vector $\hat{F}^{p}(x)$ cannot lie in the interior of the negative orthant $\mathbf{R}_{-}^{n^{p}}$: for this to happen, every strategy would have to earn a below average payoff. Bearing this in mind, we can let the domain of the function τ^{p} be the set $\mathbf{R}_{*}^{n^{p}}=\mathbf{R}^{n^{p}}-\operatorname{int}\left(\mathbf{R}_{-}^{n^{p}}\right)$. Note that $\operatorname{int}\left(\mathbf{R}_{*}^{n^{p}}\right)=\mathbf{R}^{n^{p}}-\mathbf{R}_{-}^{n^{p}}$ is the set of excess payoff vectors under which at least one strategy earns an above average payoff, while $\operatorname{bd}\left(\mathbf{R}_{*}^{n^{p}}\right)=\mathrm{bd}\left(\mathbf{R}_{-}^{n^{p}}\right)$ is the set of excess payoff vectors under which no strategy earns an above average payoff.

With this notation in hand, we can define our family of dynamics.
Definition. Suppose the protocols $\tau^{p}: \mathbf{R}_{*}^{n^{p}} \rightarrow \mathbf{R}_{+}^{n^{p}}$ are Lipschitz continuous and satisfy acuteness:

$$
\begin{equation*}
\text { If } \hat{\pi}^{p} \in \operatorname{int}\left(\mathbf{R}_{*}^{n^{p}}\right) \text {, then } \tau^{p}\left(\hat{\pi}^{p}\right)^{\prime} \hat{\pi}^{p}>0 . \tag{5.21}
\end{equation*}
$$

Then the map from population games $F \in \mathcal{F}$ to differential equations (5.20) is called an excess payoff dynamic.

How should one interpret condition (5.21)? If the excess payoff vector $\hat{\pi}^{p}$ has a positive component, this condition implies that

$$
\sigma^{p}\left(\hat{\pi}^{p}\right)=\frac{1}{\sum_{i \in S} \tau_{i}^{p}\left(\hat{\pi}^{p}\right)} \tau^{p}\left(\hat{\pi}^{p}\right) \in \Delta^{p},
$$

the probability vector that defines the target state, is well defined. Acuteness requires
that if we pick a component of the excess payoff vector $\hat{\pi}^{p}$ at random according to this probability vector, then the expected value of this randomly chosen component is strictly positive. Put differently, acuteness asks that on average, revising agents switch to strategies with above average payoffs.

Example 5.5.1. The BNN dynamic. Suppose that conditional switch rate to strategy $i \in S^{p}$ is given by the positive part of strategy i^{\prime} s excess payoffs: $\tau_{i}^{p}\left(\hat{\pi}^{p}\right)=\left[\hat{\pi}_{i}^{p}\right]_{+}$. The resulting mean dynamic,
(BNN) $\quad \dot{x}_{i}^{p}=m^{p}\left[\hat{F}_{i}^{p}(x)\right]_{+}-x_{i}^{p} \sum_{j \in S^{p}}\left[\hat{F}_{j}^{p}(x)\right]_{+}$,
is called the Brown-von Neumann-Nash (BNN) dynamic. §
Exercise 5.5.2. k-BNN dynamics. The k-BNN dynamic is generated by the revision protocol $\tau_{i}^{p}\left(\hat{\pi}^{p}\right)=\left[\hat{\pi}_{i}^{p}\right]_{+}^{k}$, where $k \geq 1$. Argue informally that if k is large, then at "typical" states, the direction of motion under the k-BNN dynamic is close to that under the best response dynamic, $\dot{x}^{p} \in m^{p} B^{p}(x)-x^{p}$ (see Chapter 6), but that the speed of motion is not.

5.5.2 Incentives and Aggregate Behavior

Our goal in this section is to show that every excess payoff dynamic satisfies our two incentive properties.

Theorem 5.5.3. Every excess payoff dynamic $\dot{x}=V_{F}(x)$ satisfies Nash stationarity (NS) and positive correlation (PC).

We prove this result under the assumption that τ^{p} satisfies sign preservation:

$$
\begin{equation*}
\operatorname{sgn}\left(\tau_{i}^{p}\left(\hat{\pi}^{p}\right)\right)=\operatorname{sgn}\left(\left[\hat{\pi}_{i}^{p}\right]_{+}\right) \tag{5.22}
\end{equation*}
$$

A proof using only acuteness is outlined in Exercise 5.5.8 below. We also focus on the single population case; the proof of the multipopulation case is a simple extension of the argument below.

The proof follows immediately from the following three lemmas.
Lemma 5.5.4. $\hat{F}(x) \in \operatorname{bd}\left(\mathbf{R}_{*}^{n}\right)$ if and only if $x \in N E(F)$.

$$
\begin{aligned}
& \text { Proof. } \hat{F}(x) \in \operatorname{bd}\left(\mathbf{R}_{*}^{n}\right) \Leftrightarrow F_{i}(x) \leq \sum_{k \in S} x_{k} F_{k}(x) \text { for all } i \in S \\
& \Leftrightarrow \text { there exists a } c \in \mathbf{R} \text { such that } F_{i}(x) \leq c \text { for all } i \in S,
\end{aligned}
$$

$$
\begin{aligned}
& \quad \text { with } F_{j}(x)=c \text { whenever } x_{j}>0 \\
& \Leftrightarrow F_{j}(x)=\max _{k \in S} F_{k}(x) \text { whenever } x_{j}>0 \\
& \Leftrightarrow x \in N E(F) .
\end{aligned}
$$

Lemma 5.5.5. If $\hat{F}(x) \in \operatorname{bd}\left(\mathbf{R}_{*}^{n}\right)$, then $V_{F}(x)=\mathbf{0}$.
Proof. Immediate from sign preservation (5.22).

Lemma 5.5.6. If $\hat{F}(x) \in \operatorname{int}\left(\mathbf{R}_{*}^{n}\right)$, then $V_{F}(x)^{\prime} F(x)>0$.
Proof. Recall that $\hat{F}(x)=F(x)-\mathbf{1} \bar{F}(x)$ and that $V_{F}(x)=\tau(\hat{F}(x))-\mathbf{1}^{\prime} \tau(\hat{F}(x)) x$. The first definition implies that x and $\hat{F}(x)$ are always orthogonal:

$$
x^{\prime} \hat{F}(x)=x^{\prime}(F(x)-\mathbf{1} \bar{F}(x))=x^{\prime} F(x)-\bar{F}(x)=0 .
$$

Combining this with the second definition, we see that if $\hat{F}(x) \in \operatorname{int}\left(\mathbf{R}_{*}^{n}\right)$, then

$$
\begin{aligned}
V_{F}(x)^{\prime} F(x) & =V_{F}(x)^{\prime}(\hat{F}(x)+\mathbf{1} \bar{F}(x)) & & \\
& =V_{F}(x)^{\prime} \hat{F}(x) & & \text { since } V_{F}(x) \in T X \\
& =\left(\tau(\hat{F}(x))-\mathbf{1}^{\prime} \tau(\hat{F}(x)) x\right)^{\prime} \hat{F}(x) & & \\
& =\tau(\hat{F}(x))^{\prime} \hat{F}(x) & & \text { since } x^{\prime} \hat{F}(x)=0 \\
& >0 & & \text { by acuteness }(5.21) .
\end{aligned}
$$

Exercise 5.5.7. Suppose that revision protocol τ^{p} is Lipschitz continuous, acute, and separable:

$$
\tau_{i}^{p}\left(\pi^{p}\right) \equiv \tau_{i}^{p}\left(\pi_{i}^{p}\right) .
$$

Show that τ^{p} also satisfies sign preservation (5.22).
Exercise 5.5.8. This exercise shows how to establish properties (NS) and (PC) using only continuity and acuteness (5.21)—that is, without requiring sign preservation (5.22). The proofs of Lemmas 5.5 .4 and 5.5 .6 go through unchanged, but Lemma 5.5.5 requires additional work. Using acuteness and continuity, show that
(i) If $\hat{\pi} \in \operatorname{bd}\left(\mathbf{R}_{*}^{n}\right)$ and $\hat{\pi}_{i}<0$, then $\tau_{i}(\hat{\pi})=0$. (Hint: Consider $\hat{\pi}^{\varepsilon}=\hat{\pi}+\varepsilon e_{j}$, where $\hat{\pi}_{j}=0$.)
(ii) If $\hat{\pi} \in \operatorname{bd}\left(\mathbf{R}_{*}^{n}\right)$ and $\hat{\pi}_{i}=\hat{\pi}_{j}=0$, then $\tau(\hat{\pi})=\mathbf{0}$. (Hint: To show that $\tau_{i}(\hat{\pi})=0$, consider $\left.\hat{\pi}^{\varepsilon}=\hat{\pi}-\varepsilon e_{i}+\varepsilon^{2} e_{j}.\right)$
Then use these two facts to prove Lemma 5.5.5.

Exercise 5.5.9. This exercise demonstrates that in general, one cannot "normalize" a target dynamic in order to create an exact target dynamic. This highlights a nontrivial sense in which the former class of dynamics is more general than the latter.

Recall that in the single population setting, the BNN dynamic is defined by the target protocol $\tau_{i}(\hat{\pi})=\left[\hat{\pi}_{i}\right]_{+}$.
(i) It is tempting to try to define an exact target protocol by normalizing τ in an appropriate way. Explain why such a protocol would not be well-defined.
(ii) To attempt to circumvent this problem, one can construct a dynamic that is derived from the normalized protocol whenever the latter is well-defined. Show that such a dynamic must be discontinuous in some games. (Hint: It is enough to consider two-strategy games.)

5.6 Pairwise Comparison Dynamics

Excess payoff dynamics satisfy Nash stationarity (NS), positive correlation (PC), and continuity (C), but they fail scarcity of data (SD). The revision protocols that underlie these dynamics require agents to compare their current payoff with the average payoff obtained in their population. Without the assistance of a central planner, the latter information is unlikely to be known to the agents.

A natural way to reduce these informational demands is to replace the population's average payoff with another reference payoff, one whose value agents can directly access. We accomplish this by considering revision protocols based on pairwise payoff comparisons, which satisfy scarcity of data (SD). In the remainder of this section, we show that the resulting evolutionary dynamics can be made to satisfy our other desiderata as well.

5.6.1 Definition

Suppose that the revision protocol ρ^{p} only directly conditions on payoffs, not the population state. The induced mean dynamic is then of the form

$$
\begin{equation*}
\dot{x}_{i}^{p}=\sum_{j \in S^{p}} x_{j}^{p} \rho_{j i}^{p}\left(F^{p}(x)\right)-x_{i}^{p} \sum_{j \in S^{p}} \rho_{i j}^{p}\left(F^{p}(x)\right), \tag{5.23}
\end{equation*}
$$

This equation and a mild monotonicity condition on ρ defines our next class of dynamics.
Definition. Suppose that the revision protocol ρ is Lipschitz continuous and sign preserving:

$$
\begin{equation*}
\operatorname{sgn}\left(\rho_{i j}^{p}\left(\pi^{p}\right)\right)=\operatorname{sgn}\left(\left[\pi_{j}^{p}-\pi_{i}^{p}\right]_{+}\right) \text {for all } i, j \in S^{p} \text { and } p \in \mathscr{P} . \tag{5.24}
\end{equation*}
$$

Then the map from population games $F \in \mathcal{F}$ to differential equations (5.23) is called a pairwise comparison dynamic.

Sign preservation (5.24) is a particularly natural property: it says that the conditional switch rate from $i \in S^{p}$ to $j \in S^{p}$ is positive if and only if the payoff to j exceeds the payoff to i.

Example 5.6.1. The Smith dynamic. The simplest sign preserving revision protocol,

$$
\rho_{i j}^{p}\left(\pi^{p}\right)=\left[\pi_{j}^{p}-\pi_{i}^{p}\right]_{+} .
$$

generates the Smith dynamic:

$$
\begin{equation*}
\dot{x}_{i}^{p}=\sum_{j \in S^{p}} x_{j}^{p}\left[F_{i}^{p}(x)-F_{j}^{p}(x)\right]_{+}-x_{i}^{p} \sum_{j \in S^{p}}\left[F_{j}^{p}(x)-F_{i}^{p}(x)\right]_{+} . \S \tag{S}
\end{equation*}
$$

Exercise 5.6.2. The k-Smith dynamic. Consider instead the protocol $\rho_{i j}^{p}\left(\pi^{p}\right)=\left[\pi_{j}^{p}-\pi_{i}^{p}\right]_{+}^{k}$, where $k \geq 1$. Argue informally that in the single population case, when k is large, the direction of motion from most states x is approximately parallel to an edge of the simplex. How is this edge determined from the payoff vector $F(x)$?

5.6.2 Incentives and Aggregate Behavior

Our main result in this section is
Theorem 5.6.3. Every pairwise comparison dynamic satisfies Nash stationarity (NS) and positive correlation (PC).

The proof of this theorem relies on three equivalences between properties of Nash equilibria and evolutionary dynamics on the one hand, and requirements that sums of terms of the form $\rho_{i j}^{p}\left[F_{j}^{p}-F_{i}^{p}\right]_{+}$, or $\rho_{i j}^{p}\left[F_{j}^{p}-F_{i}^{p}\right]_{+}$equal zero on the other. Sign preservation ensures that sums of the three types are identical, allowing us to establish the result.

In what follows, $\dot{x}=V(x)$ is the pairwise comparison dynamic generated by the population game F and revision protocol ρ.

Lemma 5.6.4. $x \in N E(F) \Leftrightarrow$ For all $i \in S^{p}$ and $p \in \mathcal{P}, x_{i}^{p}=0$ or $\sum_{j \in S^{p}}\left[F_{j}^{p}(x)-F_{i}^{p}(x)\right]_{+}=0$.
Proof. Both statements say that each strategy in use at x is optimal.

Lemma 5.6.5. $V^{p}(x)=0 \Leftrightarrow$ For all $i \in S^{p}, x_{i}^{p}=0$ or $\sum_{j \in S^{p}} \rho_{i j}^{p}\left(F^{p}(x)\right)=0$.

Proof. (\Leftarrow) Immediate.
(\Rightarrow) Fix a population $p \in \mathcal{P}$, and suppose that $V^{p}(x)=0$. If j is an optimal strategy for population p at x, then sign preservation implies that $\rho_{j k}^{p}\left(F^{p}(x)\right)=0$ for all $k \in S^{p}$, and so that there is no "outflow" from strategy j :

$$
x_{j}^{p} \sum_{i \in S^{p}} \rho_{j i}^{p}\left(F^{p}(x)\right)=0
$$

Since $V_{j}^{p}(x)=0$, there can be no "inflow" into strategy j either:

$$
\sum_{i \in S^{p}} x_{i}^{p} \rho_{i j}^{p}\left(F^{p}(x)\right)=0
$$

We can express this condition equivalently as
For all $i \in S^{p}$, either $x_{i}^{p}=0$ or $\rho_{i j}^{p}\left(F^{p}(x)\right)=0$.
If all strategies in S^{p} earn the same payoff at state x, the proof is complete. Otherwise, let i be a "second best" strategy—that is, a strategy whose payoff $F_{i}^{p}(x)$ is second highest among the payoffs available from strategies in S^{p} at x. The last observation in the previous paragraph and sign preservation tell us that there is no outflow from i. But since $V_{i}^{p}(x)=$ 0 , there is also no inflow into i :

For all $k \in S^{p}$, either $x_{k}^{p}=0$ or $\rho_{k i}^{p}\left(F^{p}(x)\right)=0$.
Iterating this argument for strategies with lower payoffs establishes the result.

Lemma 5.6.6. Fix a population $p \in \mathscr{P}$. Then
(i) $V^{p}(x)^{\prime} F^{p}(x) \geq 0$.
(ii) $V^{p}(x)^{\prime} F^{p}(x)=0 \Leftrightarrow$ For all $i \in S^{p}, x_{i}^{p}=0$ or $\sum_{j \in S^{p}} \rho_{i j}^{p}\left(F^{p}(x)\right)\left[F_{j}^{p}(x)-F_{i}^{p}(x)\right]_{+}=0$.

Proof. We compute the inner product as follows:

$$
\begin{aligned}
V^{p}(x)^{\prime} F^{p}(x) & =\sum_{j \in S^{p}}\left(\sum_{i \in S^{p}} x_{i}^{p} \rho_{i j}^{p}\left(F^{p}(x)\right)-x_{j}^{p} \sum_{i \in S^{p}} \rho_{j i}^{p}\left(F^{p}(x)\right)\right) F_{j}^{p}(x) \\
& =\sum_{j \in S^{p}} \sum_{i \in S^{p}}\left(x_{i}^{p} \rho_{i j}^{p}\left(F^{p}(x)\right) F_{j}^{p}(x)-x_{j}^{p} \rho_{j i}^{p}\left(F^{p}(x)\right) F_{j}^{p}(x)\right) \\
& =\sum_{j \in S^{p}} \sum_{i \in S^{p}} x_{i}^{p} \rho_{i j}^{p}\left(F^{p}(x)\right)\left(F_{j}^{p}(x)-F_{i}^{p}(x)\right)
\end{aligned}
$$

$$
=\sum_{i \in S^{p}}\left(x_{i}^{p} \sum_{j \in S^{p}} \rho_{i j}^{p}\left(F^{p}(x)\right)\left[F_{j}^{p}(x)-F_{i}^{p}(x)\right]_{+}\right),
$$

where the last equality follows from sign-preservation. Both claims directly follow.
Theorem 5.6.3 follows immediately from these three lemmas and sign preservation (5.24).

5.6.3 Desiderata Revisited

Pairwise comparison dynamics satisfy all four of the desiderata proposed at the beginning of the chapter: continuity (C), scarcity of data (SD), Nash stationarity (NS), and positive correlation (PC). To provide some insight into this result, we compare revision protocols that generate the three key dynamics from this chapter:

$$
\begin{array}{ll}
\text { replicator: } & \rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)=\hat{x}_{j}^{p}\left[\pi_{j}^{p}-\pi_{i}^{p}\right]_{+} ; \\
\text {BNN: } & \rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)=\left[\pi_{j}^{p}-\bar{\pi}^{p}\right]_{+} ; \\
\text {Smith: } & \rho_{i j}^{p}\left(\pi^{p}, x^{p}\right)=\left[\pi_{j}^{p}-\pi_{i}^{p}\right]_{+} .
\end{array}
$$

From the point of view of our desiderata, the protocol that generates the Smith dynamic combines the best features of the other two. Like the protocol for the BNN dynamic, the Smith protocol is based on direct evaluations of payoffs rather than imitation, allowing it to satisfy Nash stationarity (NS). Like the protocol for the replicator dynamic, the Smith protocol is based on comparisons of individual strategies' payoffs rather than comparisons involving aggregate statistics, and so satisfies scarcity of data (SD). Thus, while the BNN and replicator dynamics each satisfy three of our desiderata, the Smith dynamic satisfies all four.

5.7 Multiple Revision Protocols and Combined Dynamics

The results above might seem to suggest that dynamics satisfying all four desiderata are rather special, in that they must be derived from a very specific sort of revision protocol. We now argue to the contrary that these desiderata are satisfied rather broadly.

To make this point, let us consider what happens if an agent uses multiple revision protocols at possibly different intensities. If an agent uses the revision protocol ρ^{V} at intensity a and the revision protocol ρ^{W} at intensity b, then his behavior is described by the new revision protocol $\rho^{C}=a \rho^{V}+b \rho^{W}$. Moreover, since mean dynamics are linear
in conditional switch rates, the mean dynamic for the combined protocol is a linear combination of the two original mean dynamics: $C_{F}=a V_{F}+b W_{F}$.

Theorem 5.7.1 links the properties of the original and combined dynamics.
Theorem 5.7.1. Suppose that the dynamic V_{F} satisfies (PC), that the dynamic W_{F} satisfies (NS) and (PC), and that $a, b>0$. Then the combined dynamic $C_{F}=a V_{F}+b W_{F}$ also satisfies (NS) and (PC).

Proof. To show that C_{F} satisfies (PC), suppose that $C_{F}^{p}(x) \neq \mathbf{0}$. Then either $V_{F}^{p}(x), W_{F}^{p}(x)$, or both are not 0 . Since V_{F} and W_{F} satisfy (PC), it follows that $V_{F}^{p}(x)^{\prime} F^{p}(x) \geq 0$, that $W_{F}^{p}(x)^{\prime} F^{p}(x) \geq 0$, and that at least one of these inequalities is strict. Consequently, $C_{F}^{p}(x)^{\prime} F^{p}(x)>0$, and so C_{F} satisfies (PC).

Our proof that C_{F} satisfies (NS) is divided into three cases. First, if x is a Nash equilibrium of F, then it is a rest point of both V_{F} and W_{F}, and hence a rest point of C_{F} as well. Second, if x is a non-Nash rest point of V_{F}, then it is not a rest point of W_{F}. Since $V_{F}(x)=0$ and $W_{F}(x) \neq 0$, it follows that $C_{F}(x)=b W_{F}(x) \neq 0$, so x is not a rest point of C_{F}. Finally, suppose that x is not a rest point of V_{F}. Then by Proposition 5.2.4, x is not a Nash equilibrium, and so x is not a rest point of W_{F} either. Since V_{F} and W_{F} satisfy condition (PC), we know that $V_{F}(x)^{\prime} F(x)=\sum_{p \in \mathcal{P}} V_{F}^{p}(x)^{\prime} F^{p}(x)>0$ and that $W_{F}(x)^{\prime} F(x)>0$. Consequently, $C_{F}(x)^{\prime} F(x)>0$, implying that x is not a rest point of C_{F}. Thus, C_{F} satisfies (NS).

A key implication of Theorem 5.7.1 is that imitation and Nash stationarity are not incompatible. If agents usually rely on imitative protocols but occasionally follow protocols that directly evaluate strategies' payoffs, then the rest points of the resulting mean dynamics are precisely the Nash equilibria of the underlying game. Indeed, if we combine an imitative dynamic V_{F} with any small amount of a pairwise comparison dynamic W_{F}, we obtain a combined dynamic C_{F} that satisfies all four of our desiderata.

Example 5.7.2. Figure 5.7 .1 presents a phase diagram for the $\frac{9}{10}$ replicator $+\frac{1}{10}$ Smith dynamic in standard Rock-Paper-Scissors. Comparing this diagram to those for the replicator and Smith dynamics alone (Figure 5.3.1), we see that the diagram for the combined dynamic more closely resembles the Smith phase diagram than the replicator phase diagram, and in more than one respect: the combined dynamic has exactly one rest point, the unique Nash equilibrium $X^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, and all solutions to the combined dynamic converge to this state. We will revisit this fragility of imitative dynamics in Chapter 9, where it will appear in a much starker form. §

Figure 5.7.1: The $\frac{9}{10}$ replicator $+\frac{1}{10}$ Smith dynamic in RPS.

5.N Notes

Section 5.2: This section follows Sandholm (2008d).
A wide variety of payoff monotonicity conditions have been considered in the literature; for examples, see Nachbar (1990), Friedman (1991), Samuelson and Zhang (1992), Swinkels (1993), Ritzberger and Weibull (1995), Hofbauer and Weibull (1996), and Sandholm (2001). Positive correlation is essentially the weakest condition that has been proposed. Most existing conditions are strictly stronger (see the notes to Section 4.4 below). Friedman's (1991) weak compatibility is positive correlation plus the additional restriction that unused strategies are never subsequently chosen. Swinkels (1993) calls a dynamic a myopic adjustment dynamic if it satisfies positive correlation, but he allows $F^{p}(x)^{\prime} V^{p}(x)=0$ even when $V^{p}(x) \neq \mathbf{0}$.

Section 5.4: The approach to imitative revision protocols and dynamics in this section builds on the work of Björnerstedt and Weibull (1996), Weibull (1995), and Hofbauer (1995a).

Taylor and Jonker (1978) introduce the replicator dynamic to provide a dynamic analogue of Maynard Smith and Price's (1973) equilibrium (ESS) model of animal conflict. Exercise 5.4.12, which shows that the replicator dynamic is equivalent after a nonlinear (barycentric) change of variable to the Lotka-Volterra equation (Lotka (1920), Volterra
(1931)), is due to Hofbauer (1981). Schuster and Sigmund (1983) further observe that fundamental models of population genetics (e.g., Crow and Kimura (1970)) and of biochemical evolution (e.g., Eigen and Schuster (1979)) can be viewed as special cases of the replicator dynamic; they are also the first to refer to the dynamic by this name. For more on these biological models, see Hofbauer and Sigmund (2003). For a detailed analysis of the replicator dynamic from an economic point of view, see Weibull (1995, Chapter 3). The derivations of the replicator dynamic in Examples 5.4.2, 5.4.4, and 5.4.5 are due to Schlag (1998), Björnerstedt and Weibull (1996), and Hofbauer (1995a), respectively.

The Maynard Smith replicator dynamic can be found in Maynard Smith (1982, Appendices D and J). For a contrast between the standard and Maynard Smith replicator dynamics from a biological point of view, see Hofbauer and Sigmund (1988, Section 27.1). The i-logit dynamic is due to Björnerstedt and Weibull (1996) and Weibull (1995).

In the biology literature, the stochastic evolutionary process generated by the revision protocol in Example 5.4 .8 (i.e., protocol (5.10) with $w(\pi)=\pi$) is called a frequency-dependent Moran process, after Moran (1962). In this context, each animal is programmed to play a particular pure strategy; one interprets the arrival of a revision opportunity as the death of one of the animals in the population, and the revision protocol (5.10) as determining which animal will reproduce asexually to fill the vacancy. This process is usually studied in finite populations, often after the addition of mutations, in order to focus on its stochastic aspects. See Nowak (2006) and the Notes to Chapter 11 for further references and discussion.

Most early work by economists on deterministic evolutionary dynamics focuses on generalizations of the replicator dynamic expressed in terms of percentage growth rates, as in equation (5.16). The condition we call monotone percentage growth rates (5.17) has appeared in many places under a variety of names: relative monotonicity (Nachbar (1990)), order compatibility of predynamics (Friedman (1991)), monotonicity (Samuelson and Zhang (1992), and payoff monotonicity (Weibull (1995)). Aggregate monotone percentage growth rates (5.18) and Exercise 5.4.18 are introduced by Samuelson and Zhang (1992). Sign-preserving percentage growth rates (5.19) is a condition due to Nachbar (1990); see also Ritzberger and Weibull (1995), who call this condition payoff positivity. For surveys of the literature referenced here, see Weibull (1995, Chapters 4 and 5) and Fudenberg and Levine (1998, Chapter 3).

Sections 5.5, 5.6, and 5.7: These sections follow Sandholm (2005a, 2008d).
The Brown-von Neumann-Nash dynamic was introduced in the context of symmetric zero-sum games by Brown and von Neumann (1950). Nash (1951) uses a discrete time analogue of this dynamic as the basis for his simple proof of existence of equilibrium
based on Brouwer's Theorem. More recently, the BNN dynamic was reintroduced by Skyrms (1990), Swinkels (1993), and Weibull (1996), and by Hofbauer (2000), who gave the dynamic its name. The Smith dynamic was introduced in the transportation science literature by Smith (1984).

Best Response and Projection Dynamics

6.0 Introduction

This chapter continues the parade of evolutionary dynamics commenced in Chapter 5. In the first two sections, the step from payoff vector fields to evolutionary dynamics is traversed through a traditional game-theoretic approach, by employing best response correspondences and perturbed versions thereof. The third section follows a geometric approach, defining an evolutionary dynamic via closest point projections of payoff vectors.

The best response dynamic embodies the assumption that revising agents always switch to their current best response. Because the best response correspondence is discontinuous and multivalued, the basic properties of solution trajectories under the best response dynamic are quite different from those of our earlier dynamics: multiple solution trajectories can sprout from a single initial condition, and solution trajectories can cycle in and out of Nash equilibria. Despite these difficulties, we will see that analogues of incentive properties (NS) and (PC) still hold true.

While the discontinuity of the best response protocol stands in violation of a basic desideratum from Chapter 5 , one can obtain a continuous protocol by working with perturbed payoffs. The resulting perturbed best response dynamics are continuous (and even differentiable), and so have well-behaved solution trajectories. While the payoff perturbations prevent our incentive conditions from holding exactly, we show that appropriately perturbed versions of these conditions, defined in terms of so-called "virtual payoffs", can be proved.

Our final evolutionary dynamic, the projection dynamic, is motivated by geometric considerations: we define the growth rate vector under the projection dynamic to be
the closest approximation of the payoff vector by a feasible vector of motion. While the resulting dynamic is discontinuous, its solutions still exist, are unique, and are continuous in their initial conditions; moreover, both of our incentive conditions are easily verified. We show that the projection dynamic can be derived from protocols that reflect "revision driven by insecurity". These protocols also reveal surprising connections between the projection dynamic and the replicator dynamic, connections that we develop further when studying the global behavior of evolutionary dynamics in Chapter 7.

The dynamics studied in this chapter require us to introduce new mathematical techniques. Determining the basic properties of the best response dynamic and the projection dynamic requires ideas from the theory of differential inclusions (i.e., of set valued differential equations), which we develop in Appendix 6.A. A key tool for analyzing perturbed best response dynamics is the Legendre transform, whose basic properties are explained in Appendix 6.B. These properties are central to our analysis of perturbed maximization, which is offered in Appendix 6.C.

6.1 The Best Response Dynamic

6.1.1 Definition and Examples

Traditional game theoretic analysis is based on the assumption of equilibrium play. This assumption can be split into two distinct parts: that agents have correct beliefs about their opponents' behavior, and that they choose their strategies optimally given those beliefs. When all agents simultaneously have correct beliefs and play optimal responses, their joint behavior constitutes a Nash equilibrium.

It is natural to introduce an evolutionary dynamic based on similar principles. To accomplish this, we suppose that each agent's revision opportunities arrive at a fixed rate, and that when an agent receives such an opportunity, he chooses a best response to the current population state. Thus, we assume that each agent responds optimally to correct beliefs whenever he is revising, but not necessarily at other points in time.

Before introducing the best response dynamics, let us review the notions of exact target protocols and dynamics introduced in Section 4.1.3. Under an exact target protocol, conditional switch rates $\rho_{i j}^{p}\left(\pi^{p}, x^{p}\right) \equiv \sigma_{j}^{p}\left(\pi^{p}, x^{p}\right)$ are independent of an agent's current strategy. These rates also satisfy $\sum_{j \in S} \sigma_{j}^{p}\left(\pi^{p}, x^{p}\right) \equiv 1$, so that $\sigma^{p}\left(\pi^{p}, x^{p}\right) \in \Delta^{p}$ is a mixed strategy. Such a protocol induces the exact target dynamic

$$
\begin{equation*}
\dot{x}^{p}=m^{p} \sigma^{p}\left(F^{p}(x)\right)-x^{p} . \tag{6.1}
\end{equation*}
$$

Under (6.1), the vector of motion \dot{x}^{p} for population p has its tail at the current state x^{p} and its head at $m^{p} \sigma^{p}$, the representative of the mixed strategy $\sigma^{p} \in \Delta^{p}$ in the state space $X^{p}=m^{p} \Delta^{p}$.

The best response protocol is given by the multivalued map

$$
\begin{equation*}
\sigma^{p}\left(\pi^{p}, x^{p}\right)=M^{p}\left(\pi^{p}\right) \equiv \underset{y^{p} \in \Delta^{p}}{\operatorname{argmax}}\left(y^{p}\right)^{\prime} \pi^{p} . \tag{6.2}
\end{equation*}
$$

$M^{p}: \mathbf{R}^{n^{p}} \Rightarrow \Delta^{p}$ is the maximizer correspondence for population p : the set $M^{p}\left(\pi^{p}\right)$ consists of those mixed strategies that only place mass on pure strategies optimal under payoff vector π^{p}. Inserting this protocol into equation (6.1) yields the best response dynamic:
(BR) $\quad \dot{x}^{p} \in m^{p} M^{p}\left(F^{p}(x)\right)-x^{p}$.

We can also write (BR) as

$$
\dot{x}^{p} \in m^{p} B^{p}(x)-x^{p} .
$$

where $B^{p}=M^{p} \circ F^{p}$ is the best response correspondence for population p.
Definition. The best response dynamic assigns each population game $F \in \mathcal{F}$ the set of solutions to the differential inclusion (BR).

All of our dynamics from Chapter 5 are Lipschitz continuous, so the existence and uniqueness of their solutions is ensured by the Picard-Lindelöf Theorem. Since the best response dynamic (BR) is a discontinuous differential inclusion, that theorem does not apply here. But while the map M^{p} is not a Lipschitz continuous function, it does exhibit other regularity properties: in particular, it is a convex-valued, upper hemicontinuous correspondence. These properties impose enough structure on the dynamic (BR) to establish an existence result.

To state this result, we say that the Lipschitz continuous trajectory $\left\{x_{t}\right\}_{t \geq 0}$ is a Carathéodory solution to the differential inclusion $\dot{x} \in V(x)$ if it satisfies $\dot{x}_{t} \in V\left(x_{t}\right)$ at all but a measure zero set of times in $[0, \infty)$.

Theorem 6.1.1. Fix a continuous population game F. Then for each $\xi \in X$, there exists a trajectory $\left\{x_{t}\right\}_{t \geq 0}$ with $x_{0}=\xi$ that is a Carathéodory solution to the differential inclusion (BR).

It is important to note that while solutions to the best response dynamic exist, they need not be unique: as the examples to follow will illustrate, multiple solution trajectories can emanate from a single initial condition. For a brief introduction to the theory of differential inclusions, see Appendix 6.A.1.

In Chapter 4, we justified our focus on the deterministic dynamic generated by a revision protocol through an appeal to a finite horizon approximation theorem. This result, which we present in Chapter 10, tells us that under certain regularity conditions, the stochastic evolutionary process $\left\{X_{t}^{N}\right\}$ generated by a game F and revision protocol ρ is well approximated by a solution to the mean dynamic (M) over any finite time horizon, so long as the population size is large enough. But because the revision protocol that generates the best response dynamic is discontinuous and multivalued, the finite horizon approximation theorem from Chapter 10 does not apply here: indeed, since σ is multivalued, the Markov process $\left\{X_{t}^{N}\right\}$ is not even uniquely defined! Nevertheless, we conjecture that it is possible to prove a version of the finite horizon approximation theorem that applies in the present setting (see the Notes).

6.1.2 Construction and Properties of Solution Trajectories

Because solutions to the best response dynamic need not be unique, they can be distinctly more complicated than solutions to Lipschitz continuous dynamics, as we demonstrate in a series of examples below. But before doing this, we show another sense in which solutions to the best response dynamic are rather simple.

Let $\left\{x_{t}\right\}$ be a solution to (BR), and suppose that at all times $t \in[0, T]$, population p^{\prime} s unique best response to state x_{t} is the pure strategy $i \in S^{p}$. Then during this time interval, evolution in population p is described by the affine differential equation

$$
\dot{x}^{p}=m^{p} e_{i}^{p}-x^{p} .
$$

In other words, the population state x^{p} moves directly towards vertex $v_{i}^{p}=m^{p} e_{i}^{p}$ of the set X^{p}, proceeding more slowly as time passes. It follows that throughout the interval $[0, T]$, the state $\left(x_{t}\right)^{p}$ lies on the line segment connecting $\left(x_{0}\right)^{p}$ and v_{i}^{p}; indeed, we can solve the previous equation to obtain an explicit formula for $\left(x_{t}\right)^{p}$:

$$
\left(x_{t}\right)^{p}=\left(1-\mathrm{e}^{-t}\right) v_{i}^{p}+\mathrm{e}^{-t}\left(x_{0}\right)^{p} \quad \text { for all } t \in[0, T]
$$

Matters are more complicated at states that admit multiple best responses, since at such states more than one future course of evolution is possible. Still, not every element of $B^{p}(x)$ need define a feasible direction of motion for population p : if $\left\{\left(x_{t}\right)^{p}\right\}$ is to head toward state \hat{x}^{p} during a time interval of positive length, all pure strategies in the support of \hat{x}^{p} must remain optimal throughout the interval.

Example 6.1.2. Standard Rock-Paper-Scissors. Suppose a population of agents is randomly

Figure 6.1.1: The best response dynamic in RPS.
matched to play standard Rock-Paper-Scissors:

$$
A=\left(\begin{array}{ccc}
0 & -l & w \\
w & 0 & -l \\
-l & w & 0
\end{array}\right)
$$

with $w=l$. The phase diagram for the best response dynamic in $F(x)=A x$ is presented in Figure 6.1.1. The upper, lower left, and lower right regions of the figure contain the states at which Paper, Scissors, and Rock are the unique best responses; in each of these regions, all solution trajectories head directly toward the appropriate vertex. When the boundary of a best response region is reached, multiple directions of motion are possible, at least in principle. But at all states other than the unique Nash equilibrium $x^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, the only direction of motion that can persist for a positive amount of time is the one heading toward the new best response, and starting from x^{*}, the only feasible solution trajectory is the stationary one. Putting this all together, we conclude that in standard RPS, the solution to the best response dynamic from each initial condition is unique.

Figure 6.1.1 appears to show that every solution trajectory converges to the unique Nash equilibrium x^{*}. To verify this, we prove that along every solution trajectory $\left\{x_{t}\right\}$,
whenever the best response to x_{t} is unique, we have that

$$
\begin{equation*}
\frac{d}{d t}\left(\max _{k \in S} F_{k}\left(x_{t}\right)\right)=-\max _{k \in S} F_{k}\left(x_{t}\right) \tag{6.3}
\end{equation*}
$$

Since the best response is unique at almost all times t, integrating equation (6.3) shows that

$$
\begin{equation*}
\max _{k \in S} F_{k}\left(x_{t}\right)=\mathrm{e}^{-t} \max _{k \in S} F_{k}\left(x_{0}\right) . \tag{6.4}
\end{equation*}
$$

Now in standard RPS, the maximum payoff function $\max _{k \in S} F_{k}$ is nonnegative, equalling zero only at the Nash equilibrium x^{*}. This fact and equation (6.4) imply that the maximal payoff falls over time, converging as t approaches infinity to its minimum value of 0 ; over this same time horizon, the state x_{t} converges to the Nash equilibrium x^{*}.

To prove equality (6.3), fix a state x_{t} at which there is a unique optimal strategy-say, Paper. At this state, $\dot{x}_{t}=e_{P}-x_{t}$. Since $F_{P}(x)=w\left(x_{R}-x_{S}\right)$, we can compute that

$$
\begin{aligned}
\frac{d}{d t} F_{P}\left(x_{t}\right) & =\nabla F_{P}\left(x_{t}\right)^{\prime} \dot{x}_{t} \\
& =w\left(e_{R}-e_{S}\right)^{\prime}\left(e_{P}-x_{t}\right) \\
& =-w\left(e_{R}-e_{S}\right)^{\prime} x_{t} \\
& =-F_{P}\left(x_{t}\right) . \S
\end{aligned}
$$

Example 6.1.3. Two-strategy coordination. Suppose that agents are randomly matched to play the two strategy game with strategy set $S=\{U, D\}$ and payoff matrix

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

The resulting random matching game $F(x)=A x$ has three Nash equilibria, the two pure equilibria e_{U} and e_{D}, and the mixed equilibrium $\left(x_{U}^{*}, x_{D}^{*}\right)=\left(\frac{2}{3}, \frac{1}{3}\right)$.

To reduce the amount of notation, we let $d=x_{D}$ represent the proportion of players choosing strategy D, so that the mixed Nash equilibrium becomes $d^{*}=\frac{1}{3}$. The best response dynamic for this game is described in terms of the state d as follows:

$$
\dot{d}= \begin{cases}\{-d\} & \text { if } d<d^{*} \\ {\left[-\frac{1}{3}, \frac{2}{3}\right]} & \text { if } d=d^{*} \\ \{1-d\} & \text { if } d>d^{*}\end{cases}
$$

From every initial condition other than d^{*}, the dynamic admits a unique solution trajectory that converges to a pure equilibrium:

$$
\begin{align*}
& d_{0}<d^{*} \Rightarrow d_{t}=\mathrm{e}^{-t} d_{0} \tag{6.5}\\
& d_{0}>d^{*} \Rightarrow d_{t}=\mathrm{e}^{-t} d_{0}+\left(1-\mathrm{e}^{-t}\right)=1-\mathrm{e}^{-t}\left(1-d_{0}\right) \tag{6.6}
\end{align*}
$$

But there are many solution trajectories starting from d^{*} : one solution is stationary; another proceeds to $d=0$ according to equation (6.5), a third proceeds to $d=1$ according to equation (6.6), and yet others follows the trajectories in (6.5) and (6.6) after some initial delay.

Notice that solutions (6.5) and (6.6) quickly leave the vicinity of d^{*}. This is unlike the behavior of Lipschitz continuous dynamics, under which solutions from all initial conditions are unique, and solutions that start near a stationary point move very slowly. §

Exercise 6.1.4. Two-strategy anti-coordination. Suppose players are randomly matched to play the anticoordination game

$$
A=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

Show that there is a unique solution to this dynamic from each initial condition d_{0}. Also, show that each solution reaches the unique Nash equilibrium $d^{*}=\frac{1}{2}$ in finite time, and express this time as a function of the initial condition d_{0}. This is unlike the behavior of Lipschitz continuous dynamics, under which solutions can only reach rest points in the limit as the time t approaches infinity.

Example 6.1.5. Three-strategy coordination. Figure 6.1 .2 presents the phase diagram for the best response dynamic generated by random matching in the pure coordination game

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The speed of motion is fastest near the mixed Nash equilibrium $x^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. As in Example 6.1.3, solution trajectories are not unique: this time, whenever the state is on the Y-shaped set of boundaries between best response regions, it can leave this set and head into any adjoining basin of attraction. §

Figure 6.1.2: The best response dynamic in Pure Coordination.

Exercise 6.1.6. Good and bad RPS. (i) Using a similar argument to that provided in Example 6.1.2, show that in any good RPS game, the unique Nash equilibrium $x^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is globally stable, and that it is reached in finite time from every initial condition.
(ii) Show that in any bad RPS game, solutions starting from almost all initial conditions converge to a limit cycle in the interior of the state space. In addition, argue that there are multiple solutions starting from the Nash equilibrium x^{*} : one is stationary, while others spiral outward toward the limit cycle. The latter solutions are not differentiable at $t=0$. It is therefore possible for a solution to escape a Nash equilibrium without the solution beginning its motion in a well-defined direction. (Hint: Consider backward solution trajectories from initial conditions in the region bounded by the cycle.)

Example 6.1.7. Zeeman's game. Consider the population game $F(x)=A x$ generated by random matching in the symmetric normal form game

$$
A=\left(\begin{array}{ccc}
0 & 6 & -4 \\
-3 & 0 & 5 \\
-1 & 3 & 0
\end{array}\right)
$$

Figure 6.1.3: The best response dynamic in Zeeman's game.
with strategy set $S=\{U, M, D\}$. The Nash equilibria of F are $e_{U}, x^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, and $y^{*}=\left(\frac{4}{5}, 0, \frac{1}{5}\right)$. The best response dynamic for F is presented in Figure 6.1.3. Solution trajectories from a majority of initial conditions are unique and converge to the pure equilibrium e_{U}. However, some initial conditions generate multiple solutions. Consider, for example, solutions starting at the interior Nash equilibrium x^{*}. There is a stationary solution at x^{*}, as well as solutions that head toward the vertex e_{U}, possibly after some delay. Other solutions head toward the Nash equilibrium y^{*}. Some of these converge to y^{*}; others leave segment $x^{*} y^{*}$ before reaching y^{*}. Of those that leave, some head to e_{U}, while others head toward e_{D} and then return to x^{*}. If x^{*} is revisited, any of the behaviors just described can occur again. Therefore, there are solutions to (BR) that arrive at and depart x^{*} in perpetuity. §

6.1.3 Incentive Properties

In the previous chapter, we introduced two properties, Nash stationarity (NS) and positive correlation (PC), that link growth rates under evolutionary dynamics with payoffs in the underlying games.

$$
\begin{equation*}
V_{F}(x)=\mathbf{0} \text { if and only if } x \in N E(F) \tag{NS}
\end{equation*}
$$

$$
\begin{equation*}
V_{F}^{p}(x) \neq 0 \text { implies that } V_{F}^{p}(x)^{\prime} F^{p}(x)>0 \text { for all } p \in \mathcal{P} . \tag{PC}
\end{equation*}
$$

Both of these properties are designed for single-valued differential equations. We now establish that analogues of these two properties are satisfied by the differential inclusion (BR).

Theorem 6.1.8. The best response dynamic satisfies

$$
\begin{align*}
& \mathbf{0} \in V_{F}(x) \text { if and only if } x \in N E(F) . \tag{6.7}\\
& \left(z^{p}\right)^{\prime} F^{p}(x)=m^{p} \max _{j \in S^{p}} \hat{F}_{j}^{p}(x) \text { for all } z^{p} \in V_{F}^{p}(x) . \tag{6.8}
\end{align*}
$$

Condition (6.7) requires that the differential inclusion $\dot{x} \in V_{F}(x)$ have a stationary solution at every Nash equilibrium, but at no other states. As we have seen, this condition does not rule out the existence of additional solution trajectories that leave Nash equilibria. Condition (6.8) asks that the correspondence $x \mapsto V_{F}^{p}(x)^{\prime} F^{p}(x)$ be single valued, always equaling the product of population p^{\prime} s mass and its maximal excess payoff. It follows that this map is Lipschitz continuous and nonnegative, equaling zero if and only if all agents in population p are playing a best response (see Lemma 5.5.4). Summing over populations, we see that $V_{F}(x)^{\prime} F(x)=\{0\}$ if and only if x is a Nash equilibrium of F.

Proof. Property (6.7) is immediate. To prove property (6.8), fix $x \in X$, and let $z^{p} \in V_{F}^{p}(x)$. Then $z^{p}=m^{p} y^{p}-x^{p}$ for some $y^{p} \in M^{p}\left(F^{p}(x)\right)$. Therefore,

$$
\left(z^{p}\right)^{\prime} F^{p}(x)=\left(m^{p} y^{p}-x^{p}\right)^{\prime} F^{p}(x)=m^{p} \max _{j \in S S^{p}} F_{j}^{p}(x)-m^{p} \bar{F}^{p}(x)=m^{p} \max _{j \in S^{p}} \hat{F}_{j}^{p}(x) .
$$

6.2 Perturbed Best Response Dynamics

The best response dynamic is a fundamental model of evolution in games, as it provides an idealized description of the behavior of agents whose decisions condition on exact information about the current strategic environment. Of course, the flip side of exact information is discontinuity, a violation of our desideratum (C) for revision protocols (see Section 5.2.1).

We now introduce revision protocols under which agents choose best responses to payoffs that have been subjected to perturbations. While the perturbations can represent actual payoff noise, they can also represent errors in agents' perceptions of payoffs, or in the agents' implementations of the best response rule. Regardless of their interpretation, the perturbations lead to revision protocols that are smooth functions of payoffs, and so to dynamics that can be analyzed using standard techniques.

The use of perturbed best response functions is not unique to evolutionary game theory. To mention one prominent example, researchers in experimental economics employ perturbed best response functions when attempting to rationalize experimental data. Consequently, the ideas we develop in this section provide dynamic foundations for solution concepts in common use in experimental research (see the Notes).

6.2.1 Revision Protocols and Mean Dynamics

Perturbed best response protocols are exact target protocols defined in terms of perturbed maximizer functions $\tilde{M}^{p}: \mathbf{R}^{n^{p}} \rightarrow \operatorname{int}\left(\Delta^{p}\right)$:

$$
\begin{equation*}
\sigma^{p}\left(\pi^{p}, x^{p}\right)=\tilde{M}^{p}\left(\pi^{p}\right) \tag{6.9}
\end{equation*}
$$

Unlike the maximizer correspondence M^{p}, the function \tilde{M}^{p} is single-valued, continuous, and even differentiable. The mixed strategy $\tilde{M}^{p}\left(\pi^{p}\right) \in \operatorname{int}\left(\Delta^{p}\right)$ places most of its mass on the optimal pure strategies, but places positive mass on all pure strategies. Precise definitions of \tilde{M}^{p} will be stated below.

Example 6.2.1. Logit choice. When $p=1$, the logit choice function with noise level $\eta>0$ is written as

$$
\tilde{M}_{i}(\pi)=\frac{\exp \left(\eta^{-1} \pi_{i}\right)}{\sum_{j \in S} \exp \left(\eta^{-1} \pi_{j}\right)} .
$$

For any value of $\eta>0$, each strategy receives positive probability under \tilde{M} regardless of the payoff vector π. But if $\pi_{i}>\pi_{j}$ for all $j \neq i$, the probability with which strategy i is chosen approaches one as η approaches zero. Notice too that adding a constant vector to the payoff vector π has no effect on choice probabilities.

When there are just two strategies, the logit choice function reduces to

$$
\tilde{M}_{1}(\pi)=\frac{\exp \left(\eta^{-1}\left(\pi_{1}-\pi_{2}\right)\right)}{\exp \left(\eta^{-1}\left(\pi_{1}-\pi_{2}\right)\right)+1} \quad \text { and } \quad \tilde{M}_{1}(\pi)+\tilde{M}_{2}(\pi)=1
$$

In Figure 6.2.1, we fix π_{2} at 0 , and graph as a function of π_{1} the $\operatorname{logit}(\eta)$ choice probabilities $\tilde{M}_{1}(\pi)$ for $\eta=.25$, .1 , and .02 , as well as the optimal choice probabilities $M_{1}(\pi)$. Evidently, \tilde{M}_{1} provides a smooth approximation of the discontinuous map M_{1}. While the function \tilde{M}_{1} cannot converge uniformly to the correspondence M_{1} as the noise level η goes to zero, one can show that the graph of \tilde{M}_{1} converges uniformly (in the Hausdorff metric-see the Notes) to the graph of M_{1} as η approaches zero. §

Figure 6.2.1: Logit choice probabilities $\tilde{M}_{1}\left(\pi_{1}, 0\right)$ for noise levels $\eta=.25$ (red), $\eta=.1$ (green), and $\eta=.02$ (blue), along with optimal choice probabilities $M_{1}\left(\pi_{1}, 0\right)$ (black).

The protocol (6.9) induces the perturbed best response dynamic

$$
\begin{equation*}
\dot{x}^{p}=m^{p} \tilde{M}^{p}\left(F^{p}(x)\right)-x^{p} \tag{6.10}
\end{equation*}
$$

as its mean dynamic. We can also write (6.10) as

$$
\dot{x}^{p}=m^{p} \tilde{B}^{p}(x)-x^{p},
$$

where the function $\tilde{B}^{p}=\tilde{M}^{p} \circ F^{p}$, which maps social states to mixed strategies, is the perturbed best response function for population p; it is a perturbed version of the best response correspondence $B^{p}=M^{p} \circ F^{p}$.

6.2.2 Perturbed Optimization: A Representation Theorem

We now consider two methods of defining perturbed maximizer functions. To avoid superscripts, we focus here on the single population case.

The traditional method of defining \tilde{M}, a method with a long history in the theory of discrete choice, is based on stochastic perturbations of the payoffs to each pure strategy. In this construction, an agent chooses the best response to the vector of payoffs $\pi \in \mathbf{R}^{n}$, but only after the payoffs to his alternatives have been perturbed by some random vector ε.

$$
\begin{equation*}
\tilde{M}_{i}(\pi)=\mathbb{P}\left(i=\underset{j \in S}{\operatorname{argmax}} \pi_{j}+\varepsilon_{j}\right) . \tag{6.11}
\end{equation*}
$$

We require the random vector ε to be an admissible stochastic perturbation: it must admit
a positive density on \mathbf{R}^{n}, and this density must be smooth enough that the function \tilde{M} is continuously differentiable. For example, if the components ε_{i} are independent, standard results on convolutions imply that \tilde{M} is C^{1} whenever the densities of the components ε_{i} are bounded. In the discrete choice literature, the definition of \tilde{M} via equation (6.11) is known as the additive random utility model (ARUM).

We can also define \tilde{M} by introducing a deterministic perturbation of the payoffs to each mixed strategy. Call the function $v: \operatorname{int}(\Delta) \rightarrow \mathbf{R}$ an admissible deterministic perturbation if it is differentiably strictly convex and steep near $\operatorname{bd}(\Delta)$. That is, v is admissible if the second derivative at $y, D^{2} v(y) \in L_{s}^{2}\left(\mathbf{R}_{0}^{n}, \mathbf{R}\right)$, is positive definite for all $y \in \operatorname{int}(\Delta)$, and if $|\nabla v(y)|$ approaches infinity whenever y approaches $\operatorname{bd}(\Delta)$. (Recall that \mathbf{R}_{0}^{n} is an alternate notation for $T \Delta$, the tangent space of the simplex.) With an admissible v in hand, we define the function \tilde{M} by

$$
\begin{equation*}
\tilde{M}(\pi)=\underset{y \in \operatorname{int}(\Delta)}{\operatorname{argmax}}\left(y^{\prime} \pi-v(y)\right) . \tag{6.12}
\end{equation*}
$$

One interpretation of the function v is that it represents a "control cost" that becomes large whenever an agent puts too little probability on any particular pure strategy. Because the base payoffs to each strategy are bounded, the steepness of v near $\operatorname{bd}(\Delta)$ implies that it is never optimal for an agent to choose probabilities too close to zero.

Note that under either definition, choice probabilities under \tilde{M} are unaffected by constant shifts in the payoff vector π. The projection of \mathbf{R}^{n} onto $\mathbf{R}_{0}^{n}, \Phi=I-\frac{1}{n} \mathbf{1 1}{ }^{\prime}$, employs just such a shift, so we can express this property of \tilde{M} as follows:

$$
\tilde{M}(\pi)=\tilde{M}(\Phi \pi) \text { for all } \pi \in \mathbf{R}^{n}
$$

With this motivation, we define $\bar{M}: \mathbf{R}_{0}^{n} \rightarrow \operatorname{int}(\Delta)$ to be the restriction of \tilde{M} to the subspace \mathbf{R}_{0}^{n}.

As we noted above, the stochastic construction (6.11) is the traditional way of defining perturbed maximizer functions, and this construction is more intuitively appealing than the deterministic construction (6.12). But the latter construction is clearly more convenient for analysis: while under (6.11) choice probabilities must expressed as cumbersome multiple integrals, under (6.12) they are obtained as interior maximizers of a strictly concave function.

Happily, we need not trade off intuitive appeal for convenience: every \tilde{M} defined via equation (6.11) can be represented in form (6.12).

Theorem 6.2.2. Let \tilde{M} be a perturbed maximizer function defined in terms of an admissible
stochastic perturbation ε via equation (6.11). Then \tilde{M} satisfies equation (6.12) for some admissible deterministic perturbation v. In fact, $\bar{M}=\left.\tilde{M}\right|_{\mathbf{R}_{0}^{n}}$ and ∇v are invertible, and $\bar{M}=(\nabla v)^{-1}$.

Taking as given the initial statements in the theorem, it is easy to verify the last one. Indeed, suppose that \tilde{M} (and hence \bar{M}) can be derived from the admissible deterministic perturbation v, that the gradient $\nabla v: \operatorname{int}(\Delta) \rightarrow \mathbf{R}_{0}^{n}$ is invertible, and that the payoff vector π is in \mathbf{R}_{0}^{n}. Then $y^{*} \equiv \bar{M}(\pi)$ satisfies

$$
y^{*}=\underset{y \in \operatorname{int}(\Delta)}{\operatorname{argmax}}\left(y^{\prime} \pi-v(y)\right) .
$$

This is a strictly concave maximization problem with an interior solution. Taking the first order condition with respect to directions in \mathbf{R}_{0}^{n} yields

$$
\Phi\left(\pi-\nabla v\left(y^{*}\right)\right)=\mathbf{0} .
$$

Since π and $\nabla v\left(y^{*}\right)$ are already in \mathbf{R}_{0}^{n}, the projection Φ does nothing, so rearranging allows us to conclude that

$$
\bar{M}(\pi)=y^{*}=(\nabla v)^{-1}(\pi) .
$$

In light of this argument, the main task in proving Theorem 6.2.2 is to show that a function v with the desired properties exists. Accomplishing this requires the use of the Legendre transform, a classical tool from convex analysis. We explain the basic properties of the Legendre transform in Appendix 6.B. This device is used to prove the representation theorem in Appendix 6.C, where some auxiliary results can also be found.

One such result is worth mentioning now. Theorem 6.2.2 tells us that every \tilde{M} defined in terms of stochastic perturbations can be represented in terms of deterministic perturbations. Exercise 6.2.3 shows that the converse statement is false, and thus that the deterministic definition of \tilde{M} is strictly more general than the stochastic one.

Exercise 6.2.3. Show that when $n \geq 4$, there is no stochastic perturbation of payoffs which yields the same choice probabilities as the admissible deterministic perturbation $v(y)=$ $-\sum_{j \in S} \log y_{j}$. (Hint: Use Theorem 6.C. 6 in the Appendix.)

6.2.3 Logit Choice and the Logit Dynamic

In Example 6.2.1, we introduced the best known example of a perturbed maximizer function: the logit choice function with noise level $\eta>0$.

$$
\begin{equation*}
\tilde{M}_{i}(\pi)=\frac{\exp \left(\eta^{-1} \pi_{i}\right)}{\sum_{j \in S} \exp \left(\eta^{-1} \pi_{j}\right)} \tag{6.13}
\end{equation*}
$$

This function generates as its mean dynamic the logit dynamic with noise level η :
(L) $\quad \dot{x}_{i}^{p}=m^{p} \frac{\exp \left(\eta^{-1} F_{i}^{p}(x)\right)}{\sum_{j \in S^{p}} \exp \left(\eta^{-1} F_{j}^{p}(x)\right)}-x_{i}^{p}$.

Rest points of logit dynamics are called logit equilibria.
Example 6.2.4. In Figure 6.2.2, we present phase diagrams for the 123 Coordination game

$$
F(x)=A x=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
2 x_{2} \\
3 x_{3}
\end{array}\right)
$$

under logit dynamics with a range of noise levels. As η passes from .01 to 1 , the dynamics pass through four distinct regimes. At the lowest noise levels, the dynamics admit seven rest points, three stable and four unstable, corresponding to the seven Nash equilibria of F. When η reaches $\approx .22$, two of the unstable rest points annihilate one another, leaving five rest points in total. At $\eta \approx .28$, the stable rest point corresponding to Nash equilibrium e_{1} and an unstable rest point eliminate one another, so that three rest points remain. Finally, when $\eta \approx .68$, the stable rest point corresponding to Nash equilibrium e_{2} and an unstable rest point annihilate each other, leaving just a single, stable rest point. If we continue to increase η, the last rest point ultimately converges to the central state ($\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$).

This example provides an illustration of a deep topological result called the PoincaréHopf Theorem. In the present two-dimensional context, this theorem ensures that generically, the number of sinks plus the number of sources equals the number of saddles plus one. §

Example 6.2.5. Stochastic derivation of logit choice. We can derive the logit choice function from stochastic perturbations that are i.i.d. with the double exponential distribution: $\mathbb{P}\left(\varepsilon_{i} \leq\right.$ $c)=\exp \left(-\exp \left(-\eta^{-1} c-\gamma\right)\right)$, where $\gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\log n\right) \approx 0.5772$ is Euler's constant. For intuition, we mention without proof that $\mathbb{E} \varepsilon_{i}=0$ and $\operatorname{Var}\left(\varepsilon_{i}\right)=\frac{\eta^{2} \pi^{2}}{6}$, so that $S D\left(\varepsilon_{i}\right) \approx$ 1.2826η.

Figure 6.2.2: Logit dynamics in 123 Coordination.

Figure 6.2.2: Logit dynamics in 123 Coordination.

To see that these perturbations generate logit choice, note that the density of ε_{i} is $f(x)=\eta^{-1} \exp \left(-\eta^{-1} x-\gamma\right) \exp \left(-\exp \left(-\eta^{-1} x-\gamma\right)\right)$. Using the substitutions $y=\exp \left(-\eta^{-1} x-\gamma\right)$ and $m_{j}=\exp \left(\eta^{-1} \pi_{j}\right)$, we compute as follows:

$$
\begin{aligned}
\mathbb{P}\left(i=\operatorname{argmax}_{j \in S} \pi_{j}+\varepsilon_{j}\right) & =\int_{0}^{\infty} f(x) \prod_{j \neq i} F\left(\pi_{i}+x-\pi_{j}\right) \mathrm{d} x \\
& =-\int_{0}^{\infty} \eta^{-1} y \exp (-y) \prod_{j \neq i} \exp \left(-y \frac{m_{j}}{m_{i}}\right) \frac{\eta}{y} \mathrm{~d} y \\
& =-\int_{0}^{\infty} \exp \left(-y \sum_{j \in S} \frac{m_{j}}{m_{i}}\right) \mathrm{d} y \\
& =\frac{m_{i}}{\sum_{j \in S} m_{j}} \\
& =\frac{\exp \left(\eta^{-1} \pi_{i}\right)}{\sum_{j \in S} \exp \left(\eta^{-1} \pi_{j}\right)} . \S
\end{aligned}
$$

Exercise 6.2.6. Deterministic derivation of logit choice. According to the representation theorem, it must also be possible to derive the logit choice function from an admissible deterministic perturbation. Show that this is accomplished using the (negated) entropy function $v(y)=\eta \sum_{j \in S} y_{j} \log y_{j}$.

The next exercise gives explicit formulas for various functions from the proof of the representation theorem in the case of logit choice. Included is the derivative matrix $D \tilde{M}(\pi)$, a useful item in analyses of local stability (see Chapter 8.) The exercise also shows how the entropy function v can be derived from the function \tilde{M}.

Exercise 6.2.7. Additional results on logit choice.
(i) Show that $\tilde{\mu}(\pi)=\eta \log \left(\sum_{j \in S} \exp \left(\eta^{-1} \pi_{j}\right)\right)$ is a potential function for \tilde{M}. (For the interpretation of this function, see Observation 6.C. 3 and Theorem 6.C. 4 in the Appendix.)
(ii) Let $\bar{\mu}$ be the restriction of $\tilde{\mu}$ to \mathbf{R}_{0}^{n}, so that $\nabla \bar{\mu}(\pi)=\Phi \tilde{M}(\pi)=\tilde{M}(\pi)-\frac{1}{n} \mathbf{1}=\bar{M}(\pi)-\frac{1}{n} \mathbf{1}$. For $y \in \operatorname{int}(\Delta)$, let $\hat{y} \equiv y-\frac{1}{n} \mathbf{1}$. Show that

$$
(\nabla \bar{\mu})^{-1}(\hat{y})=\bar{M}^{-1}(y)=\eta\left(\begin{array}{c}
\log y_{1}-\frac{1}{n} \sum_{j \in S} \log y_{j} \\
\vdots \\
\log y_{n}-\frac{1}{n} \sum_{j \in S} \log y_{j}
\end{array}\right)
$$

(iii) Let $\left(C^{*}, \bar{\mu}^{*}\right)$ be the Legendre transform of $\left(\mathbf{R}_{0}^{n}, \bar{\mu}\right)$, and define $v: \operatorname{int}(\Delta) \rightarrow \mathbf{R}$ by $v(y)=\bar{\mu}^{*}(\hat{y})$. Show by direct computation that $v(y)=\eta \sum_{j \in S} y_{j} \log y_{j}$.
(iv) Show that $\nabla v(y)=\bar{M}^{-1}(y)$. (Hint: Let \tilde{v} be the natural extension of v to \mathbf{R}_{+}^{n}, and use
the fact $\nabla v(y)=\Phi \nabla \tilde{v}(y)$.
(v) Show that $\nabla^{2} v(y)=\eta \Phi \operatorname{diag}\left(\left[y^{-1}\right]\right) \Phi$, where $\left[y^{-1}\right]_{j}=y_{j}^{-1}$ for all $j \in S$.
(vi) Show that if $\pi \in \mathbf{R}_{0}^{n}$, then

$$
D \tilde{M}(\pi)=\nabla^{2} \tilde{\mu}(\pi)=\eta^{-1}\left(\operatorname{diag}(\bar{M}(\pi))-\bar{M}(\pi) \bar{M}(\pi)^{\prime}\right)=\nabla^{2} \bar{\mu}(\pi)=D \bar{M}(\pi) .
$$

(vii) Show that $\nabla^{2} v(\bar{M}(\pi))=\left(\nabla^{2} \bar{\mu}(\pi)\right)^{-1}$ when these matrices are viewed as linear maps from \mathbf{R}_{0}^{n} to \mathbf{R}_{0}^{n}. (Hint: Since both of these maps are of full rank on \mathbf{R}_{0}^{n}, it is enough to show that $\nabla^{2} \bar{\mu}(\pi) \nabla^{2} v(\bar{M}(\pi))=\Phi$, the orthogonal projection onto \mathbf{R}_{0}^{n}.)

Exercise 6.2.8. Suppose that \tilde{M} is a perturbed maximizer function derived from an admissible deterministic perturbation as in equation (6.12) (or from an admissible stochastic perturbation as in equation (6.11)). Show that if \tilde{M} can be expressed as

$$
\begin{equation*}
\tilde{M}_{i}(\pi)=\frac{\alpha\left(\pi_{i}\right)}{\sum_{j \in S} \alpha\left(\pi_{j}\right)} \tag{6.14}
\end{equation*}
$$

for some increasing differentiable function $\alpha: \mathbf{R} \rightarrow(0, \infty)$, then \tilde{M} is a logit choice function with some noise level $\eta>0$. (Hint: Combine equation (6.14) with the fact that the derivative matrix $D \tilde{M}(\pi)$ must be symmetric (see Corollary 6.C. 5 and Theorem 6.C. 6 in the Appendix).)

Exercise 6.2.9. The variable-rate logit dynamic. The variable-rate logit dynamic with noise level $\eta>0$ is defined by

$$
\begin{equation*}
\dot{x}_{i}^{p}=m^{p} \exp \left(\eta^{-1} F_{i}^{p}(x)\right)-x_{i}^{p} \sum_{j \in S^{p}} \exp \left(\eta^{-1} F_{j}^{p}(x)\right) . \tag{6.15}
\end{equation*}
$$

The previous exercise shows that the logit dynamic is the only perturbed best response dynamic that admits a modification of this sort.
(i) Describe a simple revision protocol that generates this dynamic, and provide an interpretation.
(ii) Show that if $p=1$, then (6.15) is equivalent to the logit dynamic (L) up to a change in the speed at which solution trajectories are traversed. Explain why this is not the case when $p \geq 2$.
(iii) Compare this dynamic with the excess payoff dynamics from Chapter 5. Explain why those dynamics cannot be modified so as to resemble the logit dynamic (L).

6.2.4 Perturbed Incentive Properties via Virtual Payoffs

Because they incorporate payoff disturbances, perturbed best response dynamics cannot satisfy positive correlation (PC) or Nash stationarity (NS). We now show that these dynamics do satisfy suitably perturbed versions of the two incentive properties. In light of the representation theorem, there is no loss of generality in focusing on dynamics generated by admissible deterministic perturbations $v=\left(v^{1}, \ldots, v^{p}\right)$.

We can describe the set of Nash equilibria of F in terms of the best response correspondences B^{p} :

$$
N E(F)=\left\{x \in X: x^{p} \in m^{p} B^{p}(x) \text { for all } p \in \mathcal{P}\right\} .
$$

In similar fashion, we define the set of perturbed equilibria of the pair (F, v) in terms of the perturbed best response functions \tilde{B}^{p} :

$$
P E(F, v)=\left\{x \in X: x^{p}=m^{p} \tilde{B}^{p}(x) \text { for all } p \in \mathcal{P}\right\} .
$$

By definition, the rest points of the perturbed best response dynamic (6.10) are the perturbed equilibria of (F, v).

Observation 6.2.10. All perturbed best response dynamics satisfy perturbed stationarity:

$$
\begin{equation*}
V(x)=\mathbf{0} \text { if and only if } x \in P E(F, v) . \tag{6.16}
\end{equation*}
$$

We can derive an alternate characterization of perturbed equilibrium using the notion of virtual payoffs. Define the virtual payoffs $\tilde{F}: \operatorname{int}(X) \rightarrow \mathbf{R}^{n}$ for the pair (F, v) by

$$
\tilde{F}^{p}(x)=F^{p}(x)-\nabla v^{p}\left(\frac{1}{m^{p}} p^{p}\right) .
$$

Thus, the virtual payoff function for population p is the difference between the population's true payoff function and gradient of its deterministic perturbation.

For intuition, let us consider the single population case. When x is far from the boundary of the simplex X, the perturbation v is relatively flat, so the virtual payoffs $\tilde{F}(x)$ are close to the true payoffs $F(x)$. But near the boundary of X, true and virtual payoffs are quite different. For example, when x_{i} is the only component of x that is close to zero, then for each alternate strategy $j \neq i$, moving "inward" in direction $e_{i}-e_{j}$ sharply decreases the value of v; thus, the directional derivative $\frac{\partial v}{\partial\left(e_{i}-e_{j}\right)}(x)$ is large in absolute value and negative. It follows that the difference $\tilde{F}_{i}(x)-\tilde{F}_{j}(x)$ between these strategies' virtual payoffs is large and positive. In other words, rare strategies are quite desirable in the "virtual game" \tilde{F}.

Individual agents do not use virtual payoffs to decide how to act: to obtain the maximized function in definition (6.12) from the virtual payoff function, we must replace the normalized population state $\frac{1}{m^{p}} x^{p}$ with the vector of choice probabilities y^{p}. But at perturbed equilibria, $\frac{1}{m^{p}} x^{p}$ and y^{p} agree. Therefore, perturbed equilibria of (F, v) correspond to "Nash equilibria" of the "virtual game" \tilde{F}.

Theorem 6.2.11. Let $x \in X$ be a social state. Then $x \in P E(F, v)$ if and only if $\Phi \tilde{F}^{p}(x)=\mathbf{0}$ for all $p \in \mathcal{P}$.

The equality $\Phi \tilde{F}^{p}(x)=\mathbf{0}$ means that $\tilde{F}^{p}(x)$ is a constant vector. Since uncommon strategies are quite desirable in the "virtual game" \tilde{F}, no state that includes an unused strategy can be a "Nash equilibrium" of \tilde{F}; thus, equality of all virtual payoffs in each population is the right definition of "Nash equilibrium" in \tilde{F}.

Theorem 6.2.11 follows immediately from perturbed stationarity (6.16) and Lemma 6.2.12 below.

Lemma 6.2.12. Let $x \in X$ be a social state. Then $V^{p}(x)=\mathbf{0}$ if and only if $\Phi \tilde{F}^{p}(x)=\mathbf{0}$.
Proof. Using the facts that $\tilde{M}^{p}\left(\pi^{p}\right)=\bar{M}^{p}\left(\Phi \pi^{p}\right)$, that $\bar{M}^{p}=\left(\nabla v^{p}\right)^{-1}$, and that the range of ∇v^{p} is $\mathbf{R}_{0}^{n^{p}}$ (so that $\nabla v^{p}=\Phi \circ \nabla v^{p}$), we argue as follows:

$$
\begin{aligned}
V^{p}(x)=\mathbf{0} & \Leftrightarrow m^{p} \tilde{M}^{p}\left(F^{p}(x)\right)=x^{p} \\
& \Leftrightarrow \bar{M}^{p}\left(\Phi F^{p}(x)\right)=\frac{1}{m^{p}} x^{p} \\
& \Leftrightarrow \Phi F^{p}(x)=\nabla v^{p}\left(\frac{1}{m^{p}} x^{p}\right) \\
& \Leftrightarrow \Phi \tilde{F}^{p}(x)=\mathbf{0} .
\end{aligned}
$$

Turning now to disequilibrium behavior, recall that positive correlation is defined in terms of inner products of growth rate vectors and payoff vectors:
(PC) $\quad V_{F}^{p}(x) \neq \mathbf{0}$ implies that $V_{F}^{p}(x)^{\prime} F^{p}(x)>0$ for all $p \in \mathcal{P}$.
In light of the discussion above, the natural analogue of property (PC) for perturbed best response dynamics replaces the true payoffs $F^{p}(x)$ with virtual payoffs $\tilde{F}^{p}(x)$. Doing so yields virtual positive correlation:

$$
\begin{equation*}
V^{p}(x) \neq 0 \text { implies that } V^{p}(x)^{\prime} \tilde{F}^{p}(x)>0 \text { for all } p \in \mathscr{P} \tag{6.17}
\end{equation*}
$$

To conclude this section, we verify that all perturbed best response dynamics heed this property.

Theorem 6.2.13. All perturbed best response dynamics satisfy virtual positive correlation (6.17).
Proof. Let $x \in X$ be a social state at which $V^{p}(x) \neq \mathbf{0}$. Then by definition,

$$
\begin{equation*}
y^{p} \equiv \tilde{M}^{p}\left(F^{p}(x)\right)=\bar{M}^{p}\left(\Phi F^{p}(x)\right) \neq \frac{1}{m^{p}} x^{p} . \tag{6.18}
\end{equation*}
$$

Since $\nabla v^{p}=\left(\bar{M}^{p}\right)^{-1}$, we can rewrite the equality in expression (6.18) as $\nabla v^{p}\left(y^{p}\right)=\Phi F^{p}(x)$. Therefore, since $V^{p}(x) \in T X^{p}$, we find that

$$
\begin{aligned}
V^{p}(x)^{\prime} \tilde{F}^{p}(x) & =\left(m^{p} \tilde{M}^{p}\left(F^{p}(x)\right)-x^{p}\right)^{\prime} \Phi \tilde{F}^{p}(x) \\
& =\left(m^{p} \bar{M}^{p}\left(\Phi F^{p}(x)\right)-x^{p}\right)^{\prime}\left(\Phi F^{p}(x)-\nabla v^{p}\left(\frac{1}{m^{p}} x^{p}\right)\right) \\
& =m^{p}\left(y^{p}-\frac{1}{m^{p}} x^{p}\right)^{\prime}\left(\nabla v^{p}\left(y^{p}\right)-\nabla v^{p}\left(\frac{1}{m^{p}} x^{p}\right)\right)>0,
\end{aligned}
$$

where the final inequality follows from the fact that $y^{p} \neq \frac{1}{m^{p}}{ }^{p}$ and from the strict convexity of v^{p}.

6.3 The Projection Dynamic

6.3.1 Definition

Our main payoff monotonicity condition for evolutionary dynamics is positive correlation (PC). In geometric terms, (PC) requires that at each state where population p is not at rest, the growth rate vector $V^{p}(x)$ must form an acute angle with the payoff vector $F^{p}(x)$. Put differently, (PC) demands that growth rate vectors not distort payoff vectors to too great a degree. Is there an evolutionary dynamic that minimizes this distortion?

If the vector field V is to define an evolutionary dynamic, each growth rate vector $V(x)$ must represent a feasible direction of motion, in the sense of lying in the tangent cone $T X(x)$. Thus, the most direct approach to our question is to always take $V(x)$ to be the closest point in TX (x) to the payoff vector $F(x)$.

Definition. The projection dynamic associates each population game $F \in \mathcal{F}$ with a differential equation

$$
\begin{equation*}
\dot{x}=\Pi_{T X(x)}(F(x)), \tag{P}
\end{equation*}
$$

where $\Pi_{T X(x)}$ is the closest point projection of \mathbf{R}^{n} onto the tangent cone TX (x).

It is easy to provide an explicit formula for (P) at social states in the interior of X. Since at such states $T X(x)=T X$, the closest point projection $\Pi_{T X(x)}$ is simply Φ, the orthogonal projection onto the subspace $T X$. In fact, whenever $x^{p} \in \operatorname{int}\left(X^{p}\right)$, we have that

$$
\dot{x}_{i}^{p}=\left(\Phi F^{p}(x)\right)_{i}=F_{i}^{p}-\frac{1}{n} \sum_{k \in S} F_{k}^{p}(x) .
$$

Thus, when x^{p} is an interior population state, the growth rate of strategy $i \in S^{p}$ is the difference between its payoff and the unweighted average of the payoffs to population p^{\prime} s strategies.

When x is a boundary state, then the projection $\Pi_{T X(x)}$ does not reduce to an orthogonal projection, so providing an explicit formula for (P) becomes more complicated. Exercise 6.3.1 describes the possibilities in a three-strategy game, while Exercise 6.3 .2 provides an explicit formula for the general case.

Exercise 6.3.1. Let F be a three-strategy game. Give an explicit formula for $V(x)=\Pi_{T X(x)} F(x)$ when
(i) $x \in \operatorname{int}(X)$;
(ii) $x_{1}=0$ but $x_{2}, x_{3}>0$;
(iii) $x_{1}=1$.

Exercise 6.3.2. Let F be an arbitrary single population game. Show that the projection $\Pi_{T X(x)}(v)$ can be expressed as follows:

$$
\left(\Pi_{T X(x)}(v)\right)_{i}= \begin{cases}v_{i}-\frac{1}{\# S(v, x)} \sum_{j \in S(v, x)} v_{j} & \text { if } i \in S(v, x) \\ 0 & \text { otherwise }\end{cases}
$$

Here, the set $S(v, x) \subseteq S$ contains all strategies in support (x), along with any subset of $S-\operatorname{support}(x)$ that maximizes the average $\frac{1}{\# S(v, x)} \sum_{j \in S(v, x)} v_{j}$.

6.3.2 Solution Trajectories

The dynamic (P) is clearly discontinuous at the boundary of X, so the existence and uniqueness results for Lipschitz continuous differential equations do not apply. We nevertheless have the following result, which is an immediate consequence of Theorem 6.A. 4 in the Appendix.

Theorem 6.3.3. Fix a Lipschitz continuous population game F. Then for each $\xi \in X$, there exists a unique Carathéodory solution $\left\{x_{t}\right\}_{t \geq 0}$ to the projection dynamic (P) with $x_{0}=\xi$. Moreover,
solutions to (P) are Lipschitz continuous in their initial conditions: if $\left\{x_{t}\right\}_{t \geq 0}$ and $\left\{y_{t}\right\}_{t \geq 0}$ are solutions to (P), then $\left|y_{t}-x_{t}\right| \leq\left|y_{0}-x_{0}\right| \mathrm{e}^{K t}$ for all $t \geq 0$, where K is the Lipschitz coefficient for F.

Theorem 6.3 .3 shows that the discontinuous differential equation (P) enjoys many of the properties of Lipschitz continuous differential equations. But there are important differences between the two types of dynamics. One difference is easy to spot: solutions to (P) are solutions in the Carathéodory sense, and so can have kinks at a measure zero set of times. Other differences are more subtle. For instance, while the theorem ensures the uniqueness of the forward solution trajectory from each state $\xi \in X$, backward solutions need not be unique. It is therefore possible for distinct solution trajectories of the projection dynamic to merge with one another.

Example 6.3.4. Figure 6.3.1 presents phase diagrams for the projection dynamic in good $\operatorname{RPS}(w=2, l=1)$, standard $\operatorname{RPS}(w=l=1)$, and $\operatorname{bad} \operatorname{RPS}(w=1, l=2)$. In all three games, most solutions spiral around the Nash equilibrium $x^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ in a counterclockwise direction.

In good RPS (Figure 6.3.1(i)), all solutions converge to the Nash equilibrium. Solutions that begin close to a vertex hit and then travel along an edge of the simplex before heading into the interior of the simplex forever. Thus, there is a portion of each edge that is traversed by solutions starting from a positive measure set of initial conditions.

In standard RPS (Figure 6.3.1(ii)), all solutions enter closed orbits at a fixed distance from x^{*}. Solutions starting at distance $\frac{1}{\sqrt{6}}$ or greater from x^{*} (i.e., all solutions at least as far from x^{*} as the state $\left(0, \frac{1}{2}, \frac{1}{2}\right)$) quickly enter the closed orbit at distance $\frac{1}{\sqrt{6}}$ from x^{*}; other solutions maintain their initial distance from x^{*} forever.

In bad RPS (Figure 6.3.1(iii)), all solutions other than the one starting at x^{*} enter the same closed orbit. This orbit alternates between segments through the interior of X and segments along the boundaries.

Notice that in all three cases, solution trajectories starting in the interior of the state space can reach the boundary in finite time. This is impossible under any of our previous dynamics, including the best response dynamic. §

Exercise 6.3.5. (i) Under what conditions is the dynamic (P) described by $\dot{x}=\Phi F(x)$ at all states $x \in X$ (i.e., not just at interior states)?
(ii) Suppose that $F(x)=A x$ is generated by random matching in the symmetric normal form game A. What do the conditions from part (i) reduce to in this case? (Note that under these conditions, $\dot{x}=\Phi A x$ is a linear differential equation; it is therefore possible to write down explicit formulas for the solution trajectories (see Chapter 8).)

(i) good RPS

(ii) standard RPS

(iii) bad RPS

Figure 6.3.1: The projection dynamic in three Rock-Paper-Scissors games.

6.3.3 Incentive Properties

That solutions to the projection dynamic exist, are unique, and are continuous in their initial conditions is not obvious. But given this fact and the manner in which the dynamic is defined, it is not surprising that the dynamic satisfies both of our incentive properties. The proofs of these properties are simple applications of the Moreau Decomposition Theorem: given any closed convex cone $K \subseteq \mathbf{R}^{n}$ and any vector $\pi \in \mathbf{R}^{n}$, the projections $\Pi_{K}(\pi)$ and $\Pi_{K^{\circ}}(\pi)$ are the unique vectors satisfying $\Pi_{K}(\pi) \in K, \Pi_{K^{\circ}}(\pi) \in K^{\circ}$, and $\Pi_{K}(\pi)+\Pi_{K^{\circ}}(\pi)=\pi$ (see Appendix 2.B).

Theorem 6.3.6. The projection dynamic satisfies Nash stationarity (NS) and positive correlation (PC).

Proof. Using the Moreau Decomposition Theorem and the normal cone characterization of Nash equilibrium (see Theorem 2.3.2), we find that

$$
\Pi_{T X(x)}(F(x))=\mathbf{0} \Leftrightarrow F(x) \in N X(x) \Leftrightarrow x \in N E(F)
$$

establishing (NS). To prove (PC), we again use the Moreau Decomposition Theorem:

$$
\begin{aligned}
V^{p}(x)^{\prime} F^{p}(x) & =\Pi_{T X^{p}\left(x^{p}\right)}\left(F^{p}(x)\right)^{\prime}\left(\Pi_{T X^{p}\left(x^{p}\right)}\left(F^{p}(x)\right)+\Pi_{N X^{p}\left(x^{p}\right)}\left(F^{p}(x)\right)\right) \\
& =\left|\Pi_{T X^{p}\left(x^{p}\right)}\left(F\left(x^{p}\right)\right)\right|^{2} \\
& \geq 0 .
\end{aligned}
$$

The inequality binds if and only if $\Pi_{T X^{p}\left(x^{p}\right)}\left(F^{p}(x)\right)=V^{p}(x)=\mathbf{0}$.

6.3.4 Revision Protocols and Connections with the Replicator Dynamic

To this point, we have motivated the projection dynamic entirely through geometric considerations. Can this dynamic be derived from a model of individual choice? In this section, we describe revision protocols that generate the projection dynamic as their mean dynamics, and use these protocols to argue that the projection dynamic models "revision driven by insecurity". Our analysis reveals close connections between the projection dynamic and the replicator dynamic, connections that we will develop further in the next chapter.

In the remainder of this section, we focus on the single population setting; the extension to multipopulation settings is straightforward.

If we focus exclusively on interior states, the connections between the replicator and projection dynamics are especially strong. In Chapter 4, we introduced three revision protocols that generate the replicator dynamic as their mean dynamics:

$$
\begin{align*}
& \rho_{i j}(\pi, x)=x_{j}\left[\pi_{j}-\pi_{i}\right]_{+} ; \tag{6.19}\\
& \rho_{i j}(\pi, x)=x_{j}\left(K-\pi_{i}\right) ; \tag{6.20}\\
& \rho_{i j}(\pi, x)=x_{j}\left(\pi_{j}+K\right) . \tag{6.21}
\end{align*}
$$

The x_{j} term in each formula reflects the fact that these protocols are driven by imitation. For instance, to implement the first protocol, an agent whose clock rings picks an opponent from his population at random; he then imitates this opponent only if the opponents' payoff is higher, doing so with probability proportional to the payoff difference. The x_{j} term in these protocols endows their mean dynamic with a special functional form: the growth rate of each strategy is proportional to its prevalence in the population. For protocol (6.19), the derivation of the mean dynamic proceeds as follows:

$$
\begin{aligned}
\dot{x}_{i} & =\sum_{j \in S} x_{j} \rho_{j i}(F(x), x)-x_{i} \sum_{j \in S} \rho_{i j}(F(x), x) \\
& =\sum_{j \in S} x_{j} x_{i}\left[F_{i}(x)-F_{j}(x)\right]_{+}-x_{i} \sum_{j \in S} x_{j}\left[F_{j}(x)-F_{i}(x)\right]_{+} \\
& =x_{i} \sum_{j \in S} x_{j}\left(F_{i}(x)-F_{j}(x)\right) \\
& =x_{i}\left(F_{i}(x)-\sum_{j} x_{j} F_{j}(x)\right) .
\end{aligned}
$$

To derive the projection dynamic on $\operatorname{int}(X)$, we use analogues of the revision protocols above, replacing x_{j} with $\frac{1}{n x_{i}}$:

$$
\begin{align*}
& \rho_{i j}(\pi, x)=\frac{\left[\pi_{j}-\pi_{i}\right]_{+}}{n x_{i}} ; \tag{6.22}\\
& \rho_{i j}(\pi, x)=\frac{K-\pi_{i}}{n x_{i}} ; \tag{6.23}\\
& \rho_{i j}(\pi, x)=\frac{\pi_{j}+K}{n x_{i}} . \tag{6.24}
\end{align*}
$$

Thus, while in each of the imitative protocols, $\rho_{i j}$ is proportional to the mass of agents playing the candidate strategy j, in the protocols just above, $\rho_{i j}$ is inversely proportional to the mass of agents playing the current strategy i. One can therefore designate the projection
dynamic as capturing "revision driven by insecurity", as it describes the behavior of agents who are especially uncomfortable choosing strategies not used by many others.

It is easy to verify that protocols (6.22), (6.23), and (6.24) all induce the projection dynamic on the interior of the state space. In the case of protocol (6.22), the calculation proceeds as follows:

$$
\begin{aligned}
\dot{x}_{i} & =\sum_{j \in S} x_{j} \rho_{j i}(F(x), x)-x_{i} \sum_{j \in S} \rho_{i j}(F(x), x) \\
& =\sum_{j \in S} x_{j} \frac{\left[F_{i}(x)-F_{j}(x)\right]_{+}}{n x_{j}}-x_{i} \sum_{j \in S} \frac{\left[F_{j}(x)-F_{i}(x)\right]_{+}}{n x_{i}} \\
& =\frac{1}{n} \sum_{j \in S}\left(F_{i}(x)-F_{j}(x)\right) \\
& =F_{i}(x)-\frac{1}{n} \sum_{j \in S} F_{j}(x) .
\end{aligned}
$$

Because of the $\frac{1}{x_{i}}$ term in the revision protocol, the mean dynamic above does not depend directly on the value of x_{i}, allowing the disappearance rates of rare strategies to stay bounded away from zero. In other words, it is because unpopular strategies can be abandoned quite rapidly that solutions to the projection dynamic can travel from the interior to the boundary of the state space in a finite amount of time.

Except in cases where the projection dynamic is defined by $\dot{x}=\Phi F(x)$ at all states (cf Exercise 6.3.5), the revision protocols above do not generate the projection dynamic on the boundary of X. Exercise 6.3 .7 presents a revision protocol that achieves this goal, even while maintaining connections with the replicator dynamic.

Exercise 6.3.7. Consider the following two revision protocols

$$
\begin{align*}
& \rho_{i j}(\pi, x)= \begin{cases}{\left[\hat{\pi}_{i}\right]_{-} \cdot \frac{x_{j}\left[\hat{\pi}_{j}\right]_{+}}{\sum_{k \in S} x_{k}\left[\hat{\pi}_{k}\right]_{+}}} & \text {if } \sum_{k \in S} x_{k}\left[\hat{\pi}_{k}\right]_{+}>0, \\
0 & \text { otherwise. }\end{cases} \tag{6.25}\\
& \rho_{i j}(\pi, x)= \begin{cases}{\left[\tilde{\pi}_{i}^{S}\right]_{-}} \\
x_{i} & \frac{\left[\tilde{\pi}_{j}^{S}\right]_{+}}{\sum_{k \in S(\pi, x)}\left[\tilde{\pi}_{k}^{S}\right]_{+}} \\
0 & \text { if } \sum_{k \in S(\pi, x)} x_{i}\left[\tilde{\pi}_{k}^{S}\right]_{+}>0,\end{cases} \tag{6.26}\\
& 0 \quad \text { otherwise. }
\end{align*}
$$

The set $\mathcal{S}(\pi, x)$ in equation (6.26) is defined in Exercise 6.3.2, and $\tilde{\pi}_{i}^{\mathcal{S}}=\pi_{i}-\frac{1}{\# S(\pi, x)} \sum_{k \in S(\pi, x)} \pi_{k}$.
(i) Provide an interpretation of protocol (6.25), and show that it generates the replicator dynamic as its mean dynamic.
(ii) Provide an interpretation of protocol (6.26), and show that it generates the projec-
tion dynamic as its mean dynamic.

Appendix

6.A Differential Inclusions

6.A. 1 Basic Theory

A correspondence (i.e., a set valued map) $V: \mathbf{R}^{n} \Rightarrow \mathbf{R}^{n}$ defines a differential inclusion via
(DI) $\quad \dot{x} \in V(x)$.

We call (DI) a good upper hemicontinuous (or good UHC) differential inclusion if V is:
(i) Nonempty: $V(x) \neq \varnothing$ for all $x \in \mathbf{R}^{n}$;
(ii) Convex valued: $V(x)$ is convex for all $x \in X$;
(iii) Bounded: There exists a $K \in \mathbf{R}$ such that $\sup \{|y|: y \in V(x)\} \leq K$ for all $x \in \mathbf{R}^{n}$;
(iv) Upper hemicontinuous: The graph of $V, \operatorname{gr}(V)=\{(x, y): y \in V(x)\}$, is closed.

While solutions to good UHC differential inclusions are neither as easily defined nor as well behaved as those of Lipschitz continuous differential equations, we will see that analogues of all the main properties of solutions to the latter can be established in the present setting.

The set of feasible directions of motion under (DI) changes abruptly at discontinuities of the correspondence V. Our solution notion for (DI) must therefore admit trajectories with kinks: rather than requiring the relation (DI) to hold at every instant in time, it asks only that (DI) hold at almost all times. To formalize this notion, recall that the set $Z \subseteq \mathbf{R}$ has measure zero if for every $\varepsilon>0$, there is a countable collection of open intervals of total length less than ε that covers Z. A property is said to hold for almost all $t \in[0, T]$ if it holds on subset of $[0, T]$ whose complement has measure zero. Finally, we say that a trajectory $\left\{x_{t}\right\}_{t \in[0, T]}$ is a (Carathéodory) solution to (DI) if it is Lipschitz continuous and if $\dot{x}_{t} \in V\left(x_{t}\right)$ at almost all times $t \in[0, T]$. Since $\left\{x_{t}\right\}$ is Lipschitz continuous, its derivative \dot{x}_{t} exists for almost all $t \in[0, T]$, and the Fundamental Theorem of Calculus holds: $x_{t}-x_{s}=\int_{s}^{t} \dot{x}_{u} \mathrm{~d} u$.

Observe that if $\left\{x_{t}\right\}$ is a Carathéodory solution to a continuous ODE $\dot{x}=V(x)$, it is also a solution to the ODE in the usual sense: $\dot{x}_{t}=V\left(x_{t}\right)$ at all times $t \in[0, T]$. While our new concept does not introduce new solutions to standard differential equations, it enables us
to find solutions in settings where solutions of the old sort do not exist. In particular, we have the following existence result.

Theorem 6.A.1. Let (DI) be a good UHC differential inclusion. Then for each $\xi \in \mathbf{R}^{n}$ there exists a (Carathéodory) solution $\left\{x_{t}\right\}_{\in[0, T]}$ to (DI) with $x_{0}=\xi$.

Our forward invariance result for ODEs extends to the current setting as follows:
Theorem 6.A.2. Let $C \subseteq \mathbf{R}^{n}$ be a closed convex set, and let $V: C \Rightarrow \mathbf{R}^{n}$ satisfy conditions (i)-(iv) above. Suppose that $V(x) \subseteq T C(x)$ for all $x \in C$. Extend the domain of V to all of \mathbf{R}^{n} by letting $V(y)=V\left(\Pi_{C}(y)\right)$ for all $y \in \mathbf{R}^{n}-C$, and let this extension define the differential inclusion (DI) on \mathbf{R}^{n}. Then
(i) (DI) is a good UHC differential inclusion.
(ii) (DI) admits a forward solution $\left\{x_{t}\right\}_{t \in[0, T]}$ from each $x_{0} \in \mathbf{R}^{n}$.
(iii) C is forward invariant under (DI).

Our examples of best response dynamics in Section 6.1 show that differential inclusions can admit multiple solution trajectories from a single initial condition, and hence that solutions need not be continuous in their initial conditions. However, the set of solutions to a differential inclusion still possesses considerable structure. To formalize this claim, let $C_{[0, T]}$ denote the space of continuous trajectories through \mathbf{R}^{n} over the time interval $[0, T]$, equipped with the maximum norm:

$$
\begin{aligned}
& C_{[0, T]}=\left\{x:[0, T] \rightarrow \mathbf{R}^{n}: x \text { is continuous }\right\}, \text { and } \\
& \|x\|=\max _{t \in[0, T]}\left|x_{t}\right| \text { for } x \in C_{[0, T]} .
\end{aligned}
$$

Now recall two definitions from metric space topology. A set $\mathcal{A} \subseteq C_{[0, T]}$ is connected if it cannot be partitioned into two nonempty sets, each of which is disjoint from the closure of the other. The set \mathcal{A} is compact if every sequence of elements of \mathcal{A} admits a subsequence that converges to an element of \mathcal{A}.

Now let $S_{[0, T]}(V, \xi)$ be the set of solutions to (DI) with initial condition ξ :

$$
S_{[0, T]}(V, \xi)=\left\{x \in C_{[0, T]}: x \text { is a solution to (DI) with } x_{0}=\xi\right\} .
$$

Theorem 6.A.3. Let (DI) be a good UHC differential inclusion. Then
(i) For each $\xi \in \mathbf{R}^{n}, S_{[0, T]}(V, \xi)$ is connected and compact.
(ii) The correspondence $S_{[0, T]}(V, \cdot): \mathbf{R}^{n} \rightarrow C_{[0, T]}$ is upper hemicontinuous.

Although an initial condition ξ may be the source of many solution trajectories of (DI), part (i) of the theorem shows that the set $S_{[0, T]}(V, \xi)$ of such trajectories has a simple structure: it is connected and compact. Given any continuous criterion $f: C_{[0, T]} \rightarrow \mathbf{R}$ (where continuity is defined with respect to the maximum norm on $C_{[0, T]}$) and any initial condition ξ, connectedness implies that the set of values $f\left(S_{[0, T]}(V, \xi)\right)$ is an interval, while compactness implies that this set of values is compact; thus, there is a solution which is optimal according to criterion f among those that start at ξ. Part (ii) of the theorem provides an analogue of continuity in initial conditions. It tells us that if a sequence of solution trajectories $\left\{x^{k}\right\}_{k=1}^{\infty}$ to (DI) (with possibly differing initial conditions) converges to some trajectory $x \in C_{[0, T]}$, then x is also a solution to (DI).

6.A. 2 Differential Equations Defined by Projections

Let $X \subseteq \mathbf{R}^{n}$ be a compact convex set, and let $F: X \rightarrow \mathbf{R}^{n}$ be Lipschitz continuous. We consider the differential equation
(P) $\quad \dot{x}=\Pi_{T X(x)}(F(x))$,
where $\Pi_{T X(x)}$ is the closest point projection onto the tangent cone $T X(x)$. This equation provides the closest approximation to the equation $\dot{x}=F(x)$ that is consistent with the forward invariance of X.

Since the right hand side of (P) changes discontinuously at the boundary of X, the Picard-Lindelöf Theorem does not apply here. Indeed, solutions to (P) have different properties than solutions of standard ODEs: for instance, solution trajectories from different initial conditions can merge after a finite amount of time has passed. But like solutions to standard ODEs, forward solutions to the dynamic (P) exist, are unique, and are Lipschitz continuous in their initial conditions.

Theorem 6.A.4. Let F be Lipschitz continuous. Then for each $\xi \in X$, there exists a unique (Carathéodory) solution $\left\{x_{t}\right\}_{t \geq 0}$ to (P) with $x_{0}=\xi$. Moreover, solutions are Lipschitz continuous in their initial conditions: $\left|y_{t}-x_{t}\right| \leq\left|y_{0}-x_{0}\right| \mathrm{e}^{K t}$ for all $t \geq 0$, where K is the Lipschitz coefficient for F.

We now sketch a proof of this result. Define the multivalued map $V: X \Rightarrow \mathbf{R}^{n}$ by

$$
V(x)=\bigcap_{\varepsilon>0} \mathrm{cl}\left(\operatorname{conv}\left(\bigcup_{y \in X:|y-x| \leq \varepsilon} \Pi_{T X(y)}(F(y))\right)\right) .
$$

In words, $V(x)$ is the closed convex hull of all values of $\Pi_{T X(y)}(F(y))$ that obtain at points y arbitrarily close to x. It is easy to check that V is upper hemicontinuous with closed convex values. Moreover, $V(x) \cap T X(x)$, the set of feasible directions of motion from x contained in $V(x)$, is always equal to $\left\{\Pi_{T X(x)}(F(x))\right\}$, and so in particular is nonempty. Because $V(x) \cap T X(x) \neq \varnothing$, an extension of Theorem 6.A. 2 called the Viability Theorem implies that for each $\xi \in X$, a solution $\left\{x_{t}\right\}_{t \geq 0}$ to $\dot{x} \in V(x)$ exists. But since $V(x) \cap T X(x)=\left\{\Pi_{T X(x)}(F(x))\right\}$, this solution must also solve the original equation (P). This establishes the existence of solutions to (P).

To prove uniqueness and continuity, let $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$ be solutions to (P). Using the chain rule, the Moreau Decomposition Theorem, and the Lipschitz continuity of F, we see that

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left|y_{t}-x_{t}\right|^{2}= & 2\left(y_{t}-x_{t}\right)^{\prime}\left(\Pi_{T X\left(y_{t}\right)}\left(F\left(y_{t}\right)\right)-\Pi_{T X\left(x_{t}\right)}\left(F\left(x_{t}\right)\right)\right) \\
= & 2\left(y_{t}-x_{t}\right)^{\prime}\left(F\left(y_{t}\right)-F\left(x_{t}\right)\right)-2\left(y_{t}-x_{t}\right)^{\prime}\left(\Pi_{N X\left(y_{t}\right)}\left(F\left(y_{t}\right)\right)-\Pi_{N X\left(x_{t}\right)}\left(F\left(x_{t}\right)\right)\right) \\
= & 2\left(y_{t}-x_{t}\right)^{\prime}\left(F\left(y_{t}\right)-F\left(x_{t}\right)\right)+2\left(x_{t}-y_{t}\right)^{\prime} \Pi_{N X\left(y_{t}\right)}\left(F\left(y_{t}\right)\right) \\
& \quad+2\left(y_{t}-x_{t}\right)^{\prime} \Pi_{N X\left(x_{t}\right)}\left(F\left(x_{t}\right)\right) \\
\leq & 2\left(y_{t}-x_{t}\right)^{\prime}\left(F\left(y_{t}\right)-F\left(x_{t}\right)\right) \\
\leq & 2 K\left|y_{t}-x_{t}\right|^{2}
\end{aligned}
$$

and hence that

$$
\left|y_{t}-x_{t}\right|^{2} \leq\left|y_{0}-x_{0}\right|^{2}+\int_{0}^{t} 2 K\left|y_{s}-x_{s}\right| \mathrm{d} s .
$$

Gronwall's inequality then implies that

$$
\left|y_{t}-x_{t}\right|^{2} \leq\left|y_{0}-x_{0}\right|^{2} \mathrm{e}^{2 K t} .
$$

Taking square roots yields the inequality stated in the theorem.

6.B The Legendre Transform

The classical Legendre transform is the key tool for proving Theorem 6.2.2, the representation theorem for the additive random utility model. A generalization of this tool, the so-called Legendre-Fenchel transform, underlies the large deviations techniques we will introduce in Chapter 11. In this section, we introduce Legendre transforms of convex functions defined on open intervals and, more generally, on multidimensional convex domains.

6.B. 1 Legendre Transforms of Functions on Open Intervals

Let $C=(a, b) \subseteq \mathbf{R}$ be an open interval, and let $f: C \rightarrow \mathbf{R}$ be a strictly convex, continuously differentiable function that becomes steep at the boundaries of C :

$$
\lim _{x \downarrow a} f^{\prime}(x)=-\infty \text { if } a>-\infty, \text { and } \lim _{x \uparrow b} f^{\prime}(x)=\infty \text { if } b<\infty .
$$

The Legendre transform associates with the strictly convex function f a new strictly convex function f^{*}. Because $f: C \rightarrow \mathbf{R}$ is strictly convex, its derivative $f^{\prime}: C \rightarrow \mathbf{R}$ is strictly increasing, and thus invertible. We denote its inverse by $\left(f^{\prime}\right)^{-1}: C^{*} \rightarrow \mathbf{R}$, where the open interval C^{*} is the range of f^{\prime}. Since $\left(f^{\prime}\right)^{-1}$ is itself strictly increasing, its integral, which we denote $f^{*}: C^{*} \rightarrow \mathbf{R}$, is strictly convex. With the right choice of the constant of integration K, the pair $\left(C^{*}, f^{*}\right)$ is the Legendre transform of the pair (C, f). In summary:

$$
\begin{array}{cc}
f: C \rightarrow \mathbf{R} \text { is strictly convex } & f^{*} \equiv \int\left(f^{\prime}\right)^{-1}+K \text { is strictly convex } \\
f^{\prime}: C \rightarrow C^{*} \text { is strictly increasing } \longrightarrow\left(f^{\prime}\right)^{-1}: C^{*} \rightarrow C \text { is strictly increasing }
\end{array}
$$

The cornerstone of the construction above is this observation: the derivative of f^{*} is the inverse of the derivative of f. That is,

$$
\begin{equation*}
\left(f^{*}\right)^{\prime}=\left(f^{\prime}\right)^{-1} \tag{6.27}
\end{equation*}
$$

Or, in other words,

$$
\begin{equation*}
f^{*} \text { has slope } x \text { at } y \Leftrightarrow f \text { has slope } y \text { at } x . \tag{6.28}
\end{equation*}
$$

Surprisingly enough, we can specify the function f^{*} described above in a simple, direct way. We define the Legendre transform $\left(C^{*}, f^{*}\right)$ of the pair (C, f) by

$$
C^{*}=\operatorname{range}\left(f^{\prime}\right) \text { and } f^{*}(y)=\max _{x \in C} x y-f(x)
$$

The first order condition of the program at right is $y=f^{\prime}\left(x^{*}(y)\right)$, or, equivalently, $\left(f^{\prime}\right)^{-1}(y)=$ $x^{*}(y)$. On the other hand, if we differentiate f^{*} with respect to y, the envelope theorem yields $\left(f^{*}\right)^{\prime}(y)=x^{*}(y)$. Putting these equations together, we see that $\left(f^{*}\right)^{\prime}(y)=\left(f^{\prime}\right)^{-1}(y)$, which is property (6.27).

Suppose that $f^{\prime \prime}$ exists and is positive. Then by differentiating both sides of the identity $\left(f^{*}\right)^{\prime}(y)=\left(f^{\prime}\right)^{-1}(y)$, we find this simple relationship between the second derivatives of f
and f^{*} :

$$
\left(f^{*}\right)^{\prime \prime}(y)=\left(\left(f^{\prime}\right)^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime \prime}(x)}, \quad \text { where } x=\left(f^{\prime}\right)^{-1}(y)=x^{*}(y)
$$

In words: to find $\left(f^{*}\right)^{\prime \prime}(y)$, evaluate $f^{\prime \prime}$ at the point $x \in C$ corresponding to $y \in C^{*}$, and then take the reciprocal.

Our initial discussion of the Legendre transform suggests that it is a duality relation: in other words, that one can generate (C, f) from $\left(C^{*}, f^{*}\right)$ using the same procedure through which $\left(C^{*}, f^{*}\right)$ is generated from (C, f). To prove this, we begin with the simple observations that C^{*} is itself an open interval, and that f^{*} is itself strictly convex and continuously differentiable. It is also easy to check that $\left|\left(f^{*}\right)^{\prime}(y)\right|$ diverges whenever y approaches $\operatorname{bd}\left(C^{*}\right)$; in fact, this is just the contrapositive of the corresponding statement about f.

It is easy to verify that $\left(C^{*}\right)^{*}=C$:

$$
\left(C^{*}\right)^{*}=\operatorname{range}\left(\left(f^{*}\right)^{\prime}\right)=\operatorname{range}\left(\left(f^{\prime}\right)^{-1}\right)=\operatorname{domain}\left(f^{\prime}\right)=C .
$$

To show that $\left(f^{*}\right)^{*}=f$, we begin with the definition of $\left(f^{*}\right)^{*}$:

$$
\left(f^{*}\right)^{*}(x)=\max _{y \in C^{*}} x y-f^{*}(y)
$$

Taking the first order condition yields $x=\left(f^{*}\right)^{\prime}\left(y^{*}(x)\right)$, and hence $y^{*}(x)=\left(\left(f^{*}\right)^{\prime}\right)^{-1}(x)=$ $f^{\prime}(x)$. Since $\left(f^{\prime}\right)^{-1}(y)=x^{*}(y), y^{*}$ and x^{*} are inverse functions. We therefore conclude that

$$
\left(f^{*}\right)^{*}(x)=x y^{*}(x)-f^{*}\left(y^{*}(x)\right)=x y^{*}(x)-\left(x^{*}\left(y^{*}(x)\right) y^{*}(x)-f\left(x^{*}\left(y^{*}(x)\right)\right)\right)=f(x) .
$$

Putting this all together, we obtain our third characterization of the Legendre transform and of the implied bijection between C and C^{*} :

$$
\begin{equation*}
x \text { maximizes } x y-f(x) \Leftrightarrow y \text { maximizes } x y-f^{*}(y) \tag{6.29}
\end{equation*}
$$

Example 6.B.1. If $C=\mathbf{R}$ and $f(x)=e^{x}$, then the Legendre transform of (C, f) is $\left(C^{*}, f^{*}\right)$, where $C^{*}=(0, \infty)$ and $f^{*}(y)=y \log y-y . \S$

Example 6.B.2. Suppose that $c: \mathbf{R} \rightarrow \mathbf{R}$ is a strictly convex cost function. (For convenience, we allow negative levels of output; the next example shows that this is without loss of generality if $c^{\prime}(0)=0$.) If output can be sold at price $p \in C^{*}=$ range $\left(c^{\prime}\right)$, then maximized

Figure 6.B.1: A Legendre transform.
profit equals

$$
\pi(p)=\max _{x \in \mathbf{R}} x p-c(x) .
$$

Thus, by definition, $\left(C^{*}, \pi\right)$ is the Legendre transform of (\mathbf{R}, c). The duality relation tells us that if we started instead with the maximized profit function $\pi: C^{*} \rightarrow \mathbf{R}$, we could recover the cost function c via the dual program

$$
c(x)=\max _{p \in C^{*}} x p-\pi(p) . \S
$$

Example 6.B.3. To obtain the class of examples that are easiest to visualize, let the function $g: \mathbf{R} \rightarrow \mathbf{R}$ be continuous, strictly increasing, and satisfy

$$
\lim _{x \downarrow-\infty} g(x)=-\infty, \lim _{x \uparrow \infty} g(x)=\infty, \text { and } g(0)=0 .
$$

If we define $f(x)=\int_{0}^{x} g(s)$ ds on domain \mathbf{R}, then the Legendre transform of (\mathbf{R}, f) is $\left(\mathbf{R}, f^{*}\right)$, where $f^{*}(y)=\int_{0}^{y} g^{-1}(t) \mathrm{d}$. Evidently, $\left(f^{*}\right)^{\prime}=g^{-1}=\left(f^{\prime}\right)^{-1}$. Indeed, Figure 6.B.1 illustrates that x maximizes $x y-f(x)$ if and only if y maximizes $x y-f^{*}(y)$, and that f^{*} has slope x at y if and only if f has slope y at x. §

6.B. 2 Legendre Transforms of Functions on Multidimensional Domains

Analogues of all of the previous results can be established in settings with multidimensional domains. Let Z be a linear subspace of \mathbf{R}^{n}. We call (C, f) a Legendre pair if $C \subseteq Z$ is (relatively) open and convex, and f is C^{1}, strictly convex, and steep near $\mathrm{bd}(C)$, where f is steep near $\operatorname{bd}(C)$ if $|\nabla f(x)| \rightarrow \infty$ whenever $x \rightarrow \operatorname{bd}(C)$.

Our goal is to define a pair $\left(C^{*}, f^{*}\right)$ that satisfies properties (6.30), (6.31), and (6.32):

$$
\begin{align*}
& \nabla f^{*}=(\nabla f)^{-1} . \tag{6.30}\\
& f^{*} \text { has slope } x \text { at } y \Leftrightarrow f \text { has slope } y \text { at } x . \tag{6.31}\\
& x \text { maximizes } x^{\prime} y-f(x) \Leftrightarrow y \text { maximizes } x^{\prime} y-f^{*}(y) . \tag{6.32}
\end{align*}
$$

As before, we can imagine obtaining f^{*} from f by differentiating, inverting, and then integrating, as we illustrate in the diagram below:

Since the domain of f is $C \subseteq Z$, the derivative of $f, D f$, is a map from C into $L(Z, \mathbf{R})$, the set of linear forms on Z. The gradient of f at x is the unique vector $\nabla f(x) \in Z$ that represents $D f(x)$; thus, ∇f is a map from C into Z.

We define the Legendre transform $\left(C^{*}, f^{*}\right)$ of the pair (C, f) by

$$
C^{*}=\operatorname{range}(\nabla f) \text { and } f^{*}(y)=\max _{x \in C} x^{\prime} y-f(x) .
$$

Theorem 6.B. 4 summarizes the Legendre transform's basic properties.
Theorem 6.B.4. Suppose that (C, f) is a Legendre pair. Then:
(i) $\left(C^{*}, f^{*}\right)$ is a Legendre pair.
(ii) $\nabla f: C \rightarrow C^{*}$ is bijective, and $(\nabla f)^{-1}=\nabla f^{*}$.
(iii) $f(x)=\max _{y \in C^{*}} x^{\prime} y-f^{*}(y)$.
(iv) The maximizers x^{*} and y^{*} satisfy $x^{*}(y)=\nabla f^{*}(y)=(\nabla f)^{-1}(y)$ and $y^{*}(x)=\nabla f(x)=$ $\left(\nabla f^{*}\right)^{-1}(x)$.

As in the one dimensional case, we can relate the second derivatives of f^{*} to the second derivatives of f. The second derivative $D^{2} f$ is a map from C to $L_{s}^{2}(Z, \mathbf{R})$, the set of symmetric bilinear forms on $Z \times Z$. The Hessian of f at $x, \nabla^{2} f(x) \in \mathbf{R}^{n \times n}$, is the unique
representation of $D^{2} f(x)$ by a symmetric matrix whose rows and columns are in Z. In fact, since the map $z \mapsto \nabla^{2} f(x) z$ has range Z, we can view the matrix $\nabla^{2} f(x)$ as a linear map from Z to Z. We rely on this observation in the following result.

Corollary 6.B.5. If $D^{2} f(x)$ exists and is positive definite for all $x \in C$, then $D^{2} f^{*}(y)$ exists and is positive definite for all $y \in C^{*}$. In fact, $\nabla^{2} f^{*}(y)=\left(\nabla^{2} f(x)\right)^{-1}$ as linear maps from Z to Z, where $x=(\nabla f)^{-1}(y)$.

In the one dimensional setting, the derivative f^{\prime} is invertible because it is strictly increasing. Both of these properties also follow from the stronger assumption that $f^{\prime \prime}(x)>$ 0 for all $x \in C$. In the multidimensional setting, it makes no sense to ask whether ∇f is strictly increasing. But there is an analogue of the second derivative condition: namely, that the Hessian $\nabla^{2} f(x)$ is positive definite on $Z \times Z$ for all $x \in C$. According to the Global Inverse Function Theorem, any function on a convex domain that is proper (i.e., preimages of compact sets are compact) and whose Jacobian determinant is everywhere nonvanishing is invertible; thus, the fact that $\nabla^{2} f(x)$ is always positive definite implies that $(\nabla f)^{-1}$ exists. However, this deep result is not needed to prove Theorem 6.B.4 or Corollary 6.B.5.

6.C Perturbed Optimization

6.C. 1 Proof of the Representation Theorem

We now use the results on Legendre transforms from Appendix 6.B to prove Theorem 6.2.2. We defined the perturbed maximizer function \tilde{M} using stochastic perturbations via

$$
\begin{equation*}
\tilde{M}_{i}(\pi)=\mathbb{P}\left(i=\underset{j \in S}{\operatorname{argmax}} \pi_{j}+\varepsilon_{j}\right) \tag{6.11}
\end{equation*}
$$

Here, the random vector ε is an admissible stochastic perturbation if it has a positive density on \mathbf{R}^{n}, and if this density is sufficiently smooth that \tilde{M} is C^{1}. We defined \tilde{M} using deterministic perturbations via

$$
\begin{equation*}
\tilde{M}(\pi)=\underset{y \in \operatorname{int}(\Delta)}{\operatorname{argmax}}\left(y^{\prime} \pi-v(y)\right) . \tag{6.12}
\end{equation*}
$$

Here, the function $v: \operatorname{int}(\Delta) \rightarrow \mathbf{R}$ is an admissible deterministic perturbation if the Hessian matrix $\nabla^{2} v(y)$ is positive definite on $\mathbf{R}_{0}^{n} \times \mathbf{R}_{0}^{n}$ for all $y \in \operatorname{int}(\Delta)$, and if $|\nabla v(y)|$ approaches infinity whenever y approaches $\operatorname{bd}(\Delta)$.

Theorem 6.2.2. Let \tilde{M} be a perturbed maximizer function defined in terms of an admissible stochastic perturbation ε via equation (6.11). Then \tilde{M} satisfies equation (6.12) for some admissible deterministic perturbation v. In fact, $\bar{M}=\left.\tilde{M}\right|_{\mathbf{R}_{0}^{n}}$ and ∇v are invertible, and $\bar{M}=(\nabla v)^{-1}$.

Proof. The probability that alternative i is chosen when the payoff vector is π is

$$
\begin{aligned}
\tilde{M}_{i}(\pi) & =\mathbb{P}\left(\pi_{i}+\varepsilon_{i} \geq \pi_{j}+\varepsilon_{j} \text { for all } j \in S\right) \\
& =\mathbb{P}\left(\varepsilon_{j} \leq \pi_{i}+\varepsilon_{i}-\pi_{j} \text { for all } j\right) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\pi_{i}+x_{i}-\pi_{1}} \cdots \int_{-\infty}^{\pi_{i}+x_{i}-\pi_{i-1}} \int_{-\infty}^{\pi_{i}+x_{i}-\pi_{i+1}} \cdots \int_{-\infty}^{\pi_{i}+x_{i}-\pi_{n}} f(x) \mathrm{d} x_{n} \ldots \mathrm{~d} x_{i+1} \mathrm{~d} x_{i-1} \ldots \mathrm{~d} x_{1} \mathrm{~d} x_{i},
\end{aligned}
$$

where f is the joint density function of the random perturbations ε. The following lemma lists some properties of the derivative of \tilde{M}.

Lemma 6.C.1. For all $\pi \in \mathbf{R}^{n}$ we have
(i) $D \tilde{M}(\pi) \mathbf{1}=\mathbf{0}$.
(ii) $D \tilde{M}(\pi)$ is symmetric.
(iii) $D \tilde{M}(\pi)$ has strictly negative off-diagonal elements.
(iv) $D \tilde{M}(\pi)$ is positive definite with respect to $\mathbf{R}_{0}^{n} \times \mathbf{R}_{0}^{n}$.

Proof. Part (i) follows from differentiating the identity $\tilde{M}(\pi)=\tilde{M}(\Phi \pi)$. To establish parts (ii) and (iii), let i and $j>i$ be two distinct strategies. Then using the change of variable $\hat{x}_{j}=\pi_{i}+x_{i}-\pi_{j}$, we find that

$$
\begin{aligned}
& \frac{\partial \tilde{M}_{i}}{\partial \pi_{j}}(\pi)=-\int_{-\infty}^{\infty} \int_{-\infty}^{\pi_{i}+x_{i}-\pi_{1}} \cdots \int_{-\infty}^{\pi_{i}+x_{i}-\pi_{i-1}} \int_{-\infty}^{\pi_{i}+x_{i}-\pi_{i+1}} \cdots \int_{-\infty}^{\pi_{i}+x_{i}-\pi_{j-1}} \int_{-\infty}^{\pi_{i}+x_{i}-\pi_{j+1}} \cdots \int_{-\infty}^{\pi_{i}+x_{i}-\pi_{n}} f\left(x_{1}, \ldots, x_{j-1},\right. \\
&=\left.\pi_{i}+x_{i}-\pi_{j}, x_{j+1}, \ldots, x_{n}\right) \mathrm{d} x_{n} \ldots \mathrm{~d} x_{j+1} \mathrm{~d} x_{j-1} \ldots \mathrm{~d} x_{i+1} \mathrm{~d} x_{i-1} \ldots \mathrm{~d} x_{1} \mathrm{~d} x_{i} \\
& \pi_{j}+\hat{x}_{j}-\pi_{1} \\
& \cdots \int_{-\infty}^{\pi_{j}+\hat{x}_{j}-\pi_{i-1}} \int_{-\infty}^{\pi_{j}+\hat{x}_{j}-\pi_{i+1}} \cdots \int_{-\infty}^{\pi_{j}+\hat{x}_{j}-\pi_{j-1}} \int_{-\infty}^{\pi_{j}+\hat{x}_{j}-\pi_{j+1}} \cdots \int_{-\infty}^{\pi_{j}+\hat{x}_{j}-\pi_{n}} f\left(x_{1}, \ldots, x_{i-1},\right. \\
&= \frac{\partial \tilde{M}_{j}}{\partial \pi_{i}}(\pi),
\end{aligned}
$$

which implies claims (ii) and (iii). To establish claim (iv), let $z \in \mathbf{R}_{0}^{n}$. Then using claims (i), (ii), and (iii) in succession yields

$$
z^{\prime} D \tilde{M}(\pi) z=\sum_{i \in S} \sum_{j \in S} \frac{\partial \tilde{M}_{i}}{\partial \pi_{j}}(\pi) z_{i} z_{j}=\sum_{i \in S} \sum_{j \neq i} \frac{\partial \tilde{M}_{i}}{\partial \pi_{j}}(\pi) z_{i} z_{j}+\sum_{i \in S}\left(-\sum_{j \neq i} \frac{\partial \tilde{M}_{i}}{\partial \pi_{j}}(\pi)\right) z_{i}^{2}
$$

$$
\begin{aligned}
& =\sum_{i} \sum_{j \neq i} \frac{\partial \tilde{M}_{i}}{\partial \pi_{j}}(\pi)\left(z_{i} z_{j}-z_{i}^{2}\right)=\sum_{i} \sum_{j<i} \frac{\partial \tilde{M}_{i}}{\partial \pi_{j}}(\pi)\left(2 z_{i} z_{j}-z_{i}^{2}-z_{j}^{2}\right) \\
& =-\sum_{i} \sum_{j<i} \frac{\partial \tilde{M}_{i}}{\partial \pi_{j}}(\pi)\left(z_{i}-z_{j}\right)^{2}>0 .
\end{aligned}
$$

Since the derivative matrix $D \tilde{M}(\pi)$ is symmetric, the vector field \tilde{M} admits a potential function $\tilde{\mu}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ (that is, a function satisfying $\nabla \tilde{\mu}(\pi)=\tilde{M}(\pi)$ for all $\left.\pi \in \mathbf{R}^{n}\right)$. Let $\bar{\mu}=\left.\tilde{\mu}\right|_{\mathbf{R}_{0}^{n}}$ be the restriction of $\tilde{\mu}$ to \mathbf{R}_{0}^{n}. Then for all $\pi \in \mathbf{R}_{0}^{n}, \nabla \bar{\mu}(\pi) \in \mathbf{R}_{0}^{n}$ is given by

$$
\nabla \bar{\mu}(\pi)=\Phi \nabla \tilde{\mu}(\pi)=\Phi \tilde{M}(\pi)=\tilde{M}(\pi)-\frac{1}{n} \mathbf{1}=\bar{M}(\pi)-\frac{1}{n} \mathbf{1}
$$

where the third equality uses the fact that $\tilde{M}(\pi) \in \Delta$.
Since $\nabla^{2} \bar{\mu}(\pi)=D \bar{M}(\pi)$ is positive definite with respect to $\mathbf{R}_{0}^{n} \times \mathbf{R}_{0}^{n}, \bar{\mu}$ is strictly convex; thus, since bd $\left(\mathbf{R}_{0}^{n}\right)$ is empty, $\left(\mathbf{R}_{0}^{n}, \bar{\mu}\right)$ is a Legendre pair. Let the pair $\left(C^{*}, \bar{\mu}^{*}\right)$ be the Legendre transform of $\left(\mathbf{R}_{0}^{n}, \bar{\mu}\right)$, and define the function $v:\left(C^{*}+\frac{1}{n} \mathbf{1}\right) \rightarrow \mathbf{R}$ by $v(y)=\bar{\mu}^{*}\left(y-\frac{1}{n} \mathbf{1}\right)$. Theorem 6.2.2 then follows immediately from Lemma 6.C.2.

Lemma 6.C.2. (i) $C^{*}+\frac{1}{n} \mathbf{1}=\operatorname{int}(\Delta)$.
(ii) $\nabla v: \operatorname{int}(\Delta) \rightarrow \mathbf{R}_{0}^{n}$ is the inverse of $\bar{M}: \mathbf{R}_{0}^{n} \rightarrow \operatorname{int}(\Delta)$.
(iii) v is an admissible deterministic perturbation.
(iv) $\tilde{M}(\pi)=\operatorname{argmax}_{y \in \operatorname{int}(\Delta)} y^{\prime} \pi-v(y)$ for all $\pi \in \mathbf{R}^{n}$.

Proof. (i) The set $C^{*}=\operatorname{range}(\nabla \bar{\mu})=\operatorname{range}(\bar{M})-\frac{1}{n} \mathbf{1}$ is convex by Theorem 6.B.4(i). Moreover, if the components $\pi_{j}, j \in J \subset S$ stay bounded while the remaining components approach infinity, then $\tilde{M}_{j}(\pi) \rightarrow 0$ for all $j \in J$: that is, $\tilde{M}(\pi)$ converges to a subface of the simplex Δ. Thus, range $(\bar{M})=\operatorname{range}(\tilde{M}) \subseteq \operatorname{int}(\Delta)$ contains points arbitrarily close to each corner of the simplex. Since range (\bar{M}) is convex, it must equal int (Δ).
(ii) Let $y \in \operatorname{int}(\Delta)$. Using Theorem 6.B.4(ii), we find that

$$
\nabla v(y)=\nabla \bar{\mu}^{*}\left(y-\frac{1}{n} \mathbf{1}\right)=(\nabla \bar{\mu})^{-1}\left(y-\frac{1}{n} \mathbf{1}\right)=\bar{M}^{-1}(y) .
$$

(iii) $\quad\left(C^{*}, \bar{\mu}^{*}\right)$ is a Legendre pair by Theorem 6.B.4(i); thus, if $y \rightarrow \operatorname{bd}(\Delta)=\operatorname{bd}\left(C^{*}\right)+\frac{1}{n} \mathbf{1}$, then $|\nabla v(y)|=\left|\nabla \bar{\mu}^{*}\left(y-\frac{1}{n} 1\right)\right|$ diverges. In addition, since $\nabla^{2} \bar{\mu}(\pi)=D \bar{M}(\pi)$ is positive definite with respect to $\mathbf{R}_{0}^{n} \times \mathbf{R}_{0}^{n}$ for all $\pi \in \mathbf{R}_{0}^{n}$, Corollary 6.B.5 implies that $\nabla^{2} v(y)=$ $\nabla^{2} \bar{\mu}^{*}\left(y-\frac{1}{n} \mathbf{1}\right)$ is positive definite with respect to $\mathbf{R}_{0}^{n} \times \mathbf{R}_{0}^{n}$ for all $y \in \operatorname{int}(\Delta)$.
(iv) Since $\tilde{M}(\cdot)=\tilde{M}(\Phi(\cdot))$, it is enough to consider $\pi \in \mathbf{R}_{0}^{n}$. For such π,

$$
\begin{aligned}
\underset{y \in \operatorname{int}(\Delta)}{\operatorname{argmax}} y^{\prime} \pi-v(y) & =\left(\underset{\hat{y} \in \operatorname{int}(\Delta)-\frac{1}{n} \mathbf{1}}{\operatorname{argmax}} \hat{y}^{\prime} \pi-\bar{\mu}^{*}(\hat{y})\right)+\frac{1}{n} \mathbf{1} \\
& =\nabla \bar{\mu}(\pi)+\frac{1}{n} \mathbf{1} \\
& =\tilde{M}(\pi),
\end{aligned}
$$

where the second equality follows from Theorem 6.B.4(iv).
This completes the proof of Theorem 6.2.2.

6.C. 2 Additional Results

We conclude this section by stating without proof a few additional results on perturbed optimization. The first two of these concern the construction of the potential function $\tilde{\mu}$ of the perturbed maximizer function \tilde{M}. In fact, two constructions are available, one for each sort of perturbation.

If we define \tilde{M} in terms of an admissible deterministic perturbation v, then one can verify (using the Envelope Theorem or a direct calculation) that the perturbed maximum function associated with v is a potential function for \tilde{M}.

Observation 6.C.3. The function $\tilde{\mu}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ defined by

$$
\tilde{\mu}(\pi)=\max _{y \in \operatorname{int}(\Delta)} y^{\prime} \pi-v(y)
$$

is a potential function for \tilde{M} as defined in (6.12).
Alternatively, suppose we define \tilde{M} in terms of an admissible stochastic perturbation ε. In this case, the expectation of the maximal perturbed payoff is a potential function for \tilde{M}.

Theorem 6.C.4. The function $\tilde{\mu}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ defined by

$$
\tilde{\mu}(\pi)=\mathbb{E} \max _{j \in S}\left(\pi_{j}+\varepsilon_{j}\right)
$$

is a potential function for \tilde{M} as defined in (6.11).
The intuition behind this result is simple. If we marginally increase the value of π_{i}, the value of the maximum function $\max _{j} \pi_{j}+\varepsilon_{j}$ goes up at a unit rate at those values of ε
where strategy i is optimal. The set of ε at which strategy i is optimal also changes, but the contribution of these points to the value of the maximum function is negligible. Building on these observations, one can show that

$$
\frac{\partial \tilde{\mu}}{\partial \pi_{i}}(\pi)=\mathbb{E} 1_{\left\{i=\operatorname{argmax}_{j} \pi_{j}+\varepsilon_{j}\right\}}=\mathbb{P}\left(i=\operatorname{argmax}_{j} \pi_{j}+\varepsilon_{j}\right)=\tilde{M}_{i}(\pi) .
$$

Which functions are perturbed maximizer functions? The following characterization of the perturbed maximizer functions that can be derived from admissible deterministic perturbations follows easily from the proof of Theorem 6.2.2.

Corollary 6.C.5. A bijective function $\tilde{M}: \mathbf{R}^{n} \rightarrow \operatorname{int}(\Delta)$ can be derived from an admissible deterministic perturbation if and only if $D \tilde{M}(\pi)$ is symmetric, positive definite on \mathbf{R}_{0}^{n}, and satisfies $D \tilde{M}(\pi) \mathbf{1}=\mathbf{0}$.

The counterpart of this result for stochastic perturbations is known as the Williams-DalyZachary Theorem.

Theorem 6.C.6. A bijective function $\tilde{M}: \mathbf{R}^{n} \rightarrow \operatorname{int}(\Delta)$ can be derived from an admissible stochastic perturbation if and only if $D \tilde{M}(\pi)$ is symmetric, positive definite on \mathbf{R}_{0}^{n}, and satisfies $D \tilde{M}(\pi) \mathbf{1}=\mathbf{0}$, as well as the additional requirement that the partial derivatives of \tilde{M} satisfy

$$
(-1)^{k} \frac{\partial^{k} \tilde{M}_{i_{0}}}{\partial \pi_{i_{1}} \cdots \partial \pi_{i_{k}}}>0
$$

for each $k=1, \ldots, n-1$ and each set of $k+1$ distinct indices $\left\{i_{0}, i_{1}, \ldots, i_{k}\right\} \subseteq S$.
To establish the necessity of the k th order derivative conditions, one repeatedly differentiates the definition of \tilde{M}. The first order derivative condition is derived in this way in the proof of Theorem 6.2.2. These two results show that deterministic perturbations generate a strictly larger class of perturbed maximizer functions than stochastic perturbations; see Exercise 6.2.3 for an explicit example.

6.N Notes

Section 6.1: The best response dynamic was introduced by Gilboa and Matsui (1991) and further studied by Matsui (1992), Hofbauer (1995b), and Gaunersdorfer and Hofbauer (1995). Hofbauer (1995b) introduced the interpretation of the best response dynamic as a differential inclusion.

Example 6.1.7 is introduced by Zeeman (1980), who shows that the interior Nash equilibrium of this game is not an ESS but is nevertheless asymptotically stable under the replicator dynamic. The properties of the best response dynamic described in the example are pointed out by Hofbauer (1995b). A complete analysis of best response dynamics in Rock-Paper-Scissors games can be found in Gaunersdorfer and Hofbauer (1995).

An approximation theorem for collections of Markov processes whose mean dynamics are differential inclusions is proved by Benaïm et al. (2005). They work in a setting in which the step size of the increments of the Markov processes shrinks over time; we conjecture that their result is also true in the present constant step size setting. Such a result would provide a foundation not just for the best response dynamic, but for the projection dynamic as well.

Section 6.2: This section is based on Hofbauer and Sandholm $(2002,2007)$.
The perturbed best response dynamic first appears in the work of Fudenberg and Kreps (1993) on stochastic fictitious play, while the logit dynamic first appears in Fudenberg and Levine (1998). For the Hausdorff metric mentioned in Example 6.2.1, see Ok (2007). For further references on logit models in game theory, see the Notes to Chapter 11.

In the experimental economics literature, perturbed equilibrium goes by the name of quantal response equilibrium, a term introduced by McKelvey and Palfrey (1995). Some authors use this term more narrowly to refer to logit equilibrium. For more on the use of these concepts in the experimental literature, see Camerer (2003) and the references therein.

The properties of the derivative matrix $D \tilde{M}(\pi)$ have long been known in the discrete choice literature—see McFadden (1981) or Anderson et al. (1992). The control cost interpretation of deterministic perturbations is suggested by van Damme (1991, Chapter 4). That independent ε_{i} with bounded densities generate a continuously differentiable \tilde{M} follows from standard results on convolutions; see Hewitt and Stromberg (1965, Theorem 21.33).

An intuitive discussion of the Poincaré-Hopf Theorem can be found in Hofbauer and Sigmund (1988, Section 19); see Milnor (1965) for a formal treatment. See Ritzberger (1994), Demichelis and Germano (2000, 2002), and Demichelis and Ritzberger (2003) for intriguing uses of topological ideas to study the global properties of evolutionary game dynamics.

Section 6.3: Nagurney and Zhang $(1996,1997)$, building on work of Dupuis and Nagurney (1993), introduce the projection dynamic in the context of congestion games. Earlier, Friedman (1991) introduced an evolutionary dynamic that is equivalent to the projection dynamic on $\operatorname{int}(X)$, but that is different at states in $\operatorname{bd}(X)$. The presentation in this section
follows Lahkar and Sandholm (2008) and Sandholm et al. (2008).
Appendix 6.A: Smirnov (2002) provides a readable introduction to the theory of differential inclusions. A more comprehensive but less readable reference is Aubin and Cellina (1984).

The existence of solutions to differential inclusions defined by projections of multivalued maps was proved by Henry (1973); the approach described here follows Aubin and Cellina (1984, Section 5.6). Restricting attention to differential equations defined by projections of Lipschitz continuous functions allows one to establish uniqueness and continuity results, a point noted, e.g., by Dupuis and Nagurney (1993).

Appendix 6.B: Formal treatments of the Legendre transform can be found in Rockafellar (1970) and Hiriart-Urruty and Lemaréchal (2001). Example 6.B.3 is borrowed from Roberts and Varberg (1973, Section 15). For the Global Inverse Function Theorem, see Gordon (1972).

Appendix 6.C : Theorem 6.2 .2 is due to Hofbauer and Sandholm (2002). For proofs of Theorem 6.C. 4 and 6.C.6, see McFadden (1981) or Anderson et al. (1992). The latter source is a good general reference on discrete choice theory.

Part III

Convergence and Nonconvergence

Global Convergence of Evolutionary Dynamics

7.0 Introduction

In the preceding chapters, we introduced a variety of classes of evolutionary dynamics and exhibited their basic properties. Most conspicuously, we established links between the rest points of each dynamic and the Nash equilibria of the underlying game, links that are valid regardless of the nature of the game at hand. This connection is expressed in its strongest form by dynamics satisfying Nash stationarity (NS), under which rest points and Nash equilibria coincide.

Still, once one specifies an explicitly dynamic model of behavior, the most natural approach to prediction is not to focus immediately on equilibrium points, but to determine where the dynamic leads when set in motion from various initial conditions. If equilibrium occurs as the limiting state of this adjustment process, we can feel some confidence in predicting equilibrium play. If instead our dynamics lead to limit cycles or other more complicated limit sets, then these sets rather than the unstable rest points provide superior predictions of behavior.

In this chapter, we seek conditions on games and dynamics under which behavior converges to equilibrium from all or nearly all initial population states. We therefore reconsider the three classes of population games introduced in Chapter 3-potential games, stable games, and supermodular games-and derive conditions on evolutionary dynamics that ensure convergence in each class of games. We also establish convergence results for dominance solvable games, but we shall see in Chapter 9 that these results are not robust to small changes in the dynamics for which they hold.

The most common method for proving global convergence in a dynamical system is by
constructing a strict Lyapunov function: a scalar-valued function that the dynamic ascends whenever it is not at rest. When the underlying game is a potential game, the game's potential function provides a natural candidate Lyapunov function for evolutionary dynamics. We verify in Section 7.1 that a potential functions serve as Lyapunov functions under any evolutionary dynamic that satisfies our basic monotonicity condition, positive correlation (PC). We then use this fact to prove global convergence in potential games under all of the evolutionary dynamics studied in Chapters 5 and 6.

Unlike potential games, stable games do not come equipped with a scalar-valued function that is an obvious candidate Lyapunov function for evolutionary dynamics. But the structure of payoffs in these games-already reflected in the fact that their sets of Nash equilibria are convex-makes it natural to expect convergence results to hold.

We develop this intuition in Section 7.2, where we develop approaches to constructing Lyapunov functions for stable games. We find that distance-like functions serve as Lyapunov functions for the replicator and projection dynamics, allowing us to establish global convergence results for these dynamics in strictly stable games. For target dynamics, including excess payoff, best response, and perturbed best response dynamics, we find that integrability of the revision protocol is the key to establishing convergence results. We argue in Section 7.2.2 that in the presence of payoff monotonicity, integrability of the protocol ensures that on average, the vector of motion deviates from the vector of payoffs in the direction of the equilibrium; given the geometry of equilibrium in stable games, this is enough to ensure convergence to equilibrium. All told, we prove global convergence results for all six of our fundamental dynamics.

In Section 7.3, we turn our attention to supermodular games. As these game's essential property is the monotonicity of their best response correspondences, it is not surprising that our convergence results address dynamics that respect this monotone structure. We begin by considering the best response dynamic, using elementary methods to prove a convergence result for supermodular games generated by two-player normal form games that satisfy a "diminishing returns" condition. To obtain convergence results that demand less structure of the game, we appeal to methods from the theory of cooperative differential equations: these are smooth differential equations under which increasing the value of one component of the state variable increases the growth rates of all other components. The smoothness requirement precludes applying these methods to the best response dynamic, but we are able to use them to study perturbed best response dynamics. We prove that after a natural change of coordinates, perturbed best response functions generated by stochastic perturbations of payoffs are monotone. Ultimately, this allows us to show that the corresponding perturbed best response dynamics converge to perturbed equilibrium
from almost all initial conditions.
In Section 7.4, we study evolution in games with strictly dominated strategies. We find that under the best response dynamic and under imitative dynamics, strictly dominated strategies are eliminated; so are strategies ruled out by iterative removal of strictly dominated strategies. It follows that in games that are dominance solvable-that is, in games where this iterative procedure leaves only one strategy for each population-the best response dynamic and all imitative dynamics converge to the dominance solution. We should emphasize, however, that these elimination results are not robust: we will see in Chapter 9 that under many small modifications of the dynamics covered by our elimination results, strictly dominated strategies can survive.

The definitions and tools from dynamical systems theory needed for our analyses are treated in the Appendix. Appendix 7.A introduces notions of stability, limit behavior, and recurrence for deterministic dynamics. Appendix 7.B presents stability and convergence results for dynamics that admit Lyapunov functions. Finally, Appendix 7.C introduces the theory of cooperative differential equations and monotone dynamical systems.

7.1 Potential Games

7.1.1 Potential Functions as Lyapunov Functions

In a potential game $F: X \rightarrow \mathbf{R}^{n}$, all information about incentives is captured by the potential function $f: X \rightarrow \mathbf{R}$, in that

$$
\begin{equation*}
\nabla f(x)=\Phi F(x) \text { for all } x \in X \tag{7.1}
\end{equation*}
$$

In Chapter 3, we characterized Nash equilibria of F as those states that satisfy the KuhnTucker first order conditions for maximizing f on X. We now take a further step, using the potential function to describe disequilibrium adjustment. In Lemma 7.1.1, we show that any evolutionary dynamic that satisfies positive correlation,
(PC) $\quad V_{F}^{p}(x) \neq 0$ implies that $V_{F}^{p}(x)^{\prime} F^{p}(x)>0$,
must ascend the potential function f.
To state this result, we introduce the notion of a Lyapunov function. The C^{1} function $L: X \rightarrow \mathbf{R}$ is an (increasing) strict Lyapunov function for the differential equation $\dot{x}=V_{F}(x)$ if $\dot{L}(x) \equiv \nabla L(x)^{\prime} V_{F}(x) \geq 0$ for all $x \in X$, with equality only at rest points of V_{F}.

Lemma 7.1.1. Let F be a potential game with potential function f. Suppose the evolutionary dynamic $\dot{x}=V_{F}(x)$ satisfies positive correlation (PC). Then f is a strict Lyapunov function for V_{F}.

Proof. Follows immediately from condition (PC) and the fact that

$$
\dot{f}(x)=\nabla f(x)^{\prime} \dot{x}=(\boldsymbol{\Phi} F(x))^{\prime} V_{F}(x)=\sum_{p \in \mathcal{P}} F^{p}(x)^{\prime} V_{F}^{p}(x)
$$

The initial equality in the expression above follows from an application of the chain rule (Section 3.A.4) to the composition $t \mapsto x_{t} \mapsto f\left(x_{t}\right)$. Versions of this argument will be used often in the proofs of the results to come.

If a dynamic admits a strict Lyapunov function, all solution trajectories of the dynamic converge to equilibrium. Combining this fact with Lemma 7.1.1 allows us to prove a global convergence result for potential games. To state this result, we briefly present some definitions concerning limit behavior of deterministic trajectories; for more on these notions and on Lyapunov functions, see Appendices 7.A and 7.B.

The ω-limit of trajectory $\left\{x_{t}\right\}_{t \geq 0}$ is the set of all points that the trajectory approaches arbitrarily closely infinitely often:

$$
\omega\left(\left\{x_{t}\right\}\right)=\left\{y \in X: \text { there exists }\left\{t_{k}\right\}_{k=1}^{\infty} \text { with } \lim _{k \rightarrow \infty} t_{k}=\infty \text { such that } \lim _{k \rightarrow \infty} x_{t_{k}}=y\right\} .
$$

For dynamics $\dot{x}=V_{F}(x)$ that admit a unique solution trajectory from each initial condition, we write $\omega(\xi)$ for the ω-limit set of the trajectory starting from state ξ, and we let

$$
\Omega\left(V_{F}\right)=\bigcup_{\xi \in X} \omega(\xi)
$$

denote the set of all ω-limit points of all solution trajectories. The set $\Omega\left(V_{F}\right)$ (or its closure, when $\Omega\left(V_{F}\right)$ is not closed) provides a basic notion of recurrence for deterministic dynamics.

Theorem 7.1.2. Let F be a potential game, and let $\dot{x}=V_{F}(x)$ be an evolutionary dynamic for F that admits a unique solution from each initial condition and that satisfies positive correlation (PC). Then $\Omega\left(V_{F}\right)=R P\left(V_{F}\right)$. In particular,
(i) If V_{F} is an imitative dynamic, then $\Omega\left(V_{F}\right)=R E(F)$, the set of restricted equilibria of F.
(ii) If V_{F} is an excess payoff dynamic, a pairwise comparison dynamic, or the projection dynamic, then $\Omega\left(V_{F}\right)=N E(F)$.

Proof. Immediate from Lemma 7.1.1, Theorem 7.B.4, and the characterizations of rest points from Chapters 5 and 6.

Example 7.1.3. 123 Coordination. Figure 7.1.1 presents phase diagrams for the six fundamental dynamics in 123 Coordination:

$$
F(x)=A x=\left(\begin{array}{lll}
1 & 0 & 0 \tag{7.2}\\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{1} \\
2 x_{2} \\
3 x_{3}
\end{array}\right)
$$

In the first five cases, the phase diagram is plotted atop the potential function

$$
\begin{equation*}
f(x)=\frac{1}{2}\left(\left(x_{1}\right)^{2}+2\left(x_{2}\right)^{2}+3\left(x_{3}\right)^{2}\right) . \tag{7.3}
\end{equation*}
$$

Of these, the first four cases (replicator, projection, BNN, Smith) are covered by Theorem 7.1.2; evidently, every solution trajectory in diagrams (i)-(iv) ascends the potential function, ultimately converging to one of the seven Nash equilibria of F.

It is worth noting that these equilibria are not all locally stable. The interior equilibrium is a source, with all nearby solution trajectories moving away from the equilibrium. The three equilibria with two-strategy supports are saddles: for each of these, there is one solution trajectory that converges to the equilibrium, while all other nearby trajectories eventually move away from the equilibrium. Only the three remaining equilibria-the three pure equilibria-are locally stable. We defer further discussion of local stability to Chapter 8, which is devoted to this topic. §

Our convergence results for best response and perturbed best response dynamics require additional work. In the case of the best response dynamic

$$
\begin{equation*}
\dot{x}^{p} \in m^{p} M^{p}\left(F^{p}(x)\right)-x^{p}, \quad \text { where } M^{p}\left(\pi^{p}\right)=\underset{i \in S^{p}}{\operatorname{argmax}} \pi_{i}^{p}, \tag{BR}
\end{equation*}
$$

we must account for the fact that the dynamic is multivalued.
Theorem 7.1.4. Let F be a potential game with potential function f, and let $\dot{x} \in V_{F}(x)$ be the best response dynamic for F. Then

$$
\frac{\partial f}{\partial z}(x)=\sum_{p \in \mathcal{P}} m^{p} \max _{j \in S^{P}} \hat{F}_{j}^{p}(x) \text { for all } z \in V_{F}(x) \text { and } x \in X .
$$

Therefore, every solution trajectory $\left\{x_{t}\right\}$ of V_{F} satisfies $\omega\left(\left\{x_{t}\right\}\right) \subseteq N E(F)$.
Proof. Recall from Theorem 6.1.8 that the best response dynamic satisfies the following

Figure 7.1.1: Six basic dynamics in 123 Coordination. The contour plots are the potential function in (i)-(v), and the logit potential function in (vi).
refinement of condition (PC):

$$
\left(z^{p}\right)^{\prime} F^{p}(x)=m^{p} \max _{j \in S^{p}} \hat{F}_{j}^{p}(x) \text { for all } z^{p} \in V_{F}^{p}(x) .
$$

This condition immediately implies that

$$
\frac{\partial f}{\partial z}(x) \equiv \nabla f(x)^{\prime} z=(\Phi F(x))^{\prime} z=\sum_{p \in \mathcal{P}} F^{p}(x)^{\prime} z^{p}=\sum_{p \in \mathcal{P}} m^{p} \max _{j \in S^{p}} \hat{F}_{j}^{p}(x) .
$$

Thus, $\frac{\partial f}{\partial z}(x) \geq 0$ for all $x \in X$ and $z \in V_{F}(x)$, and Lemma 5.5.4 implies that equality holds if and only if $x \in N E(F)$. The convergence result now follows from Theorem 7.B.5.

Example 7.1.5. 123 Coordination revisited. Figure 7.1.1(v) presents the phase diagram of the best response dynamic in 123 Coordination (7.2), again atop the potential function (7.3). As in Example 6.1.5, there are multiple solutions starting from each initial condition on the Y-shaped set of boundaries between the best response regions. It is not hard to verify that each of these solutions converges to a Nash equilibrium. §

Finally, we turn to perturbed best response dynamics, considering the (more general) definition of these dynamics via admissible deterministic perturbations $v^{p}: \operatorname{int}\left(\Delta^{p}\right) \rightarrow \mathbf{R}$.

$$
\dot{x}^{p}=m^{p} \tilde{M}^{p}(F(x))-x^{p}, \quad \text { where } \tilde{M}^{p}\left(\pi^{p}\right)=\underset{y^{p} \in \operatorname{int}\left(\Delta \Delta^{p}\right)}{\operatorname{argmax}}\left(y^{p}\right)^{\prime} \pi^{p}-v^{p}\left(y^{p}\right),
$$

While these dynamics do not satisfy positive correlation (PC), Theorem 6.2.13 showed that these dynamics do satisfy a perturbed analogue called virtual positive correlation:

$$
V^{p}(x) \neq 0 \text { implies that } V^{p}(x)^{\prime} \tilde{F}^{p}(x)>0 \text { for all } p \in \mathcal{P}
$$

where the virtual payoffs $\tilde{F}: \operatorname{int}(X) \rightarrow \mathbf{R}^{n}$ for the pair (F, v) are defined by

$$
\tilde{F}^{p}(x)=F^{p}(x)-\nabla v^{p}\left(\frac{1}{m^{p}} p^{p}\right) .
$$

Accordingly, the Lyapunov function for a perturbed best response dynamic is not the potential function f, but a perturbed version thereof.

Theorem 7.1.6. Let F be a potential game with potential function f, and let $\dot{x}=V_{F, v}(x)$ be the perturbed best response dynamic for F generated by the admissible deterministic perturbations
$v=\left(v^{1}, \ldots, v^{p}\right)$. Define the perturbed potential function $\tilde{f}: \operatorname{int}(X) \rightarrow \mathbf{R}$ by

$$
\begin{equation*}
\tilde{f}(x)=f(x)-\sum_{p \in \mathcal{P}} m^{p} v^{p}\left(\frac{1}{m^{p}} x^{p}\right) \tag{7.4}
\end{equation*}
$$

Then \tilde{f} is a strict Lyapunov function for $V_{F, v}$, and so $\Omega\left(V_{F, v}\right)=P E(F, v)$.
Proof. That \tilde{f} is a strict Lyapunov function for $V_{F, v}$ follows immediately from virtual positive correlation and the fact that

$$
\dot{\tilde{f}}(x) \equiv \nabla \tilde{f}(x)^{\prime} \dot{x}=\sum_{p \in \mathcal{P}}\left(F^{p}(x)-\nabla v^{p}\left(\frac{1}{m^{p}} x^{p}\right)\right)^{\prime} V_{F, v}^{p}(x)=\sum_{p \in \mathcal{P}} \tilde{F}^{p}(x)^{\prime} V_{F, v}^{p}(x)
$$

Since $P E(F, v) \equiv R P\left(V_{F, v}\right)$, that $\Omega\left(V_{F, v}\right)=P E(F, v)$ follows from Theorem 7.B.4.
In the case of the $\operatorname{logit}(\eta)$ dynamic, the Lyapunov function from equation (7.4) takes the form

$$
\begin{equation*}
\tilde{f}(x)=f(x)-\eta \sum_{p \in \mathcal{P}} \sum_{i \in S} x_{i}^{p} \log \left(\frac{1}{m^{p}} x_{i}^{p}\right), \tag{7.5}
\end{equation*}
$$

called the logit potential function. Theorem 7.1.6, combined with our results in Chapter 10, tells us that the logit potential function captures the finite horizon behavior of agents who play a potential game using the logit choice protocol. In Chapter 11, the logit potential function will be used to obtain a precise characterization of infinite horizon behavior in this setting.

Example 7.1.7. 123 Coordination rerevisited. Figure 7.1.1(vi) presents the phase diagram for the logit(.5) dynamic in 123 Coordination (7.2). Here the contour plot is the logit potential function

$$
\tilde{f}(x)=\frac{1}{2}\left(\left(x_{1}\right)^{2}+2\left(x_{2}\right)^{2}+\left(3\left(x_{3}\right)^{2}\right)-.5 \sum_{i=1}^{3} x_{i} \log x_{i} .\right.
$$

Because the noise level is rather high, this phase diagram looks very different than the others-in particular, it includes only three rest points (two stable and one unstable) rather than seven. Nevertheless, every solution trajectory ascends the relevant Lyapunov function \tilde{f}, ultimately converging to a perturbed equilibrium. §

7.1.2 Gradient Systems for Potential Games

Lemma 7.1.1 tells us that in potential games, any dynamic that satisfies condition (PC) must ascend the potential function f. We now turn to a more refined question: is there an evolutionary dynamic that ascends f in the fastest possible way?

A first answer to this question is suggested by Figure 7.1.1(ii): in 123 Coordination, solution trajectories of the projection dynamic,
(P) $\quad \dot{x}=\Pi_{T X(x)}(F(x))$,
cross the level sets of the potential function orthogonally. In fact, we have
Observation 7.1.8. Let $F: X \rightarrow \mathbf{R}^{n}$ be a potential game with potential function $f: X \rightarrow \mathbf{R}$. On $\operatorname{int}(X)$, the projection dynamic (P) is the gradient system for f :

$$
\begin{equation*}
\dot{x}=\nabla f(x) \text { on } \operatorname{int}(X) . \tag{7.6}
\end{equation*}
$$

Surprisingly, there is an alternative answer to our question: it turns out that the replicator dynamic,
(R) $\quad \dot{x}_{i}^{p}=x_{i}^{p} \hat{F}_{i}^{p}(x)$,
also defines a gradient system for the potential function f; however, this is only true after we apply a clever change of variable. In addition to its inherent interest, this fact demonstrates a close connection between the replicator and projection dynamics; another such connection will be made in Section 7.2.1 below.

We restrict our analysis to the single population case. Define the set $\mathcal{X}=\left\{\chi \in \mathbf{R}_{+}^{n}\right.$: $\left.\sum_{i \in S} \mathcal{X}_{i}^{2}=4\right\}$ to be the portion of the raidus 2 sphere lying in the positive orthant. Our change of variable is given by the Akin transformation $H: \operatorname{int}\left(\mathbf{R}_{+}^{n}\right) \rightarrow \operatorname{int}\left(\mathbf{R}_{+}^{n}\right)$, where $H_{i}(x)=2 \sqrt{x_{i}}$. Evidently, H is a diffeomorphism that maps the simplex X onto the set X. The transformation makes changes in component x_{i} look large when x_{i} itself is small.

Theorem 7.1.9 tells us that the replicator dynamic is a gradient dynamic on $\operatorname{int}(X)$ after a change of variable that makes changes in the use of rare strategies look important relative to changes in the use of common ones. Intuitively, this reweighting accounts for the fact that under imitative dynamics, changes in the use of rare strategies are necessarily slow.

Theorem 7.1.9. Let $F: X \rightarrow \mathbf{R}^{n}$ be a potential game with potential function $f: X \rightarrow \mathbf{R}$. Suppose we transport the replicator dynamic for F from $\operatorname{int}(X)$ to $\operatorname{int}(X)$ using the Akin transformation
H. Then the resulting dynamic is the gradient dynamic for the transported potential function $\phi=f \circ H^{-1}$.

Proof. We prove Theorem 7.1.9 in two steps: first, we derive the transported version of the replicator dynamic; then we derive the gradient system for the transported version of the potential function, and show that it is the same dynamic on X. The following notation will simplify our calculations: when $y \in \mathbf{R}_{+}^{n}$ and $a \in \mathbf{R}$, we let $\left[y^{a}\right] \in \mathbf{R}^{n}$ be the vector whose i th component is $\left(y_{i}\right)^{a}$.

We can express the replicator dynamic on X as

$$
\dot{x}=R(x)=\operatorname{diag}(x)\left(F(x)-\mathbf{1} x^{\prime} F(x)\right)=\left(\operatorname{diag}(x)-x x^{\prime}\right) F(x) .
$$

The transported version of this dynamic can be computed as

$$
\dot{\chi}=\mathcal{R}(\chi)=D H\left(H^{-1}(\chi)\right) R\left(H^{-1}(\chi)\right) .
$$

In words: given a state $\chi \in X$, we first find the corresponding state $x=H^{-1}(\chi) \in X$ and direction of motion $R(x)$. Since $R(x)$ represents a displacement from state x, we transport it to X by premultiplying it by $D H(x)$, the derivative of H evaluated at x.

Since $\chi=H(x)=2\left[x^{1 / 2}\right]$, the derivative of H at x is given by $D H(x)=\operatorname{diag}\left(\left[x^{-1 / 2}\right]\right)$ Using this fact, we derive a primitive expression for $\mathcal{R}(\chi)$ in terms of $x=H^{-1}(\chi)=\frac{1}{4}\left[\chi^{2}\right]$:

$$
\begin{align*}
\dot{\chi} & =\mathcal{R}(\chi) \tag{7.7}\\
& =D H(x) R(x) \\
& =\operatorname{diag}\left(\left[x^{-1 / 2}\right]\right)\left(\operatorname{diag}(x)-x x^{\prime}\right) F(x) \\
& =\left(\operatorname{diag}\left(\left[x^{1 / 2}\right]\right)-\left[x^{1 / 2}\right] x^{\prime}\right) F(x) .
\end{align*}
$$

Now, we derive the gradient system on X generated by $\phi=f \circ H^{-1}$. To compute $\nabla \phi(\chi)$, we need to define an extension of ϕ to all of \mathbf{R}_{+}^{n}, compute its gradient, and then project the result onto the tangent space of X at χ. The easiest way to proceed is to let $\tilde{f}: \operatorname{int}\left(\mathbf{R}_{+}^{n}\right) \rightarrow \mathbf{R}$ be an arbitrary C^{1} extension of f, and to define the extension $\tilde{\phi}: \operatorname{int}\left(\mathbf{R}_{+}^{n}\right) \rightarrow \mathbf{R}$ by $\tilde{\phi}=\tilde{f} \circ H^{-1}$.

Since X is a portion of a sphere centered at the origin, the tangent space of X at χ is the subspace $T \mathcal{X}(\chi)=\left\{z \in \mathbf{R}^{n}: \mathcal{X}^{\prime} z=0\right\}$. The orthogonal projection onto this set is represented by the $n \times n$ matrix

$$
P_{T X(x)}=I-\frac{1}{\chi^{\prime} \chi} \chi X^{\prime}=I-\frac{1}{4} \chi \chi^{\prime}=I-\left[x^{1 / 2}\right]\left[x^{1 / 2}\right]^{\prime} .
$$

Also, since $\Phi \nabla \tilde{f}(x)=\nabla f(x)=\Phi F(x)$ by construction, it follows that $\nabla \tilde{f}(x)=F(x)+c(x) \mathbf{1}$ for some scalar-valued function $c: X \rightarrow \mathbf{R}$.

Using the chain rule (Section 3.A.4), we compute that

$$
\nabla \tilde{\phi}(\chi)=D\left(\tilde{f} \circ H^{-1}\right)(\chi)^{\prime}=\left(D f\left(H^{-1}(\chi)\right) D H^{-1}(\chi)\right)^{\prime}=D H^{-1}(\chi)^{\prime} \nabla \tilde{f}(x),
$$

while applying the chain rule to the identity $H^{-1}(H(x)) \equiv x$ and then rearranging yields

$$
D H^{-1}(x)=D H(x)^{-1} .
$$

Marshaling these observations, we find that the gradient system on X generated by ϕ is

$$
\begin{aligned}
\dot{\chi} & =\nabla \phi(x) \\
& =P_{T X(x)} \nabla \tilde{\phi}(\chi) \\
& =P_{T X(x)} D H^{-1}(x)^{\prime} \nabla \tilde{f}(x) \\
& =P_{T X(x)}\left(D H(x)^{-1}\right)^{\prime}(F(x)+c(x) \mathbf{1}) \\
& =\left(I-\left[x^{1 / 2}\right]\left[x^{1 / 2}\right]^{\prime}\right) \operatorname{diag}\left(\left[x^{1 / 2}\right]\right)(F(x)+c(x) \mathbf{1}) \\
& =\left(\operatorname{diag}\left(\left[x^{1 / 2}\right]\right)-\left[x^{1 / 2}\right] x^{\prime}\right)(F(x)+c(x) \mathbf{1}) \\
& =\left(\operatorname{diag}\left(\left[x^{1 / 2}\right]\right)-\left[x^{1 / 2}\right] x^{\prime}\right) F(x) .
\end{aligned}
$$

This agrees with equation (7.7), completing the proof of the theorem.

Example 7.1.10. 123 Coordination one last time. Figure 7.1.2 illustrates Theorem 7.1.9 by presenting phase diagrams of the transported replicator dynamic $\dot{\chi}=\mathcal{R}(\chi)$ for 123 Coordination (cf Example 7.1.3). These phase diagrams on \mathcal{X} are drawn atop contour plots of the transported potential function $\phi(\chi)=\left(f \circ H^{-1}\right)(\chi)=\frac{1}{32}\left(\left(x_{1}\right)^{4}+2\left(x_{2}\right)^{4}+3\left(x_{3}\right)^{4}\right)$. According to Theorem 7.1.9, the solution trajectories of \mathcal{R} should cross the level sets of ϕ orthogonally.

Looking at Figure 7.1.2, we find that the crossings look orthogonal at the center of the figure, but not by the boundaries. This is an artifact of our drawing a portion of the sphere in \mathbf{R}^{3} by projecting it orthogonally onto a sheet of paper. (For exactly the same reason, latitude and longitude lines in an orthographic projection of the Earth only appear to cross at right angles in the center of the projection, not on the left and right sides.) To check whether the crossings near a given state $\chi \in \mathcal{X}$ are truly orthogonal, we must minimize the distortion of angles near χ by making χ the origin of the projection-that is, the point where the sphere touches the sheet of paper. In the phase diagrams in Figure 7.1.2, we

Figure 7.1.2: The phase diagram of the transported replicator dynamic $\dot{x}=\mathcal{R}(\chi)$ for a coordination game.
The pink dots represent the positions of the projection origins.
mark the projection origins with pink dots; evidently, the crossings are orthogonal near these points. §

7.2 Stable Games

Recall that the population game F is stable if it satisfies

$$
\begin{equation*}
(y-x)^{\prime}(F(y)-F(x)) \leq 0 \text { for all } x, y \in X \tag{7.8}
\end{equation*}
$$

When F is C^{1}, this condition is equivalent to self-defeating externalities:

$$
\begin{equation*}
z^{\prime} D F(x) z \leq 0 \text { for all } z \in T X \text { and } x \in X . \tag{7.9}
\end{equation*}
$$

The set of Nash equilibria of a stable game is convex, and most often a singleton.
In general, uniqueness of equilibrium is not enough to ensure convergence of evolutionary dynamics. As we shall see in Chapter 9, there are many simple examples of games with a unique Nash equilibrium in which dynamics fail to converge. Nevertheless, we show in this section that under many evolutionary dynamics, the structure provided by self-defeating externalities is enough to ensure convergence. While fewer dynamics converge here than in potential games, convergence does obtain under all six fundamental dynamics.

Our convergence proofs for stable games again rely on the construction of Lyapunov functions, but here we will need to construct a distinct Lyapunov function for each dynamic we consider. It will be natural to write these Lyapunov functions so that their values fall over time: thus, we say that a C^{1} function L is a (decreasing) strict Lyapunov function for the dynamic $\dot{x}=V_{F}(x)$ if $\dot{L}(x) \leq 0$ for all $x \in X$, with equality only at rest points of V_{F}. Apart from those for perturbed best response dynamics, the Lyapunov functions introduced below are also gap functions: they are continuous and nonnegative, with zeros precisely at the Nash equilibria of the underlying game F.

7.2.1 The Projection and Replicator Dynamics in Strictly Stable Games

To obtain convergence results for the projection and replicator dynamics, we must restrict attention to strictly stable games: that is, games in which condition (7.8) holds strictly for all $x, y \in X$. The Lyapunov functions for these dynamics are based on explicit notions of "distance" from the the game's unique Nash equilibrium x^{*}.

Theorem 7.2.1 shows that under the projection dynamic, x^{*} is globally asymptotically
stable: all solution trajectories converge to x^{*}, and solutions that start near x^{*} never move too far away from x^{*} (see Appendix 7.A.2).

Theorem 7.2.1. Let F be a strictly stable game with unique Nash equilibrium x^{*}, and let $\dot{x}=V_{F}(x)$ be the projection dynamic for F. Let the function $E_{x^{*}}: X \rightarrow \mathbf{R}_{+}$, defined by

$$
E_{x^{*}}(x)=\left|x-x^{*}\right|^{2},
$$

represent squared Euclidean distance from x^{*}. Then $E_{x^{*}}$ is a strict Lyapunov function for V_{F}, and so x^{*} is globally asymptotically stable under V_{F}.

Proof. Since F is a strictly stable game, its unique Nash equilibrium x^{*} is also its unique GESS:

$$
\left(x-x^{*}\right)^{\prime} F(x)<0 \text { for all } x \in X-\left\{x^{*}\right\} .
$$

This fact and the Moreau Decomposition Theorem imply that

$$
\begin{aligned}
\dot{E}_{x^{*}}(x) & =\nabla E_{x^{*}}(x)^{\prime} \dot{x} \\
& =2\left(x-x^{*}\right)^{\prime} \Pi_{T X(x)}(F(x)) \\
& =2\left(x-x^{*}\right)^{\prime} F(x)+2\left(x^{*}-x\right)^{\prime} \Pi_{N X(x)}(F(x)) \\
& \leq 2\left(x^{*}-x\right)^{\prime} \Pi_{N X(x)}(F(x)) \\
& \leq 0,
\end{aligned}
$$

where the penultimate inequality is strict whenever $x \neq x^{*}$. Global asymptotic stability of $N E(F)$ then follows from Corollary 7.B.7.

Exercise 7.2.2. Let F be a stable game, and let x^{*} be a Nash equilibrium of F.
(i) Show that x^{*} is Lyapunov stable under (P).
(ii) Suppose that F is a null stable game (i.e., that $(y-x)^{\prime}(F(y)-F(x))=0$ for all $\left.x, y \in X\right)$. Show that if $x^{*} \in \operatorname{int}(X)$, then $E_{x^{*}}$ defines a constant of motion for (P) on $\operatorname{int}(X)$: the value of $E_{x^{*}}$ is constant along interior portions of solution trajectories of (P).

Exercise 7.2.3. Show that if F is a C^{1} stable game, then the squared speed of motion $L(x)=|\Phi F(x)|^{2}$ is a Lyapunov function for (P) on $\operatorname{int}(X)$. Show that if F is null stable, then L defines a constant of motion for (P) on $\operatorname{int}(X)$. (Notice that unlike that of $E_{x^{*}}$, the definition of L does not directly incorporate the Nash equilibrium x^{*}.)

Under the replicator dynamic (R), as under any imitative dynamic, strategies that are initially unused remain unused for all time. Therefore, if state x places no mass on a strategy in the support of the Nash equilibrium x^{*}, the solution to (R) starting from x cannot converge to x^{*}. Thus, in stating our convergence result for the replicator dynamic, we need to be careful to specify the set of states from which convergence to equilibrium occurs.

With this motivation, let $S^{p}\left(x^{p}\right)=\left\{i \in S^{p}: x_{i}^{p}>0\right\}$ denote the support of x^{p}. Then $X_{y^{p}}^{p}=\left\{x^{p} \in X^{p}: S^{p}\left(y^{p}\right) \subseteq S^{p}\left(x^{p}\right)\right\}$ is the set of states in X^{p} whose supports contain the support of y^{p}, and $X_{y}=\prod_{p \in \mathcal{P}} X_{y^{p}}^{p}$ is the set of states in X whose supports contain the support of y. To construct our Lyapunov function, we introduce the function $h_{y^{p}}^{p}: X_{y^{p}}^{p} \rightarrow \mathbf{R}$, defined by

$$
h_{y^{p}}^{p}\left(x^{p}\right)=\sum_{i \in S^{p}\left(y^{p}\right)} y_{i}^{p} \log \frac{y_{i}^{p}}{x_{i}^{p}} .
$$

If population p is of unit mass, so that y^{p} and x^{p} are probability distributions, $h_{y^{p}}^{p}\left(x^{p}\right)$ is known as the relative entropy of y^{p} given x^{p}.

Theorem 7.2.4. Let F be a strictly stable game with unique Nash equilibrium x^{*}, and let $\dot{x}=V_{F}(x)$ be the replicator dynamic for F. Define the function $H_{x^{*}}: X_{x^{*}} \rightarrow \mathbf{R}_{+}$by

$$
H_{x^{*}}(x)=\sum_{p \in \mathcal{P}} h_{\left(x^{*}\right)^{p}}^{p}\left(x^{p}\right) .
$$

Then $H_{x^{*}}^{-1}(0)=\left\{x^{*}\right\}$, and $H_{x^{*}}(x)$ approaches infinity whenever x approaches $X-X_{x^{*}}$ Moreover, $\dot{H}_{x^{*}}(x) \leq 0$, with equality only when $x=x^{*}$. Therefore, x^{*} is globally asymptotically stable with respect to $X_{x^{*}}$.

Proof. $(p=1)$ To see that $H_{x^{*}}$ is a gap function, observe that by Jensen's inequality,

$$
-H_{x^{*}}(x)=\sum_{i \in S\left(x^{*}\right)} x_{i}^{*} \log \frac{x_{i}}{x_{i}^{*}} \leq \log \left(\sum_{i \in S\left(x^{*}\right)} x_{i}^{*} \cdot \frac{x_{i}}{x_{i}^{*}}\right)=\log \left(\sum_{i \in S\left(x^{*}\right)} x_{i}\right) \leq \log 1=0,
$$

with equality if and only if $x=x^{*}$. The second claim is immediate. For the third claim, note that since F is strictly stable, x^{*} is a GESS, so for all $x \in X_{x^{*}}$ we have that

$$
\begin{aligned}
\dot{H}_{x^{*}}(x) & =\nabla H_{x^{*}}(x)^{\prime} \dot{x} \\
& =-\sum_{i \in S\left(x^{*}\right)} \frac{x_{i}^{*}}{x_{i}} \cdot x_{i} \hat{F}_{i}(x)
\end{aligned}
$$

$$
\begin{aligned}
& =-\sum_{i \in S} x_{i}^{*} \hat{F}_{i}(x) \\
& =-\left(x^{*}\right)^{\prime}\left(F(x)-\mathbf{1} x^{\prime} F(x)\right) \\
& =-\left(x^{*}-x\right)^{\prime} F(x) \\
& \leq 0
\end{aligned}
$$

where the inequality binds precisely when $x=x^{*}$. The conclusions about stability then follow from Theorems 7.B. 2 and 7.B.4.

Exercise 7.2.5. Let F be a stable game, and let x^{*} be a Nash equilibrium of F.
(i) Show that x^{*} is Lyapunov stable under (R).
(ii) Show that if F is a null stable game and $x^{*} \in \operatorname{int}(X)$, then $H_{x^{*}}$ defines a constant of motion for (R) on $\operatorname{int}(X)$.

7.2.2 Integrable Target Dynamics

Of our six fundamental dynamics, three of them-the BNN, best response, and logit dynamics, can be expressed as target dynamics of the form

$$
\tau^{p}\left(\pi^{p}, x^{p}\right)=\tau^{p}\left(\hat{\pi}^{p}\right)
$$

under which conditional switch rates only depend on on the vector of excess payoffs $\hat{\pi}^{p}=\pi^{p}-\frac{1}{m^{p}} \mathbf{1}\left(x^{p}\right)^{\prime} \pi^{p}$. This is obviously true of the BNN dynamic. For the other two cases, note that shifting all components of the payoff vector by the same constant has no effect on either exact or perturbed best responses: in particular, the definitions (6.2) and (6.12) of the maximizer correspondence $M^{p}: \mathbf{R}^{n^{p}} \Rightarrow \Delta^{p}$ and the perturbed maximizer function $\tilde{M}^{p}: \mathbf{R}^{n^{p}} \rightarrow \Delta^{p}$ satisfy $M^{p}\left(\hat{\pi}^{p}\right)=M^{p}\left(\pi^{p}\right)$ and $\tilde{M}^{p}\left(\hat{\pi}^{p}\right)=\tilde{M}^{p}\left(\pi^{p}\right)$.

In this section, we show that these three dynamics converge to equilibrium in all stable games, as do all close enough relatives of these dynamics. Unlike in the context of potential games, monotonicity properties alone are not enough to ensure that a dynamic converges: in addition, integrability of the revision protocol plays a key role in establishing convergence results.

To begin, we provide an example to illustrate that monotonicity properties alone do not ensure convergence of target dynamics in stable games.

Example 7.2.6. Cycling in good RPS. Fix $\varepsilon>0$, and let $g^{\varepsilon}: \mathbf{R} \rightarrow \mathbf{R}$ be a continuous decreasing function that equals 1 on $(-\infty, 0]$, equals ε^{2} on $[\varepsilon, \infty)$, and is linear on $[0, \varepsilon]$. Then define
the revision protocol τ for Rock-Paper-Scissors games by

$$
\left(\begin{array}{l}
\tau_{R}(\hat{\pi}) \tag{7.10}\\
\tau_{P}(\hat{\pi}) \\
\tau_{S}(\hat{\pi})
\end{array}\right)=\left(\begin{array}{l}
{\left[\hat{\pi}_{R}\right]_{+} g^{\varepsilon}\left(\hat{\pi}_{S}\right)} \\
{\left[\hat{\pi}_{P}\right]_{+} g^{\varepsilon}\left(\hat{\pi}_{R}\right)} \\
{\left[\hat{\pi}_{S}\right]_{+} g^{\varepsilon}\left(\hat{\pi}_{P}\right)}
\end{array}\right) .
$$

Under this protocol, the weight placed on a strategy is proportional to positive part of the strategy's excess payoff, as in the protocol for the BNN dynamic; however, this weight is only of order ε^{2} if the strategy it beats in RPS has an excess payoff greater than ε.

It is easy to verify that protocol (7.10) satisfies acuteness (5.21):

$$
\tau(\hat{\pi})^{\prime} \hat{\pi}=\left[\hat{\pi}_{R}\right]_{+}^{2} g^{\varepsilon}\left(\hat{\pi}_{S}\right)+\left[\hat{\pi}_{P}\right]_{+}^{2} g^{\varepsilon}\left(\hat{\pi}_{R}\right)+\left[\hat{\pi}_{S}\right]_{+}^{2} g^{\varepsilon}\left(\hat{\pi}_{P}\right)
$$

which is positive when $\hat{\pi} \in \operatorname{int}\left(\mathbf{R}_{*}^{n}\right)$. Thus, the target dynamic induced by τ is an excess payoff dynamic. In Figure 7.2 .1 we presents a phase diagram for this dynamic in the good RPS game

$$
F(x)=A x=\left(\begin{array}{ccc}
0 & -2 & 3 \\
3 & 0 & -2 \\
-2 & 3 & 0
\end{array}\right)\left(\begin{array}{l}
x_{R} \\
x_{P} \\
x_{S}
\end{array}\right)
$$

Evidently, solutions from many initial conditions lead to a limit cycle. §
To explain why cycling occurs in the example above, we review some ideas about the geometry of stable games and target dynamics. By Theorem 3.3.16, every Nash equilibrium x^{*} of a stable game is a GNSS. Geometrically, this means that at every nonequilibrium state x, the projected payoff vector $\Phi F(x)$ forms an acute or right angle with the line segment from x back to x^{*} (Figures 3.3.3, 3.3.5, and 3.3.6). Meanwhile, our monotonicity condition for dynamics, positive correlation (PC), requires that away from equilibrium, each vector of motion $V_{F}(x)$ forms an acute angle with the projected payoff vector $\Phi F(x)$ (Figures 5.2.1 and 5.2.2). Combining these observations, we conclude that if the law of motion $\dot{x}=V_{F}(x)$ tends to deviate from the projected payoffs ΦF in "outward" directionsthat is, in directions heading away from equilibrium-then cycling will occur (compare Figure 3.3.6 with Figure 7.2.1). On the other hand, if the deviations of V_{F} from ΦF tend to be "inward", then solutions should converge to equilibrium.

By this logic, we should be able to guarantee convergence of target dynamics in stable games by ensuring that the deviations of V_{F} from ΦF are toward the equilibrium, at least in some average sense. To accomplish this, we introduce an additional condition for revision

Figure 7.2.1: An excess payoff dynamic in good RPS $(w=3, l=2)$.
protocols: integrability.

$$
\begin{equation*}
\text { There exists a } C^{1} \text { function } \gamma^{p}: \mathbf{R}^{n^{p}} \rightarrow \mathbf{R} \text { such that } \tau^{p} \equiv \nabla \gamma^{p} \tag{7.11}
\end{equation*}
$$

We call the functions γ^{p} introduced in this condition revision potentials.
To give this condition a behavioral interpretation, it is useful to compare it to separability:

$$
\begin{equation*}
\tau_{i}^{p}\left(\hat{\pi}^{p}\right) \text { is independent of } \hat{\pi}_{-i}^{p} . \tag{7.12}
\end{equation*}
$$

The latter condition is stronger than the former: if τ^{p} satisfies (7.12), then it satisfies (7.11) with

$$
\begin{equation*}
\gamma^{p}\left(\hat{\pi}^{p}\right)=\sum_{i \in S^{p}} \int_{0}^{\hat{\pi}_{i}^{p}} \tau_{i}^{p}(s) \mathrm{d} s . \tag{7.13}
\end{equation*}
$$

In Example 7.2.6, the protocol (7.10) that generated cycling has the following noteworthy feature: the weights agents place on each strategy depend systematically on the payoffs of the next strategy in the best response cycle. Building on this motivation, one can obtain a game-theoretic interpretation of integrability. Roughly speaking, integrability (7.11) is equivalent to a requirement that in expectation, learning the weight placed on strategy j does not convey information about other strategies' excess payoffs. It thus
generalizes separability (7.12), which requires that learning the weight placed on strategy j conveys no information at all about other strategies' excess payoffs (see the Notes).

Before turning to our convergence theorems, we address a missing step in the motivating argument above: how does integrability ensure that the law of motion V_{F} tends to deviate from the projected payoffs ΦF in the direction of equilibrium? To make this link, let us recall a characterization of integrablility from Section 3.A.9: the map $\tau: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is integrable if and only if its line integral over any piecewise smooth closed curve $C \subset \mathbf{R}^{n}$ evaluates to zero:

$$
\begin{equation*}
\oint_{C} \tau(\hat{\pi}) \cdot \mathrm{d} \hat{\pi}=0 \tag{7.14}
\end{equation*}
$$

Example 7.2.7. Let the population game F be generated by random matching in standard RPS:

$$
F(x)=A x=\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{R} \\
x_{P} \\
x_{S}
\end{array}\right) .
$$

The unique Nash equilibrium of F is the GNSS $x^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. Game F has the convenient property that at each state $x \in X$, the payoff vector $F(x)$, the projected payoff vector $\Phi F(x)$, and the excess payoff vector $\hat{F}(x)$ are all the same, a fact that will simplify the notation in the argument to follow.

Since F is null stable, we know that at each state $x \neq x^{*}$, the payoff vector $F(x)$ is orthogonal to the vector $x^{*}-x$. In Figure 3.3.6, these payoff vectors point counterclockwise relative to x^{*}. Since positive correlation (PC) requires that the direction of motion $V_{F}(x)$ form an acute angle with $F(x)$, dynamics satisfying (PC) also travel counterclockwise around the equilibrium.

To address whether the deviations of V_{F} from F tend to be inward or outward, let $C \subset X$ be a circle of radius $c \in\left(0, \frac{1}{\sqrt{6}}\right]$ centered at the equilibrium x^{*}. This circle is parameterized by the function $\xi:[0,2 \pi] \rightarrow X$, where

$$
\xi_{\alpha}=\frac{c}{\sqrt{6}}\left(\begin{array}{c}
-2 \sin \alpha \tag{7.15}\\
\sqrt{3} \cos \alpha+\sin \alpha \\
-\sqrt{3} \cos \alpha+\sin \alpha
\end{array}\right)+x^{*}
$$

Here α is the counterclockwise angle between the vector $\xi_{\alpha}-x^{*}$ and a rightward horizontal vector (see Figure 7.2.2).

Since state ξ_{α} lies on the circle C, the vector $x^{*}-\xi_{\alpha}$ can be drawn as a radius of C; thus,

Figure 7.2.2: Integrability and inward motion of target dynamics in standard RPS.
the payoff vector $\pi_{\alpha} \equiv F\left(\xi_{\alpha}\right)$, which is orthogonal to $x^{*}-\xi_{\alpha}$, must be tangent to C at ξ_{α}, as shown in Figure 7.2.2. This observation is easy to verify analytically:

$$
\pi_{\alpha}=F\left(\xi_{\alpha}\right)=\frac{c}{\sqrt{6}}\left(\begin{array}{c}
-2 \sqrt{3} \cos \alpha \tag{7.16}\\
-3 \sin \alpha+\sqrt{3} \cos \alpha \\
3 \sin \alpha+\sqrt{3} \cos \alpha
\end{array}\right)=\sqrt{3} \frac{\mathrm{~d}}{\mathrm{~d} \alpha} \xi_{\alpha} .
$$

If we differentiate both sides of identity (7.16) with respect to the angle α, and note that $\frac{\mathrm{d}^{2}}{(\mathrm{~d} \alpha)^{2}} \xi_{\alpha}=-\left(\xi_{\alpha}-x^{*}\right)$, we can link the rate of change of the payoff vector $\pi_{\alpha}=F\left(\xi_{\alpha}\right)$ to the displacement of state ξ_{α} from x^{*} :

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \alpha} \pi_{\alpha}=\sqrt{3} \frac{\mathrm{~d}^{2}}{(\mathrm{~d} \alpha)^{2}} \xi_{\alpha}=-\sqrt{3}\left(\xi_{\alpha}-x^{*}\right) . \tag{7.17}
\end{equation*}
$$

Now introduce an acute, integrable revision protocol τ. By combining integrability condition (7.14) with equation (7.17), we obtain

$$
\begin{equation*}
0=\oint_{C} \tau(\pi) \cdot \mathrm{d} \pi \equiv \int_{0}^{2 \pi} \tau\left(\pi_{\alpha}\right)^{\prime}\left(\frac{\mathrm{d}}{\mathrm{~d} \alpha} \pi_{\alpha}\right) \mathrm{d} \alpha=-\sqrt{3} \int_{0}^{2 \pi} \tau\left(\pi_{\alpha}\right)^{\prime}\left(\xi_{\alpha}-x^{*}\right) \mathrm{d} \alpha \tag{7.18}
\end{equation*}
$$

Let us write $\lambda(\pi)=\sum_{i \in S} \tau_{i}(\pi)$ and $\sigma_{i}(\pi)=\frac{\tau_{i}(\pi)}{\lambda(\pi)}$ to express the dynamic in target form. Then because $\xi_{\alpha}-x^{*} \in T X$ is orthogonal to $x^{*}=\frac{1}{3} \mathbf{1}$, we can conclude from equation (7.18) that

$$
\begin{equation*}
\int_{0}^{2 \pi} \lambda\left(F\left(\xi_{\alpha}\right)\right)\left(\sigma\left(F\left(\xi_{\alpha}\right)\right)-x^{*}\right)^{\prime}\left(\xi_{\alpha}-x^{*}\right) \mathrm{d} \alpha=0 \tag{7.19}
\end{equation*}
$$

Equation (7.19) is a form of the requirement described at the start of this section: it asks that at states on the circle C, the vector of motion under the target dynamic

$$
\begin{equation*}
\dot{x}=V_{F}(x)=\lambda(F(x))(\sigma(F(x))-x) . \tag{7.20}
\end{equation*}
$$

typically deviates from the payoff vector $F(x)$ in an inward direction-that is, in the direction of the equilibrium x^{*}.

To reach this interpretation of equation (7.19), note first that if the target state $\sigma\left(F\left(\xi_{\alpha}\right)\right)$ lies on or even near line $L^{\perp}\left(\xi_{\alpha}\right)$, then motion from ξ_{α} toward $\sigma\left(F\left(\xi_{\alpha}\right)\right)$ is initially inward, as shown in Figure 7.2.2. (Of course, target state $\sigma\left(F\left(\xi_{\alpha}\right)\right)$ lies above $L\left(\xi_{\alpha}\right)$ by virtue of positive correlation (PC).) Now, the integrand in (7.19) contains the inner product of the vectors $\sigma\left(F\left(\xi_{\alpha}\right)\right)-x^{*}$ and $\xi_{\alpha}-x^{*}$. This inner product is zero precisely when then the two vectors are orthogonal, or, equivalently, when target state $\sigma\left(F\left(\xi_{\alpha}\right)\right)$ lies on $L^{\perp}\left(\xi_{\alpha}\right)$. While equation (7.19) does not require the two vectors to be orthogonal, it asks that this be true on average, where the average is taken over states $\xi_{\alpha} \in C$, and weighted by the rates $\lambda\left(F\left(\xi_{\alpha}\right)\right)$ at which ξ_{α} approaches $\sigma\left(F\left(\xi_{\alpha}\right)\right)$. Thus, in the presence of acuteness, integrability implies that on average, the dynamic (7.20) tends to point inward, toward the equilibrium x^{*}. §

The foregoing arguments suggest that together, monotonicity and integrability are enough to ensure global convergence of target dynamics in stable games. We now develop this intuition into formal results by constructing suitable Lyapunov functions.

As a point of comparison, recall from Section 7.1.1 that in the case of dynamics for potential games, monotonicity conditions alone are sufficient to prove global convergence results: as the game's potential function serves as a Lyapunov function for any dynamic satisfying positive correlation (PC). Unlike potential games, stable games do not come equipped with candidate Lyapunov functions. But if the revision protocol agents follow is integrable, then the revision potential of this protocol provides a building block for constructing a suitable Lyapunov function. Evidently, this Lyapunov function will vary with the dynamic under study, even when the game under consideration is fixed.

Our first result concerns integrable excess payoff dynamics: that is, target dynamics whose protocols τ^{p} are Lipschitz continuous, acute (5.21), and integrable (7.11). The prototype
for this class is the BNN dynamic: its protocol $\tau_{i}^{p}\left(\hat{\pi}^{p}\right)=\left[\hat{\pi}_{i}^{p}\right]_{+}$is not only acute and integrable, but also separable (7.12), and so admits potential function $\gamma^{p}\left(\hat{\pi}^{p}\right)=\frac{1}{2} \sum_{i \in S^{p}}\left[\hat{\pi}_{i}^{p}\right]_{+}^{2}$ (cf equation (7.13)).

Theorem 7.2.8. Let F be a C^{1} stable game, and let $\dot{x}=V_{F}(x)$ be the integrable excess payoff dynamic for F based on revision protocols τ^{p} with revision potentials γ^{p}. Define the C^{1} function $\Gamma: X \rightarrow \mathbf{R} b y$

$$
\Gamma(x)=\sum_{p \in \mathcal{P}} m^{p} \gamma^{p}\left(\hat{F}^{p}(x)\right) .
$$

Then Γ is a strict Lyapunov function for V_{F}, and $N E(F)$ is globally attracting. In addition, if F admits a unique Nash equilibrium, or if the protocols τ^{p} also satisfy separability (7.12), then we can choose Γ to be nonnegative with $\Gamma^{-1}(0)=N E(F)$, and so $N E(F)$ is globally asymptotically stable.

For future reference, observe that the value of the Lyapunov function Γ at state x is the (m^{p}-weighted) sum of the values of the revision potentials γ^{p} evaluated at the excess payoff vectors $\hat{F}^{p}(x)$.

The conditions introduced in the last sentence of the theorem are needed to ensure that the Lyapunov function Γ is constant on the set $N E(F)$ of Nash equilibria. Were this not the case, the set $N E(F)$ could be globally attracting without being Lyapunov stable-see Example 7.B.3.

The proof of Theorem 7.2.8 and those to come make heavy use of multivariate product and chain rules, which we review in Section 3.A.4.

Proof of Theorem 7.2.8. ($p=1$) Recall that the excess payoff vector $\hat{F}(x)$ is equal to $F(x)-\mathbf{1} \bar{F}(x)$, where $\bar{F}(x)=x^{\prime} F(x)$ is the population's average payoff. By the product rule, the derivative of \bar{F} is

$$
D \bar{F}(x)=x^{\prime} D F(x)+F(x)^{\prime}
$$

Therefore, the derivative matrix for the excess payoff function $\hat{F}(x)=F(x)-\mathbf{1} \bar{F}(x)$ is

$$
\begin{align*}
D \hat{F}(x) & =D(F(x)-\mathbf{1} \bar{F}(x)) \\
& =D F(x)-\mathbf{1} D \bar{F}(x) \\
& =D F(x)-\mathbf{1}\left(x^{\prime} D F(x)+F(x)^{\prime}\right) \tag{7.21}
\end{align*}
$$

Using (7.21) and the chain rule, we can compute the time derivative of Γ :

$$
\dot{\Gamma}(x)=\nabla \Gamma(x)^{\prime} \dot{x}
$$

$$
\begin{aligned}
& =\nabla \gamma(\hat{F}(x))^{\prime} D \hat{F}(x) \dot{x} \\
& =\tau(\hat{F}(x))^{\prime}\left(D F(x)-\mathbf{1}\left(x^{\prime} D F(x)+F(x)^{\prime}\right)\right) \dot{x} \\
& =\left(\tau(\hat{F}(x))-\tau(\hat{F}(x))^{\prime} \mathbf{1} x\right)^{\prime} D F(x) \dot{x}-\tau(\hat{F}(x))^{\prime} \mathbf{1} F(x)^{\prime} \dot{x} \\
& =\dot{x}^{\prime} D F(x) \dot{x}-\left(\tau(\hat{F}(x))^{\prime} \mathbf{1}\right)\left(F(x)^{\prime} \dot{x}\right) \\
& \leq 0,
\end{aligned}
$$

where the inequality follows from the facts that F is stable and V_{F} satisfies positive correlation (PC).

We now show that this inequality binds precisely on the set $N E(F)$. To begin, note that if $x \in R P\left(V_{F}\right)$ (i.e., if $\dot{x}=\mathbf{0}$), then $\dot{\Gamma}(x)=0$. On the other hand, if $x \notin R P\left(V_{F}\right)$, then $\tau(\hat{F}(x))^{\prime} \mathbf{1}>0$ and $F(x)^{\prime} \dot{x}>0$ (by condition (PC)), implying that $\dot{\Gamma}(x)<0$. Since $N E(F)=R P\left(V_{F}\right)$, the claim is proved. That $N E(F)$ is globally attracting then follows from Theorem 7.B.4.

If F admits a unique Nash equilibrium x^{*}, then the foregoing argument implies that x^{*} is the unique minimizer of Γ : since the value of Γ is nonincreasing over time, a solution starting from a state x with $\Gamma(x)<\Gamma\left(x^{*}\right)$ could not converge to x^{*}, contradicting that x^{*} is globally attracting. Thus, after normalizing by an additive constant, we find that Γ is nonnegative with $\Gamma^{-1}(0)=\left\{x^{*}\right\}$, so the global asymptotic stability of x^{*} follows from Corollary 7.B.7.

If instead τ satisfies separability (7.12), we can define the revision potential γ as in equation (7.13). It then follows from Exercise 5.5.7 that Γ is nonnegative, with $\Gamma(x)=0$ if and only if $\hat{F}(x) \in \operatorname{bd}\left(\mathbf{R}_{*}^{n}\right)$. Thus, Lemma 5.5.4 implies that $\Gamma(x)=0$ if and only if $x \in N E(F)$, and so the global asymptotic stability of $N E(F)$ again follows from Corollary 7.B.7.

Next we consider the best response dynamic, which we here express by applying the maximizer correspondence

$$
M^{p}\left(\hat{\pi}^{p}\right)=\underset{y^{p} \in \Delta^{p}}{\operatorname{argmax}}\left(y^{p}\right)^{\prime} \hat{\pi}^{p}
$$

to the vector of excess payoffs, yielding the exact target dynamic
(BR) $\quad \dot{x}^{p} \in m^{p} M^{p}\left(\hat{F}^{p}(x)\right)-x^{p}$.

Following the previous logic, we can assess the possibilities for convergence in stable games by checking monotonicity and integrability. Monotonicity was established in Theorem 6.1.8, which showed that (BR) satisfies an analogue of positive correlation (PC) appropriate for differential inclusions. For integrability, one can argue that the protocol
M^{p}, despite being multivalued, is integrable in a suitably defined sense, with its "potential function" being given by the maximum function

$$
\mu^{p}\left(\pi^{p}\right)=\max _{y^{p} \in \Delta^{p}}\left(y^{p}\right)^{\prime} \pi^{p}=\max _{i \in S S^{p}} \pi_{i}^{p} .
$$

Note that if the payoff vector π^{p}, and hence the excess payoff vector $\hat{\pi}^{p}$, have a unique maximizing component $i \in S^{p}$, then the gradient of μ^{p} at $\hat{\pi}^{p}$ is the standard basis vector e_{i}^{p}. But this vector corresponds to the unique mixed best response to $\hat{\pi}^{p}$, and so

$$
\nabla \mu^{p}\left(\hat{\pi}^{p}\right)=e_{i}^{p}=M^{p}\left(\hat{\pi}^{p}\right) .
$$

One can account for multiple optimal components using a broader notion of differentiation: for all $\hat{\pi}^{p} \in \mathbf{R}^{n}, M^{p}\left(\hat{\pi}^{p}\right)$ is the subdifferential of the convex function μ^{p} at $\hat{\pi}^{p}$ (see the Notes).

Having verified monotonicity and integrability, we again construct our candidate Lyapunov function by plugging the excess payoff vectors into the revision potentials μ^{p}. The resulting function G is very simple: it measures the difference between the payoffs agents could obtain by choosing optimal strategies and their actual aggregate payoffs.

Theorem 7.2.9. Let F be a C^{1} stable game, and let $\dot{x} \in V_{F}(x)$ be the best response dynamic for F. Define the Lipschitz continuous function $G: X \rightarrow \mathbf{R}_{+}$by

$$
G(x)=\max _{y \in X}(y-x)^{\prime} F(x)=\max _{i \in S} \hat{F}_{i}(x) .
$$

Then $G^{-1}(0)=N E(F)$. Moreover, if $\left\{x_{t}\right\}_{t \geq 0}$ is a solution to V_{F}, then for almost all $t \geq 0$ we have that $\dot{G}\left(x_{t}\right) \leq-G\left(x_{t}\right)$, and so $N E(F)$ is globally asymptotically stable under V_{F}.

Proof. $(p=1)$ That $G^{-1}(0)=N E(F)$ follows from Lemma 5.5.4. To prove the second claim, let $\left\{x_{t}\right\}_{t \geq 0}$ be a solution to V_{F}, and let $S^{*}(t) \subseteq S$ be the set of pure best responses to state x_{t}. Since $\left\{x_{t}\right\}_{t \geq 0}$ is Lipschitz continuous, the map $t \mapsto \hat{F}_{i}\left(x_{t}\right)$ is also Lipschitz continuous for each strategy $i \in S$. Thus, since $G(x)=\max _{y \in X}(y-x)^{\prime} F(x)=\max _{i \in S} \hat{F}_{i}(x)$, it follows from Danskin's Envelope Theorem (see the Notes) that the map $t \mapsto G\left(x_{t}\right)$ is Lipschitz continuous, and that at almost all $t \in[0, \infty)$,

$$
\begin{equation*}
\dot{G}\left(x_{t}\right) \equiv \frac{d}{d t} \max _{i \in S} \hat{F}_{i}\left(x_{t}\right)=\frac{d}{d t} \hat{F}_{i^{*}}\left(x_{t}\right) \quad \text { for all } i^{*} \in S^{*}(t) \tag{7.22}
\end{equation*}
$$

Applying equation (7.21), we find that for t satisfying equation (7.22) and at which \dot{x}_{t}
exists, we have that

$$
\begin{aligned}
\dot{G}\left(x_{t}\right) & =\frac{d}{d t} \hat{F}_{i^{*}}\left(x_{t}\right) & & \text { for all } i^{*} \in S^{*}(t) \\
& =\left(e_{i^{*}}^{\prime} D F\left(x_{t}\right)-x_{t}^{\prime} D F\left(x_{t}\right)-F\left(x_{t}\right)^{\prime}\right) \dot{x}_{t} & & \text { for all } i^{*} \in S^{*}(t) \\
& =\left(y^{*}-x_{t}\right)^{\prime} D F\left(x_{t}\right) \dot{x}_{t}-F\left(x_{t}\right)^{\prime} \dot{x}_{t} & & \text { for all } y^{*} \in \operatorname{argmax}_{y \in \Delta} y^{\prime} \hat{F}\left(x_{t}\right) \\
& =\dot{x}_{t}^{\prime} D F\left(x_{t}\right) \dot{x}_{t}-F\left(x_{t}\right)^{\prime} \dot{x}_{t} & & \\
& \leq-F\left(x_{t}\right)^{\prime} \dot{x}_{t} & & \\
& =-\max _{y \in X} F\left(x_{t}\right)^{\prime}\left(y-x_{t}\right) & & \\
& =-G\left(x_{t}\right) & &
\end{aligned}
$$

where the inequality follows from the fact that F is a stable game. (Note that the the equality of the third to last and last expressions is also implied by Theorem 6.1.8.) The global asymptotic stability of $N E(F)$ then follows from Theorems 7.B. 2 and 7.B.6.

Finally, we consider convergence under perturbed best response dynamics. These are exact target dynamics of the form

$$
\dot{x}^{p}=m^{p} \tilde{M}^{p}\left(\hat{F}^{p}(x)\right)-x^{p} ;
$$

here, the target protocol is the perturbed maximizer function

$$
\tilde{M}^{p}\left(\hat{\pi}^{p}\right)=\underset{y^{p} \in \operatorname{int}\left(\Delta^{p}\right)}{\operatorname{argmax}}\left(y^{p}\right)^{\prime} \hat{\pi}^{p}-v^{p}\left(y^{p}\right)
$$

where $v^{p}: \operatorname{int}\left(\Delta^{p}\right) \rightarrow \mathbf{R}$ is an admissible deterministic perturbation (see Section 6.2.2).
Once again, we verify the two conditions that underlie convergence. Theorem 6.2.13 showed that all perturbed best response dynamics satisfy virtual positive correlation (6.17), establishing the required monotonicity. As for integrability, Observation 6.C.3 showed that the protocol \tilde{M}^{p} is integrable; its revision potential,

$$
\begin{equation*}
\tilde{\mu}^{p}\left(\pi^{p}\right)=\max _{y^{p} \in \operatorname{int}\left(\Delta^{p}\right)}\left(y^{p}\right)^{\prime} \pi^{p}-v^{p}\left(y^{p}\right) \tag{7.23}
\end{equation*}
$$

is the perturbed maximum function induced by v^{p}. Now, mimicking Theorem 7.2.8, we construct our Lyapunov function by composing the revision potentials $\tilde{\mu}^{p}$ with the excess payoff functions \hat{F}^{p}.
Theorem 7.2.10. Let F be a C^{1} stable game, and let $\dot{x}=V_{F, v}(x)$ be the perturbed best response dynamic for F generated by the admissible deterministic perturbations v. Define the function
$\tilde{G}: \operatorname{int}(X) \rightarrow \mathbf{R}_{+} b y$

$$
\tilde{G}(x)=\sum_{p \in \mathcal{P}} m^{p}\left(\tilde{\mu}^{p}\left(\hat{F}^{p}(x)\right)+v^{p}\left(\frac{1}{m^{p}} x^{p}\right)\right),
$$

Then $G^{-1}(0)=P E(F, v)$, and this set is a singleton. Moreover, \tilde{G} is a strict Lyapunov function for $V_{F, v}$ and so $\operatorname{PE}(F, v)$ is globally asymptotically stable under $V_{F, v}$.

Proof. $(p=1)$ As in Section 6.2, let $\tilde{F}(x)=F(x)-\nabla v(x)$ be the virtual payoff function generated by (F, v). Then

$$
x \in P E(F, v) \Leftrightarrow \Phi \tilde{F}(x)=0 \Leftrightarrow x=\underset{y \in \operatorname{int}(\Delta)}{\operatorname{argmax}}\left(y^{\prime} F(x)-v(y)\right) \Leftrightarrow \tilde{G}(x)=0 .
$$

To prove that \tilde{G} is a strict Lyapunov function, recall from Observation 6.C. 3 that the perturbed maximum function $\tilde{\mu}$ defined in equation (7.23) is a potential function for the perturbed maximizer function \tilde{M} : that is, $\nabla \tilde{\mu} \equiv \tilde{M}$. Therefore, since F is stable, virtual positive correlation (6.17) implies that

$$
\begin{aligned}
\dot{\tilde{G}}(x) & =\frac{d}{d t}(\tilde{\mu}(\hat{F}(x))+v(x)) \\
& =\frac{d}{d t}\left(\tilde{\mu}(F(x))-\left(x^{\prime} F(x)-v(x)\right)\right) \\
& =\tilde{M}(F(x))^{\prime} D F(x) \dot{x}-\left(x^{\prime} D F(x) \dot{x}+\dot{x}^{\prime} F(x)-\dot{x}^{\prime} \nabla v(x)\right) \\
& =(\tilde{M}(F(x))-x)^{\prime} D F(x) \dot{x}-\dot{x}^{\prime}(F(x)-\nabla v(x)) \\
& =\dot{x}^{\prime} D F(x) \dot{x}-\dot{x}^{\prime} \tilde{F}(x) \\
& \leq 0,
\end{aligned}
$$

with equality if and only if x is a rest point. But $R P\left(V_{F, v}\right)=P E(F, v)$ by definition, so Corollary 7.B.7 implies that $P E(F, v)$ is globally asymptotically stable.

Finally, we prove that $P E(F, v)$ is a singleton. Let

$$
\phi_{x, h}(t)=h^{\prime} \tilde{F}(x+t h)
$$

for all $x \in X, h \in T X-\{0\}$, and $t \in \mathbf{R}$ such that $x+$ th $\in \operatorname{int}(X)$. Since F is stable and $D^{2} v(x+t h)$ is positive definite with respect to $T X \times T X$, we have that

$$
\begin{equation*}
\phi_{x, h}^{\prime}(t)=h^{\prime} D \tilde{F}(x+t h) h=h^{\prime} D F(x+t h) h-h^{\prime} D^{2} v((x+t h)) h<0, \tag{7.24}
\end{equation*}
$$

and so $\phi_{x, h}(t)$ is decreasing in t. Moreover,

$$
\begin{equation*}
x \in P E(F, v) \Leftrightarrow \tilde{F}(x) \text { is a constant vector } \Leftrightarrow \phi_{x, h}(0)=0 \text { for all } h \in T X-\{0\} \tag{7.25}
\end{equation*}
$$

Now let $x \in P E(F, v)$ and $y \in X-\{x\}$. Then $y=x+t_{y} h_{y}$ for some $t_{y}>0$ and $h_{y} \in T X-\{\mathbf{0}\}$. Statements (7.24) and (7.25) imply that

$$
\phi_{y, h_{y}}(0)=h_{y}^{\prime} \tilde{F}(y)=h_{y}^{\prime} \tilde{F}\left(x+t_{y} h_{y}\right)=\phi_{x, h_{y}}\left(t_{y}\right)<\phi_{x, h_{y}}(0)=0 .
$$

Therefore, statement (7.25) implies that $y \notin P E(F, v)$, and hence that $P E(F, v)=\{x\}$.

7.2.3 Impartial Pairwise Comparison Dynamics

In Section 5.6, we defined pairwise comparison dynamics by considering Lipschitz continuous revision protocols ρ^{p} that only condition on payoffs and that are sign preserving:

$$
\operatorname{sgn}\left(\rho_{i j}^{p}\left(\pi^{p}\right)\right)=\operatorname{sgn}\left(\left[\pi_{j}^{p}-\pi_{i}^{p}\right]_{+}\right) \quad \text { for all } i, j \in S^{p} \text { and } p \in \mathscr{P} .
$$

To obtain a general convergence result for stable games, we require an additional condition called impartiality:

$$
\begin{equation*}
\rho_{i j}^{p}\left(\pi^{p}\right)=\phi_{j}^{p}\left(\pi_{j}^{p}-\pi_{i}^{p}\right) \quad \text { for some functions } \phi_{j}^{p}: \mathbf{R} \rightarrow \mathbf{R}_{+} . \tag{7.26}
\end{equation*}
$$

Combining this restriction with mean dynamic equation (M), we see that impartial pairwise comparison dynamics take the form

$$
\dot{x}_{i}^{p}=\sum_{j \in S^{p}} x_{j}^{p} \phi_{i}^{p}\left(F_{i}^{p}(x)-F_{j}^{p}(x)\right)-x_{i}^{p} \sum_{j \in S^{p}} \phi_{j}^{p}\left(F_{j}^{p}(x)-F_{i}^{p}(x)\right) .
$$

Under impartiality (7.26), the function of the payoff difference $\pi_{j}^{p}-\pi_{i}^{p}$ that describes the conditional switch rate from i to j does not depend on an agent's current strategy i. This restriction introduces at least a superficial connection with the target dynamics studied in Section 7.2.2, as both restrict the dependence of agents' decisions on their current choices of strategy.

Theorem 7.2.11 shows that together, sign preservation and impartiality ensure global convergence to Nash equilibrium in stable games.

Theorem 7.2.11. Let F be a C^{1} stable game, and let $\dot{x}=V_{F}(x)$ be an impartial pairwise comparison dynamic for F. Define the Lipschitz continuous function $\Psi: X \rightarrow \mathbf{R}_{+}$by

$$
\Psi(x)=\sum_{p \in \mathcal{P}} \sum_{i \in S^{p}} \sum_{j \in S^{p}} x_{i}^{p} \psi_{j}^{p}\left(F_{j}^{p}(x)-F_{i}^{p}(x)\right), \text { where } \psi_{k}^{p}(d)=\int_{0}^{d} \phi_{k}^{p}(s) \mathrm{d} s
$$

is the definite integral of ϕ_{k}^{p}. Then $\Psi^{-1}(0)=N E(F)$. Moreover, $\dot{\Psi}(x) \leq 0$ for all $x \in X$, with equality if and only if $x \in N E(F)$, and so $N E(F)$ is globally asymptotically stable.

To understand the role played by impartiality (7.26), recall the general formula for the mean dynamic:

$$
\begin{equation*}
\dot{x}_{i}^{p}=\sum_{j \in S^{p}} x_{j}^{p} \rho_{j i}^{p}\left(F^{p}(x), x^{p}\right)-x_{i}^{p} \sum_{j \in S^{p}} \rho_{i j}^{p}\left(F^{p}(x), x^{p}\right) . \tag{M}
\end{equation*}
$$

According to the second term of this expression, the rate of outflow from strategy i is $x_{i}^{p} \sum_{k \in S^{p}} \rho_{i k^{\prime}}^{p}$ thus, the percentage rate of outflow from $i, \sum_{k \in S^{p}} \rho_{i k^{\prime}}^{p}$, varies with i. It follows that strategies with high payoffs can nevertheless have high percentage outflow rates: even if $\pi_{i}^{p}>\pi_{j}^{p}$, one can still have $\rho_{i k}^{p}>\rho_{j k}^{p}$ for $k \neq i, j$. Having good strategies lose players more quickly than bad strategies is an obvious impediment to convergence to Nash equilibrium.

Impartiality (7.26) places controls on these percentage outflow rates. If the conditional switch rates ϕ_{j}^{p} are monotone in payoffs, then condition (7.26) ensures that better strategies have lower percentage outflow rates. If the conditional switch rates are not monotone, but merely sign-preserving, condition (7.26) still implies that the integrated conditional switch rates ψ_{k}^{p} are ordered by payoffs. According to the analysis below, this control is enough to ensure convergence of pairwise comparison dynamics to Nash equilibrium in stable games.

Proof. $(p=1)$ The first claim is proved as follows:

$$
\begin{aligned}
\Psi(x)=0 & \Leftrightarrow\left[x_{i}=0 \text { or } \psi_{j}\left(F_{j}(x)-F_{i}(x)\right)=0\right] \text { for all } i, j \in S \\
& \Leftrightarrow\left[x_{i}=0 \text { or } F_{i}(x) \geq F_{j}(x)\right] \text { for all } i, j \in S \\
& \Leftrightarrow\left[x_{i}=0 \text { or } F_{i}(x) \geq \max _{j \in S} F_{j}(x)\right] \text { for all } i, j \in S \\
& \Leftrightarrow x \in N E(F) .
\end{aligned}
$$

To begin the proof of the second claim, we compute the partial derivatives of Ψ :

$$
\frac{\partial \Psi}{\partial x_{l}}(x)=\sum_{i \in S} \sum_{j \in S} x_{i} \rho_{i j}\left(\frac{\partial F_{j}}{\partial x_{l}}(x)-\frac{\partial F_{i}}{\partial x_{l}}(x)\right)+\sum_{k \in S} \psi_{k}\left(F_{k}(x)-F_{l}(x)\right)
$$

$$
\begin{aligned}
& =\sum_{i \in S} \sum_{j \in S}\left(x_{i} \rho_{i j}-x_{j} \rho_{j i}\right) \frac{\partial F_{j}}{\partial x_{l}}(x)+\sum_{k \in S} \psi_{k}\left(F_{k}(x)-F_{l}(x)\right) \\
& =\sum_{j \in S} \dot{x}_{j} \frac{\partial F_{j}}{\partial x_{l}}(x)+\sum_{k \in S} \psi_{k}\left(F_{k}(x)-F_{l}(x)\right)
\end{aligned}
$$

Using this expression, we find the rate of change of Ψ over time along solutions to (M) :

$$
\begin{aligned}
\dot{\Psi}(x) & =\nabla \Psi(x)^{\prime} \dot{x} \\
& =\dot{x}^{\prime} D F(x) \dot{x}+\sum_{i \in S} \dot{x}_{i} \sum_{k \in S} \psi_{k}\left(F_{k}-F_{i}\right) \\
& =\dot{x}^{\prime} D F(x) \dot{x}+\sum_{i \in S} \sum_{j \in S}\left(x_{j} \rho_{j i}-x_{i} \rho_{i j}\right) \sum_{k \in S} \psi_{k}\left(F_{k}-F_{i}\right) \\
& =\dot{x}^{\prime} D F(x) \dot{x}+\sum_{i \in S} \sum_{j \in S}\left(x_{j} \rho_{j i} \sum_{k \in S}\left(\psi_{k}\left(F_{k}-F_{i}\right)-\psi_{k}\left(F_{k}-F_{j}\right)\right)\right) .
\end{aligned}
$$

To evaluate the summation, first observe that if $F_{i}(x)>F_{j}(x)$, then $\rho_{j i}(F(x)) \equiv \phi_{i}\left(F_{i}(x)-\right.$ $\left.F_{j}(x)\right)>0$ and $F_{k}(x)-F_{i}(x)<F_{k}(x)-F_{j}(x)$; since each ψ_{k} is nondecreasing, it follows that $\psi_{k}\left(F_{k}-F_{i}\right)-\psi_{k}\left(F_{k}-F_{j}\right) \leq 0$. In fact, when $k=i$, the comparison between payoff differences becomes $0<F_{i}(x)-F_{j}(x)$; since each ψ_{i} is increasing on $[0, \infty)$, it follows that $\psi_{i}(0)-\psi_{i}\left(F_{i}-F_{j}\right)<0$. We therefore conclude that if $F_{i}(x)>F_{j}(x)$, then $\rho_{j i}(F(x))>0$ and $\sum_{k \in S}\left(\psi_{k}\left(F_{k}-F_{i}\right)-\psi_{k}\left(F_{k}-F_{j}\right)\right)<0$. On the other hand, if $F_{j}(x) \geq F_{i}(x)$, we have immediately that $\rho_{j i}(F(x))=0$. And of course, $\dot{x}^{\prime} D F(x) \dot{x} \leq 0$ since F is stable.

Marshaling these facts, we find that $\dot{\Psi}(x) \leq 0$, and that

$$
\begin{equation*}
\dot{\Psi}(x)=0 \text { if and only if } x_{j} \rho_{j i}(F(x))=0 \text { for all } i, j \in S . \tag{7.27}
\end{equation*}
$$

Lemma 5.6 .5 shows that the second condition in (7.27) defines the set $R P\left(V_{F}\right)$, which is equal to $N E(F)$ by Theorem 5.6.3; this proves the second claim. Finally, the global asymptotic stability of $N E(F)$ follows from Corollary 7.B.7.

Exercise 7.2.12. Construct a pairwise comparison dynamic that generates cycling in the good RPS game from Example 7.2.6.

7.2.4 Summary

In Table 7.1, we summarize the results in this section by presenting the Lyapunov functions for single-population stable games for the six fundamental evolutionary dynamics.

Dynamic	Formula	Lyapunov function
projection	$\dot{x}=\prod_{T X(x)}(F(x))$	$E_{x^{*}}(x)=\left\|x-x^{*}\right\|^{2}$
replicator	$\dot{x}_{i}=x_{i} \hat{F}_{i}(x)$	$H_{x^{*}}(x)=\sum_{i \in S\left(x^{*}\right)} x_{i}^{*} \log \frac{x_{i}^{*}}{x_{i}}$
best response	$\dot{x} \in M(\hat{F}(x))-x$	$G(x)=\mu(\hat{F}(x))$
logit	$\dot{x}=\tilde{M}(\hat{F}(x))-x$	$\tilde{G}(x)=\tilde{\mu}(\hat{F}(x))+v(x)$
BNN	$\dot{x}_{i}=\left[\hat{F}_{i}(x)\right]_{+}-x_{i} \sum_{j \in S}\left[\hat{F}_{j}(x)\right]_{+}$	$\Gamma(x)=\frac{1}{2} \sum_{i \in S}\left[\hat{F}_{i}(x)\right]_{+}^{2}$
Smith	$\dot{x}_{i}=\sum_{j \in S} x_{j}\left[F_{i}(x)-F_{j}(x)\right]_{+}-x_{i} \sum_{j \in S}\left[F_{j}(x)-F_{i}(x)\right]_{+}$	$\Psi(x)=\frac{1}{2} \sum_{i \in S} \sum_{j \in S} x_{i}\left[F_{j}(x)-F_{i}(x)\right]_{+}^{2}$

Table 7.1: Lyapunov functions for the six fundamental dynamics in stable games.

The Lyapunov functions divide into three classes: those based on an explicit notion of "distance" from equilibrium, those based on revision potentials for target protocols, and the Lyapunov function for the Smith dynamic, which stands alone.

Example 7.2.13. Matching Pennies. In Figure 7.2.3, we present phase diagrams of the six fundamental dynamics in two-population Matching Pennies:

$$
\left(\begin{array}{l}
F_{H}^{1}(x) \\
F_{T}^{1}(x) \\
F_{h}^{2}(x) \\
F_{t}^{2}(x)
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1 \\
-1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{H}^{1} \\
x_{T}^{1} \\
x_{h}^{2} \\
x_{t}^{2}
\end{array}\right)=\left(\begin{array}{l}
x_{h}^{2}-x_{t}^{2} \\
x_{t}^{2}-x_{h}^{2} \\
x_{T}^{1}-x_{H}^{1} \\
x_{H}^{1}-x_{T}^{1}
\end{array}\right) .
$$

Each phase diagram is drawn atop a contour plot of the relevant Lyapunov function. Since Matching Pennies is a zero-sum game, F is null stable; thus, the Lyapunov functions for the replicator and projection dynamics define constants of motion for these dynamics, with solution trajectories cycling along level curves. In the remaining cases, all solutions converge to the unique Nash equilibrium, $x^{*}=\left(\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}\right)\right)$. §

7.3 Supermodular Games

In a supermodular game, higher choices by one's opponents make one's own higher strategies look relatively more desirable. In Section 3.4, we used this property to show that the best response correspondences of supermodular games are monotone in the stochastic

Figure 7.2.3: Six basic dynamics in Matching Pennies. The contour plots are the corresponding Lyapunov functions.
dominance order; this implies in turn that these games admit minimal and maximal Nash equilibria.

Given this monotone structure on best response correspondences, it is natural to look for convergence results for supermodular games under the best response dynamic (BR). In Section 7.3.1, we use elementary methods to establish a global convergence result for (BR) under some strong additional assumptions on the underlying game: in particular, it must be derived from a two-player normal form game that satisfies both supermodularity and "diminishing returns" conditions.

To prove more general convergence results, we appeal to the theory of cooperative differential equations. These are smooth differential equations under which increasing the value any component of the state variable increases the growth rates of all other components. Under some mild regularity conditions, almost all solutions of these equations converge to rest points.

Because of the smoothness requirement, these techniques cannot be applied to the best response dynamic itself. Happily, the needed monotonicity carries over from exact best responses to perturbed best responses, although only those that can be generated from stochastic perturbations of payoffs. In Section 7.3.2, we use this idea to prove almost global convergence of stochastically perturbed best response dynamics in supermodular games.

7.3.1 The Best Response Dynamic in Two-Player Normal Form Games

Let $U=\left(U^{1}, U^{2}\right)$ be a two-player normal form game, and let F be the population game obtained when members of two populations are randomly matched to play U (cf Example 2.2.2). Then the best response dynamic (BR) for F takes the form

$$
\begin{align*}
& \dot{x}^{1} \in B^{1}(x)-x^{1}=M^{1}\left(F^{1}(x)\right)-x^{1}=M^{1}\left(U^{1} x^{2}\right)-x^{1}, \tag{BR}\\
& \dot{x}^{2} \in B^{2}(x)-x^{2}=M^{2}\left(F^{2}(x)\right)-x^{2}=M^{2}\left(\left(U^{2}\right)^{\prime} x^{1}\right)-x^{2} .
\end{align*}
$$

Our convergence result for supermodular games concerns simple solutions of this dynamic. A solution $\left\{x_{t}\right\}_{t \geq 0}$ of (BR) is simple if the set of times at which it is not differentiable has no accumulation point, and if at other times, the target states $B^{p}\left(x_{t}\right)$ are pure (i.e., vertices of X^{p}).

Exercise 7.3.1. (i) Provide an example of a 2×2 game with a Nash equilibrium x^{*} such that no solution to (BR) starting from x^{*} is simple.
(ii) Show that there exists a simple solution to (BR) from every initial condition in game $U=\left(U^{1}, U^{2}\right)$ if for all nonempty sets $\hat{S}^{1} \subseteq S^{1}$ and $\hat{S}^{2} \subseteq S^{2}$, the game in which players
are restricted to strategies in \hat{S}^{1} and \hat{S}^{2} admits a pure Nash equilibrium. (Theorem 3.4.12 implies that U has this property if it is supermodular.)

If $\left\{x_{t}\right\}_{t \geq 0}$ is a simple solution trajectory of (BR), we can list the sequence of times $\left\{t_{k}\right\}$ at which the solution is not differentiable (i.e., at which the target state for at least one population changes). During each open interval of times $I_{k}=\left(t_{k-1}, t_{k}\right)$, the pure strategies $i_{k} \in S^{1}$ and $j_{k} \in S^{2}$ selected by revising agents are fixed. We call i_{k} and j_{k} the interval k selections for populations 1 and 2 .

The following lemma links shows that i_{k+1} must perform at least as well as i_{k} against both j_{k} and j_{k+1}, and that the analogous comparisons between the payoffs of j_{k} and j_{k+1} also hold.

Lemma 7.3.2. Suppose that revising agents select strategies $i=i_{k}$ and $j=j_{k}$ during interval I_{k}, and strategies $i^{\prime}=i_{k+1}$ and $j^{\prime}=j_{k+1}$ during interval I_{k+1}. Then
(i) $U_{i^{\prime} j}^{1} \geq U_{i j}^{1}$ and $U_{i j^{\prime}}^{2} \geq U_{i j}^{2}$, and
(ii) $U_{i^{\prime} j^{\prime}}^{1} \geq U_{i j^{\prime}}^{1}$ and $U_{i^{\prime} j^{\prime}}^{2} \geq U_{i^{\prime} j}^{2}$.

Exercise 7.3.3. Prove Lemma 7.3.2. (Hint: Start by verifying that $x_{t_{k}}^{2}$ is a convex combination of $x_{t_{k-1}}^{2}$ and the vertex v_{j}^{2}, and that $x_{t_{k+1}}^{2}$ is a convex combination of $x_{t_{k}}^{2}$ and $v_{j^{\prime}}^{2}$.)

Now, recall from Exercise 3.4.4 that $U=\left(U^{1}, U^{2}\right)$ is supermodular if

$$
\begin{equation*}
U_{i+1, j+1}^{1}-U_{i, j+1}^{1} \geq U_{i+1, j}^{1}-U_{i, j}^{1} \text { and } U_{i+1, j+1}^{2}-U_{i+1, j}^{2} \geq U_{i, j+1}^{2}-U_{i, j}^{2} \text { for all } i<n^{1}, j<n^{2} \tag{7.28}
\end{equation*}
$$

(When (7.28) holds, the population game F induced by U is supermodular as well.) If the inequalities in (7.28) always hold strictly, we say that U is strictly supermodular.

Our convergence result requires two additional conditions on U. We say that U exhibits strictly diminishing returns if for each fixed strategy of the opponent, the benefit a player obtains by increasing his strategy is decreasing-in other words, if payoffs are "concave in own strategy":

$$
\begin{aligned}
& U_{i+2, j}^{1}-U_{i+1, j}^{1}<U_{i+1, j}^{1}-U_{i, j}^{1} \text { for all } i \leq n^{1}-2 \text { and } j \in S^{2}, \text { and } \\
& U_{i, j+2}^{2}-U_{i, j+1}^{2}<U_{i, j+1}^{2}-U_{i, j}^{2} \text { for all } i \in S^{1} \text { and } j \leq n^{2}-2 .
\end{aligned}
$$

Finally, we say that U is nondegenerate if for each fixed pure strategy of the opponent, a player is not indifferent among any of his pure strategies.

Theorem 7.3.4. Suppose that F is generated by random matching in a two-player normal form game U that is strictly supermodular, exhibits strictly diminishing returns, and is nondegenerate.

Then every simple solution trajectory of the best response dynamic (BR) converges to a pure Nash equilibrium.

Proof. To begin, suppose that the sequence of times $\left\{t_{k}\right\}$ is finite, with final element t_{K}. Let i^{*} and j^{*} be the selections made by revising agents after time t_{K}. Then the pure state $x^{*}=\left(v_{i^{*}}^{1}, v_{j^{*}}^{2}\right)$ is in $B\left(x_{t}\right)$ for all $t \geq t_{K}$, and $\left\{x_{t}\right\}$ converges to x^{*}. Since payoffs are continuous, it follows that $x^{*} \in B\left(x^{*}\right)$, and so that x^{*} is a Nash equilibrium. To complete the proof of the theorem, we establish by contradiction that the sequence of times $\left\{t_{k}\right\}$ cannot be infinite.

To begin, note that at time t_{k}, agents in each population p are indifferent between their interval k and interval $k+1$ selections. Moreover, since U exhibits strictly decreasing returns, it is easy to verify that whenever such an indifference occurs, it must be between two consecutive strategies in S^{p}. Putting these observations together, we find that each transition in the sequence $\left\{\left(i_{k}, j_{k}\right)\right\}$ is of length 1 , in the sense that

$$
\left|i_{k+1}-i_{k}\right| \leq 1 \text { and }\left|j_{k+1}-j_{k}\right| \leq 1 \text { for all } k .
$$

Next, we say that there is an improvement step from $(i, j) \in S$ to $\left(i^{\prime}, j^{\prime}\right) \in S$, denoted $(i, j) \nearrow\left(i^{\prime}, j^{\prime}\right)$, if either (i) $U_{i^{\prime} j}^{1}>U_{i j}^{1}$ and $j^{\prime}=j$, or (ii) $i^{\prime}=i$ and $U_{i j^{\prime}}^{2}>U_{i j^{\prime}}^{2}$. Lemma 7.3.2(i) and the fact that U is nondegenerate imply that $\left(i_{k}, j_{k}\right) \nearrow\left(i_{k+1}, j_{k+1}\right)$ if either $i_{k}=i_{k+1}$ or $j_{k}=j_{k+1}$. Moreover, applying both parts of the lemma, we find that if $i_{k} \neq i_{k+1}$ and $j_{k} \neq j_{k+1}$, we have that $\left(i_{k}, j_{k}\right) \nearrow\left(i_{k+1}, j_{k}\right) \nearrow\left(i_{k+1}, j_{k+1}\right)$, and also that $\left(i_{k}, j_{k}\right) \nearrow\left(i_{k}, j_{k+1}\right) \nearrow\left(i_{k+1}, j_{k+1}\right)$.

Now suppose that the sequence $\left\{t_{k}\right\}$ is infinite. Then since S is finite, there must be a strategy profile that is the interval k selection for more than one k. In this case, the arguments in the previous two paragraphs imply that there is a length 1 improvement cycle: that is, a sequence of length 1 improvement steps beginning and ending with the same strategy profile.

Evidently, this cycle must contain an improvement step of the form $(\tilde{i}, \tilde{j}) \nearrow(\tilde{i}, \tilde{\jmath}+1)$ for some $(\tilde{i}, \tilde{j}) \in S$. Strict supermodularity of U then implies that

$$
\begin{equation*}
(i, \tilde{\jmath}) \nearrow(i, \tilde{\jmath}+1) \text { for all } i \geq \tilde{\imath} . \tag{7.29}
\end{equation*}
$$

It follows that for the sequence of length 1 improvement steps to return to ($\tilde{\imath}, \tilde{\jmath})$, there must be an improvement step of the form $(\tilde{\imath}, \hat{\jmath}) \nearrow(\tilde{\imath}-1, \hat{\jmath})$ for some $\hat{\jmath}>\tilde{\jmath}$ (see Figure 7.3.1). This time, strict supermodularity of U implies that

$$
\begin{equation*}
(\tilde{\imath}, j) \nearrow(\tilde{\imath}-1, j) \text { for all } j \leq \hat{\jmath} . \tag{7.30}
\end{equation*}
$$

From (7.29) and (7.30), it follows that no cycle of length 1 improvement steps containing

Figure 7.3.1: The proof of Theorem 7.3.4.
$(\tilde{\imath}, \tilde{j}) \nearrow(\tilde{\imath}, \tilde{\jmath}+1)$ can reach any strategy profile (i, j) with $i \geq \tilde{\imath}$ and $j \leq \tilde{j}$. In particular, the cycle cannot return to (\tilde{i}, \tilde{j}), which is a contradiction. This completes the proof of the theorem.

7.3.2 Stochastically Perturbed Best Response Dynamics

While Theorem 7.3.4 was proved using elementary techniques, it was not as general as one might hope: it restricted attention to two-player normal form games, and required not only the assumption of supermodularity, but also that of decreasing returns. In order to obtain a more general convergence result, we turn from exact best response dynamics to perturbed best response dynamics. Doing so allows us to avail ourselves of a powerful set of techniques for smooth dynamics with a monotone structure: the theory of cooperative differential equations.

To begin, let us recall the transformations used to discuss the stochastic dominance order. In Section 3.4, we defined the matrices $\Sigma \in \mathbf{R}^{\left(n^{p}-1\right) \times n^{p}}, \tilde{\Sigma} \in \mathbf{R}^{n^{p} \times\left(n^{p}-1\right)}$, and $\Omega \in \mathbf{R}^{n^{p} \times n^{p}}$ by

$$
\Sigma=\left(\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1
\end{array}\right), \tilde{\Sigma}=\left(\begin{array}{cccc}
-1 & 0 & \cdots & 0 \\
1 & -1 & \ddots & \vdots \\
0 & 1 & \ddots & 0 \\
\vdots & \ddots & \ddots & -1 \\
0 & \ddots & 0 & 1
\end{array}\right), \text { and } \Omega=\left(\begin{array}{ccccc}
1 & 1 & \cdots & \cdots & 1 \\
0 & 0 & \cdots & \cdots & 0 \\
0 & 0 & \ddots & & \vdots \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & 0
\end{array}\right) .
$$

We saw that $y^{p} \in X^{p}$ stochastically dominates $x^{p} \in X^{p}$ if and only if $\Sigma y^{p} \geq \Sigma x^{p}$. We also
verified that
(7.31) $\quad \tilde{\Sigma} \Sigma=I-\Omega$.

Since Ω is the null operator on $T X^{p}$, equation (7.31) describes a sense in which the stochastic dominance operator Σ is "inverted" by the difference operator $\tilde{\Sigma}$.

Applying the change of coordinates Σ to the set X^{p} yields the set of transformed population states

$$
X^{p} \equiv \Sigma X^{p}=\left\{X^{p} \in \mathbf{R}^{n^{p}-1}: m^{p} \geq X_{1}^{p} \geq \cdots \geq X_{n^{p}-1}^{p} \geq 0\right\} .
$$

By postmultiplying both sides of (7.31) by x^{p} and letting $\underline{x}^{p}=\left(m^{p}, 0, \ldots, 0\right)$ denote the minimal state in X^{p}, we find that the inverse of the map $\Sigma: X^{p} \rightarrow X^{p}$ is described as follows:

$$
\begin{equation*}
x^{p}=\Sigma x^{p} \Leftrightarrow x^{p}=\tilde{\Sigma} x^{p}+\underline{x}^{p} . \tag{7.32}
\end{equation*}
$$

To work with full social states $x \in X$, we introduce the block diagonal matrices $\Sigma=$ $\operatorname{diag}(\Sigma, \ldots, \Sigma)$ and $\tilde{\Sigma}=\operatorname{diag}(\tilde{\Sigma}, \ldots, \tilde{\Sigma})$, and let $X \equiv \Sigma X=\prod_{p \in \mathcal{P}} X^{p}$. If we let $\underline{x}=\left(\underline{x}^{1}, \ldots, \underline{x}^{p}\right)$ be the minimal state in X, then the inverse of the map $\Sigma: X \rightarrow X$ is described by

$$
\begin{equation*}
x=\Sigma x \Leftrightarrow x=\tilde{\Sigma} \chi+\underline{x} . \tag{7.33}
\end{equation*}
$$

To simplify the discussion to follow, let us assume for convenience that each population is of mass 1 . Then our stochastically perturbed best response dynamics take the form

$$
\begin{equation*}
\dot{x}^{p}=\tilde{M}^{p}\left(F^{p}(x)\right)-x^{p} \tag{7.34}
\end{equation*}
$$

where

$$
\tilde{M}_{i}^{p}\left(\pi^{p}\right)=P\left(i=\operatorname{argmax}_{j \in S^{p}} \pi_{j}^{p}+\varepsilon_{j}^{p}\right)
$$

for some admissible stochastic perturbations $\varepsilon=\left(\varepsilon^{1}, \ldots, \varepsilon^{p}\right)$. Rather than study this dynamic directly, we apply the change of variable (7.33) to obtain a new dynamic on the set X :

$$
\begin{equation*}
\dot{\chi}^{p}=\Sigma \tilde{M}^{p}\left(F^{p}(\tilde{\Sigma} \chi+\underline{x})\right)-\chi^{p} . \tag{7.35}
\end{equation*}
$$

Given the current state $\chi \in \mathcal{X}$, we use the inverse transformation $\chi \mapsto x \equiv \tilde{\Sigma} \chi+\underline{x}$
to obtain the input for the payoff function F^{p}, and we use the original transformation $\tilde{M}^{p}\left(F^{p}(x)\right) \mapsto \Sigma \tilde{M}^{p}\left(F^{p}(x)\right)$ to convert the perturbed best response into an element of X^{p}. The next observation verifies the relationship between solutions to the transformed dynamic (7.35) and solutions to the original dynamic (7.34).

Observation 7.3.5. (7.34) and (7.35) are affinely conjugate: $\left\{x_{t}\right\}=\left\{\tilde{\Sigma} \chi_{t}+\underline{x}\right\}$ solves (7.34) if and only if $\left\{\chi_{t}\right\}=\left\{\boldsymbol{\Sigma} x_{t}\right\}$ solves (7.35).

Our next task is to show that if F is a supermodular game, then (7.35) is a cooperative differential equation: writing this dynamic as $\dot{\chi}=\mathcal{V}(\chi)$, we want to show that

$$
\frac{\partial \mathcal{V}_{i}^{p}}{\partial \chi_{j}^{q}}(\chi) \geq 0 \text { for all } x \in X \text { whenever }(i, p) \neq(j, q)
$$

If this inequality is always satisfied strictly, we say that (7.35) is strongly cooperative. As we explain in Section 7.C, strongly cooperative differential equations converge to rest points from almost all initial conditions. Thus, if we can prove that equation (7.35) is strongly cooperative, we can conclude that almost all solutions of our original dynamic (7.34) converge to perturbed equilibria.

To prove that (7.35) is strongly cooperative, we marshal our facts about supermodular games and stochastically perturbed best responses. Recall from Chapter 3 that if the population game F is C^{1}, then F is a supermodular if and only if

$$
\tilde{\boldsymbol{\Sigma}}^{\prime} D F(x) \tilde{\boldsymbol{\Sigma}} \geq \mathbf{0} \text { for all } x \in X
$$

Our result requires an additional nondegeneracy condition: we say that F is irreducible if each column of $\tilde{\Sigma}^{\prime} D F(x) \tilde{\Sigma}$ contains a strictly positive element.

Next, we recall from Lemma 6.C. 1 the basic properties of $D \tilde{M}(\pi)$, the derivative matrix of the stochastically perturbed best response function \tilde{M}.

Lemma 7.3.6. Fix $\pi \in \mathbf{R}^{n}$, and suppose that the perturbed best response function \tilde{M} is derived from admissible stochastic payoff perturbations. Then the derivative matrix $D \tilde{M}(\pi)$ is symmetric, has negative off-diagonal elements, and satisfies $D \tilde{M}(\pi) \mathbf{1}=\mathbf{0}$.

Combining these facts yields the desired result:
Theorem 7.3.7. Let F be a C^{1} irreducible supermodular game, and let (7.34) be a stochastically perturbed best response dynamic for F. Then the transformed dynamic (7.35) is strongly cooperative.

Proof. $(p=1)$ Write the dynamic (7.35) as $\dot{\chi}=\mathcal{V}(\chi)$. Then

$$
\begin{equation*}
D \mathcal{V}(\chi)=D(\Sigma \tilde{M}(F(\tilde{\Sigma} \chi+\underline{x})))-I . \tag{7.36}
\end{equation*}
$$

Since all off-diagonal elements of I equal zero, it is enough to show that the first term on the right hand side of (7.36) has all positive components.

Let $x=\tilde{\Sigma} \chi+\underline{x}$ and $\pi=F(x)$. Using the facts that $\tilde{\Sigma} \Sigma=I-\Omega$ and $D \tilde{M}(\pi) \mathbf{1}=\mathbf{0}$, we express the first term of the right hand side of (7.36) as follows:

$$
\begin{aligned}
D(\Sigma \tilde{M}(F(\tilde{\Sigma} \chi+\underline{x}))) & =\Sigma D \tilde{M}(\pi) D F(x) \tilde{\Sigma} \\
& =\Sigma D \tilde{M}(\pi)\left(\Sigma^{\prime} \tilde{\Sigma}^{\prime}+\Omega^{\prime}\right) D F(x) \tilde{\Sigma} \\
& =\left(\Sigma D \tilde{M}(\pi) \Sigma^{\prime}\right)\left(\tilde{\Sigma}^{\prime} D F(x) \tilde{\Sigma}\right) .
\end{aligned}
$$

Lemma 7.3.6 and the fact that

$$
\left(\Sigma D \tilde{M}(\pi) \Sigma^{\prime}\right)_{i j}=\sum_{k>i} \sum_{l>j} D \tilde{M}(\pi)_{k l}
$$

imply that every component of $\Sigma D \tilde{M}(\pi) \Sigma^{\prime}$ is positive (see Exercise 7.3.8). Since F is supermodular and irreducible, $\tilde{\Sigma}^{\prime} D F(x) \tilde{\Sigma}$ is nonnegative, with each column containing a positive element. Thus, the product of these two matrices has all positive elements. This completes the proof of the theorem.

Exercise 7.3.8. (i) Prove that every component of $\Sigma D \tilde{M}(\pi) \Sigma^{\prime}$ is positive.
(ii) Explain why Theorem 7.3.7 need not hold when \tilde{M} is generated by deterministic perturbations.

Observation 7.3.5, Theorem 7.3.7, and Theorems 7.C.1, 7.C.2, and 7.C. 3 immediately imply the following "almost global" convergence result. In part (i) of the theorem, $\underline{x}=$ $\left(\underline{x}^{1}, \ldots, \underline{x}^{p}\right)$ is the minimal state in X introduced above; similarly, $\bar{x}^{p}=\left(0, \ldots, m^{p}\right)$ is the maximal state in X^{p}, and $\bar{x}=\left(\bar{x}^{1}, \ldots, \bar{x}^{p}\right)$ is the maximal state in X.

Theorem 7.3.9. Let F be a C^{1} irreducible supermodular game, and let $\dot{x}=V_{F, \varepsilon}(x)$ be a stochastically perturbed best response dynamic for F. Then
(i) States $\underline{x}^{*} \equiv \omega(\underline{x})$ and $\bar{x}^{*} \equiv \omega(\bar{x})$ exist and are the minimal and maximal elements of $P E(F, \varepsilon)$. Moreover, $\left[\underline{x}^{*}, \bar{x}^{*}\right]$ contains all ω-limit points of $V_{F, \varepsilon}$ and is globally asymptotically stable.
(ii) Solutions to $\dot{x}=V_{F, \varepsilon}(x)$ from an open, dense, full measure set of initial conditions in X converge to states in $\operatorname{PE}(F, \varepsilon)$.

Our final example shows that the conclusion of Theorem 7.3.9 cannot be extended from convergence from almost all initial conditions to convergence from all initial conditions.

Example 7.3.10. Let U be a normal form game with $p \geq 5$ players and two strategies per player. Each player p in U obtains a payoff of 1 if he chooses the same strategy as player $p+1$ (with the convention that $p+1=1$) and obtains a payoff of 0 otherwise. U has three Nash equilibria: two strict equilibria in which all players coordinate on the same strategy, and the mixed equilibrium $x^{*}=\left(\left(\frac{1}{2}, \frac{1}{2}\right), \ldots,\left(\frac{1}{2}, \frac{1}{2}\right)\right)$. If F is the p population game generated by random matching in U, it can be shown that F is supermodular and irreducible (see Exercise 7.3.11(i)).

We now introduce random perturbations $\varepsilon^{p}=\left(\varepsilon_{1}^{p}, \varepsilon_{2}^{p}\right)$ to each player's payoffs. These perturbations are such that the differences $\varepsilon_{2}^{p}-\varepsilon_{1}^{p}$ admit a common density g that is symmetric about 0 , is decreasing on \mathbf{R}_{+}, and satisfies $g(0)>\frac{1}{2}$. It can be shown that the resulting perturbed best response dynamic (7.34) possesses exactly three rest points: the mixed equilibrium x^{*}, and two stable symmetric rest points that approximate the two pure Nash equilibria (see Exercise 7.3.11(ii)).

One can show that the rest point x^{*} is unstable under (7.34). It then follows from Theorem 7.3.9 that the two stable rest points of (7.34) attract almost all initial conditions in X, and that the basins of attraction for these rest points are separated by a $p-1$ dimensional invariant manifold \mathscr{M} that contains x^{*}. Furthermore, one can show that when $p \geq 5$, the rest point x^{*} is unstable with respect to the manifold \mathscr{M}. Thus, solutions from all states in $\mathcal{M}-\left\{x^{*}\right\}$ fail to converge to a rest point. §

The details of these last arguments require techniques for determining the local stability of rest points. This is the topic of the next chapter.

Exercise 7.3.11. (i) Prove that the game F introduced in Example 7.3.10 is supermodular and irreducible.
(ii) Prove that under the assumption on payoff perturbations stated in the example, there are exactly three perturbed equilibria, all of which are symmetric.

7.4 Dominance Solvable Games

The elimination of strictly dominated strategies is the mildest requirement employed in standard game-theoretic analyses, and so it seems natural to expect evolutionary dynamics obey this dictum. In this section, we provide some positive results on the elimination of dominated strategies: under the best response dynamic, any strictly dominated strategy must vanish in the limit; the same is true under any imitative dynamic so long as we focus
on interior initial conditions. Arguing inductively, we show next that any strategy that does not survive iterated elimination of strictly dominated strategies vanishes as well. In particular, if a game is dominance solvable-that is, if removing iteratively dominated strategies leaves only one strategy for each population, then best response and imitative dynamics select this strategy.

These results may seem unsurprising. However, we argue in Chapter 9 that they are actually borderline cases: under "typical" evolutionary dynamics, strictly dominated strategies can survive in perpetuity.

7.4.1 Dominated and Iteratively Dominated Strategies

Let F be a population game. We say that strategy $i \in S^{p}$ is strictly dominated if there exists a strategy $j \in S^{p}$ such that $F_{j}(x)>F_{i}(x)$ for all $x \in X$: that is, if there is a strategy j that outperforms strategy i regardless of the population state. Similarly, if \hat{S}^{p} is a nonempty subset of S^{p} and $\hat{S}=\prod_{p \in \mathcal{P}} \hat{S}^{p}$, we say that $i \in S^{p}$ is strictly dominated relative to \hat{S}, denoted $i \in \mathcal{D}^{p}(\hat{S})$, if there exists a strategy $j \in \hat{S}^{p}$ such that $F_{j}(x)>F_{i}(x)$ for all $x \in X$ that satisfy $\operatorname{support}\left(x^{p}\right) \subseteq \hat{S}^{p}$ for all $p \in \mathcal{P}$.

We can use these definitions to introduce the notion of iterative dominance. Set $S_{0}=S$. Then $\mathcal{D}^{p}\left(S_{0}\right)$ is the set of strictly dominated strategies for population p, and so $S_{1}^{p}=S_{0}^{p}-\mathcal{D}^{p}\left(S_{0}\right)$ is the set of strategies that are not strictly dominated. Proceeding inductively, we define $\mathcal{D}^{p}\left(S_{k}\right)$ to be the set of strategies that are eliminated during the $(k+1)$ st round of removal of iteratively dominated strategies, and we let $S_{k+1}^{p}=S_{k}^{p}-\mathcal{D}^{p}\left(S_{k}\right)$ be the set of strategies that survive $k+1$ rounds of removal of such strategies.

Since the number of strategies is finite, this iterative procedure must converge, leaving us with nonempty sets $S_{*}^{1}, \ldots, S_{*}^{p}$. Strategies in these sets are said to survive iterative removal of strictly dominated strategies. If each of these sets is a singleton, then the game F is said to be dominance solvable. In this case, the pure social state at which each agent plays his population's sole surviving strategy is the game's unique Nash equilibrium; we call this state the dominance solution of F.

7.4.2 The Best Response Dynamic

Under the best response dynamic, revising agents always switch to optimal strategies. Since strictly dominated strategies are never optimal, such strategies cannot persist:

Observation 7.4.1. Let $\left\{x_{t}\right\}$ be a solution trajectory of (BR) for population game F, in which strategy $i \in S^{p}$ is strictly dominated. Then $\lim _{t \rightarrow \infty}\left(x_{t}\right)_{i}^{p}=0$.

Indeed, since i is never a best response, we have that $\left(\dot{x}_{t}\right)_{i}^{p} \equiv-\left(x_{t}\right)_{i}^{p}$, and hence that $\left(x_{t}\right)_{i}^{p}=\left(x_{0}\right)_{i}^{p} \mathrm{e}^{-t}$: the mass playing the dominated strategy converges to zero exponentially quickly.

An inductive argument takes us from the observation above to the following result.
Theorem 7.4.2. Let $\left\{x_{t}\right\}$ be a solution trajectory of (BR) for population game F, in which strategy $i \in S^{p}$ does not survive iterative elimination of strictly dominated strategies. Then $\lim _{t \rightarrow \infty}\left(x_{t}\right)_{i}^{p}=0$. In particular, if F is dominance solvable, then all solutions of (BR) converge to the dominance solution.

Proof. Observation 7.4.1 provides the basis for this induction: if $i \notin S_{1}^{p}$, then $\lim _{t \rightarrow \infty}\left(x_{t}\right)_{i}^{p}=$ 0 . As the inductive hypothesis, suppose that this same equality holds for all $i \notin S_{k}^{p}$. Now let $j \in S_{k}^{p}-S_{k+1}^{p}$. Then by definition, there exists a $j^{\prime} \in S_{k+1}^{p}$ such that $F_{j^{\prime}}^{p}(x)>F_{j}^{p}(x)$ whenever $x \in X_{k}$, where $X_{k}=\left\{x \in X: x_{i}^{p}>0 \Rightarrow i \in S_{k}^{p}\right\}$ is the set of social states in which all agents in each population p choose a strategies in S_{k}^{p}. Since X_{k} is compact and F is continuous, it follows that for some $c>0$, we have that $F_{j^{\prime}}^{p}(x)>F_{j}^{p}(x)+c$ whenever $x \in X_{k}$, and so that for some $\varepsilon>0$, we have that $F_{j^{\prime}}^{p}(x)>F_{j}^{p}(x)$ whenever $x \in X_{k, \varepsilon}=\left\{x \in X: x_{i}^{p}>\varepsilon \Rightarrow i \in S_{k}^{p}\right\}$. By the inductive hypothesis, there exists a $T>0$ such that $x_{t} \in X_{k, \varepsilon}$ for all $t \geq T$. Thus, for such t, j is not a best response to x_{t}. This implies that $\left(\dot{x}_{t}\right)_{j}^{p}=-\left(x_{t}\right)_{j}^{p}$ for $t \geq T$, and hence that $\left(x_{t}\right)_{j}^{p}=\left(x_{T}\right)_{j}^{p} \mathrm{e}^{T-t}$, which converges to 0 as t approaches infinity.

Exercise 7.4.3. Show that under (BR), the time until convergence to the set $X_{*, \varepsilon}=\{x \in X$: $\left.x_{i}^{p}>\varepsilon \Rightarrow i \in S_{*}^{p}\right\}$ is uniform over initial conditions in X.

7.4.3 Imitative Dynamics

We now establish analogous results for imitative dynamics. Since these dynamics leave the boundary of the state space invariant, the elimination results can only hold for solutions starting from interior initial conditions.

Theorem 7.4.4. Let $\left\{x_{t}\right\}$ be an interior solution trajectory of an imitative dynamic for population game F, in which strategy $i \in S^{p}$ is strictly dominated. Then $\lim _{t \rightarrow \infty}\left(x_{t}\right)_{i}^{p}=0$.

Proof. $(p=1)$ Observation 5.4 .16 tells us that all imitative dynamics $\dot{x}=V_{F}(x)$ exhibit monotone percentage growth rates (5.17): we can write the dynamic as

$$
\begin{equation*}
\dot{x}_{i}=x_{i} G_{i}(x), \tag{7.37}
\end{equation*}
$$

where the continuous function $G: X \rightarrow \mathbf{R}^{n}$ satisfies

$$
\begin{equation*}
G_{k}(x) \leq G_{l}(x) \text { if and only if } F_{k}(x) \leq F_{l}(x) \text { for all } x \in \operatorname{int}(X) \tag{7.38}
\end{equation*}
$$

Now suppose strategy i is strictly dominated by strategy $j \in S$. Since X is compact and F is continuous, we can find a $c>0$ such that $F_{j}(x)-F_{i}(x)>c$ for all $x \in X$. Since G is continuous as well, equation (7.38) implies that for some $C>0$, we have that $G_{j}(x)-G_{i}(x)>$ C for all $x \in X$.

Now write $r=x_{i} / x_{j}$. Equation (7.37) and the quotient rule imply that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} r=\frac{\mathrm{d}}{\mathrm{~d} t} \frac{x_{i}}{x_{j}}=\frac{\dot{x}_{i} x_{j}-\dot{x}_{j} x_{i}}{\left(x_{j}\right)^{2}}=\frac{x_{i} G_{i}(x) x_{j}-x_{j} G_{j}(x) x_{i}}{\left(x_{j}\right)^{2}}=r\left(G_{i}(x)-G_{j}(x)\right) \tag{7.39}
\end{equation*}
$$

Thus, along every interior solution trajectory $\left\{x_{t}\right\}$ of $\dot{x}=V_{F}(x)$ we have that

$$
r_{t}=r_{0}+\int_{0}^{t} r_{s}\left(G_{i}(x)-G_{j}(x)\right) \mathrm{d} s \leq r_{0}-C \int_{0}^{t} r_{s} \mathrm{~d} s
$$

Grönwall's Inequality (Lemma 4.A.7) then tells us that $r_{t} \leq r_{0} \exp (-C t)$, and hence that r_{t} vanishes as t approaches infinity. Since $\left(x_{t}\right)_{j}$ is bounded above by $1,\left(x_{t}\right)_{i}$ must approach 0 as t approaches infinity.

An argument similar to the one used to prove Theorem 7.4.2 can be used to prove that iteratively dominated strategies are eliminated by imitative dynamics.

Theorem 7.4.5. Let $\left\{x_{t}\right\}$ be an interior solution trajectory of an imitative dynamic for population game F, in which strategy $i \in S^{p}$ does not survive iterative elimination of strictly dominated strategies. Then $\lim _{t \rightarrow \infty}\left(x_{t}\right)_{i}^{p}=0$. In particular, if F is dominance solvable, then all interior solutions of any imitative dynamic converge to the dominance solution.

Exercise 7.4.6. (i) Prove Theorem 7.4.5.

(ii) Is the time until convergence to $X_{*, \varepsilon}=\left\{x \in X: x_{i}^{p}>\varepsilon \Rightarrow i \in S_{*}^{p}\right\}$ uniform over initial conditions in int (X) ? Explain.

Appendix

7.A Limit and Stability Notions for Deterministic Dynamics

We consider differential equations and differential inclusions that are forward invariant on the compact set $X \subset \mathbf{R}^{n}$.
(D) $\quad \dot{x}=V(x)$, a unique forward solution exists from each $\xi \in X$.
(DI) $\quad \dot{x} \in V(x), V$ is nonempty, convex-valued, bounded, and upper hemicontinuous.

When V is discontinuous, we allow solutions to be of the Carathéodory type-that is, to satisfy $\dot{x}_{t}=V\left(x_{t}\right)\left(\right.$ or $\left.\dot{x}_{t} \in V\left(x_{t}\right)\right)$ at almost all $t \in[0, \infty)$.

7.A. 1ω-Limits and Notions of Recurrence

Let $\left\{x_{t}\right\}=\left\{x_{t}\right\}_{t \geq 0}$ be a solution trajectory to (D) or (DI). The ω-limit of $\left\{x_{t}\right\}$ is the set of all points that the trajectory approaches arbitrarily closely infinitely often:

$$
\omega\left(\left\{x_{t}\right\}\right)=\left\{y \in X: \text { there exists }\left\{t_{k}\right\}_{k=1}^{\infty} \text { with } \lim _{k \rightarrow \infty} t_{k}=\infty \text { such that } \lim _{k \rightarrow \infty} x_{t_{k}}=y\right\} .
$$

The following proposition lists some basic properties of ω-limit sets.
Proposition 7.A.1. Let $\left\{x_{t}\right\}$ be a solution to (D) (or (DI)). Then
(i) $\omega\left(\left\{x_{t}\right\}\right)$ is non-empty and connected.
(ii) $\omega\left(\left\{x_{t}\right\}\right)$ is closed. In fact, $\omega\left(\left\{x_{t}\right\}\right)=\bigcap_{t \geq 0} \operatorname{cl}\left(\left\{x_{s}: s \geq t\right\}\right)$.
(iii) $\omega\left(\left\{x_{t}\right\}\right)$ is invariant under (D) (or (DI)).

If $\left\{x_{t}\right\}$ is the unique solution to (D) with initial condition $x_{0}=\xi$, we write $\omega(\xi)$ in place of $\omega\left(\left\{x_{t}\right\}\right)$. In this case, the set

$$
\Omega=\bigcup_{\xi \in X} \omega(\xi),
$$

contains all points that are approached arbitrarily closely infinitely often by some solution of (D). Among other things, Ω contains all rest points, periodic orbits, and chaotic attractors of (D). Since Ω need not be closed, its closure $\bar{\Omega}=\operatorname{cl}(\Omega)$ is used to define a standard notion of recurrence for differential equations.

Example 7.A.2. To see that Ω need not be closed, consider the replicator dynamic in standard Rock-Paper-Scissors (Figure 5.3.1(i)). The unique Nash equilibrium $X^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
is a rest point, and solution trajectories from all other interior initial conditions form closed orbits around x^{*}. The vertices e_{R}, e_{P}, and e_{S} are also rest points, and each trajectory starting from a boundary point that is not a vertex converges to a vertex. Thus, $\Omega=$ $\operatorname{int}(X) \cup\left\{e_{R}, e_{P}, e_{S}\right\}$, but $\bar{\Omega}=X . \S$

While we will not make much use of them here, many other notions of recurrence besides $\bar{\Omega}$ are available. To obtain a more demanding notion of recurrence for (D), call the state ξ recurrent, denoted $\xi \in \mathcal{R}$, if the solution from (D) returns arbitrarily close to ξ infinitely often-in other words, if $\xi \in \omega(\xi)$. The Birkhoff center of (D) is the closure $\operatorname{cl}(\mathcal{R})$ of the set of all recurrent points of (D).

More inclusive notions of recurrence can be obtained by allowing occasional short jumps between nearby solution trajectories. Given a differential equation (D) with flow ϕ, an ε-chain of length T from x to y is a sequence of states $x=x_{0}, x_{1}, \ldots, x_{k}=y$ such that for some sequence of times $t_{1}, \ldots, t_{n} \geq 1$ satisfying $\sum_{j=1}^{k} t_{i}=T$, we have $\left|\phi_{t_{i}}\left(x_{i-1}\right)-x_{j}\right|<\varepsilon$ for all $i \in\{1, \ldots, k\}$. State x is said to be chain recurrent, denoted $x \in \mathcal{C R}$, if for all $\varepsilon>0$ there is an ε-chain from x to itself.

The primacy of the notion of chain recurrence is captured by Theorem 9.B.4, known as the Fundamental Theorem of Dynamical Systems: if ϕ is a smooth flow on a compact set X, then X can be decomposed into two sets: a set on which the flow admits a Lyapunov function, and the set $\mathcal{C R}$ of chain recurrent points. Chain recurrence also plays a basic role in characterizing long run behavior in models of learning in games (see the Notes).

7.A. 2 Stability of Sets of States

Let $A \subseteq X$ be a closed set, and call $O \subseteq X$ a neighborhood of A if it is open relative to X and contains A. We say that A is Lyapunov stable under (D) (or (DI)) if for every neighborhood O of A there exists a neighborhood O^{\prime} of A such that every solution $\left\{x_{t}\right\}$ that starts in O^{\prime} is contained in O : that is, $x_{0} \in O^{\prime}$ implies that $x_{t} \in O$ for all $t \geq 0$. A is attracting if there is a neighborhood Y of A such that every solution that starts in Y converges to A : that is, $x_{0} \in Y$ implies that $\omega\left(\left\{x_{t}\right\}\right) \subseteq A$. A is globally attracting if it is attracting with $Y=X$. Finally, the set A is asymptotically stable if it is Lyapunov stable and attracting, and it is globally asymptotically stable if it is Lyapunov stable and globally attracting.

Example 7.A.3. Attracting sets need not be asymptotically stable. A counterexample is provided by a flow on the unit circle that moves clockwise except at a single point. The fact that the domain is the unit circle is unimportant, since one can embed this flow as a limit cycle in a flow on the plane. \S

Example 7.A.4. Invariance is not included in the definition of asymptotic stability. Thus, under the dynamic $\dot{x}=-x$ on \mathbf{R}, any closed interval containing the origin is asymptotically stable. §

7.B Stability Analysis via Lyapunov Functions

Let $Y \subseteq X$. The function $L: Y \rightarrow \mathbf{R}$ is a Lyapunov function for (D) or (DI) if its value changes monotonically along every solution trajectory. We state the results to follow for the case in which the value of L decreases along solution trajectories; of course, the obvious analogues of these results hold for the opposite case.

The following lemma will prove useful in a number of the analyses to come.
Lemma 7.B.1. Suppose that the function $L: Y \rightarrow \mathbf{R}$ and the trajectory $\left\{x_{t}\right\}_{t \geq 0}$ are Lipschitz continuous.
(i) If $\dot{L}\left(x_{t}\right) \leq 0$ for almost all $t \geq 0$, then the map $t \mapsto L\left(x_{t}\right)$ is nonincreasing.
(ii) If in addition $\dot{L}\left(x_{s}\right)<0$, then $L\left(x_{t}\right)<L\left(x_{s}\right)$ for all $t>s$.

Proof. The composition $t \mapsto L\left(x_{t}\right)$ is Lipschitz continuous. Thus, the Fundamental Theorem of Calculus tells us that when $t>s$, we have that

$$
L\left(x_{t}\right)-L\left(x_{s}\right)=\int_{s}^{t} \dot{L}\left(x_{u}\right) \mathrm{d} u \leq 0,
$$

where the inequality is strict if $\dot{L}\left(x_{s}\right)<0$.

7.B. 1 Lyapunov Stable Sets

The basic theorem on Lyapunov stability applies both to differential equations (D) and differential inclusions (DI).

Theorem 7.B.2 (Lyapunov stability). Let $A \subseteq X$ be closed, and let $Y \subseteq X$ be a neighborhood of A. Let $L: Y \rightarrow \mathbf{R}_{+}$be Lipschitz continuous with $L^{-1}(0)=A$. If each solution $\left\{x_{t}\right\}$ of (D) (or (DI)) satisfies $\dot{L}\left(x_{t}\right) \leq 0$ for almost all $t \geq 0$, then A is Lyapunov stable under (D) (or (DI)).

Proof. Let O be a neighborhood of A such that $\operatorname{cl}(O) \subset Y$. Let $c=\min _{x \in \operatorname{bd}(O)} L(x)$, so that $c>0$. Finally, let $O^{\prime}=\{x \in O: L(x)<c\}$. Lemma 7.B. 1 implies that solution trajectories that start in O^{\prime} do not leave O, and hence that A is Lyapunov stable.

Example 7.B.3. The requirement that the function L be constant on A cannot be dispensed with. Consider a flow on the unit circle $C=\left\{x \in \mathbf{R}^{2}:\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}=1\right\}$ that moves clockwise at states x with $x_{1}>0$ and is at rest at states in the semicircle $A=\left\{x \in C: x_{1} \leq 0\right\}$. If we let $L(x)=x_{2}$, then $\dot{L}(x) \leq 0$ for all $x \in C$, and A is attracting (see Theorem 7.B. 4 below), but A is not Lyapunov stable.

We can extend this example so that the flow is defined on the unit disk $D=\left\{x \in \mathbf{R}^{2}\right.$: $\left.\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2} \leq 1\right\}$. Suppose that when $x_{1}>0$, the flow travels clockwise along the circles centered at the origin, and that the half disk $A^{\prime}=\left\{x \in D: x_{1} \leq 0\right\}$ consists entirely of rest points. Then $L(x)=x_{2}$ satisfies $\dot{L}(x) \leq 0$ for all $x \in D$, and A^{\prime} is attracting, but A^{\prime} is not Lyapunov stable. §

7.B. 2ω-Limits and Attracting Sets

We now provide some results that use Lyapunov functions to characterize ω-limits of solution trajectories that begin in the Lyapunov function's domain. These results immediately yield sufficient conditions for a set to be attracting. To state our results, we call the (relatively) open set $Y \subset X$ inescapable if for each solution trajectory $\left\{x_{t}\right\}_{t \geq 0}$ with $x_{0} \in Y$, we have that $\operatorname{cl}\left(\left\{x_{t}\right\}\right) \cap \mathrm{bd}(Y)=\varnothing$.

Our first result focuses on the differential equation (D).
Theorem 7.B.4. Let $Y \subset X$ be relatively open and inescapable under (D). Let $L: Y \rightarrow \mathbf{R}$ be C^{1}, and suppose that $\dot{L}(x) \equiv \nabla L(x)^{\prime} V(x) \leq 0$ for all $x \in Y$. Then $\omega\left(x_{0}\right) \subseteq\{x \in Y: \dot{L}(x)=0\}$ for all $x_{0} \in Y$. Thus, if $\dot{L}(x)=0$ implies that $V(x)=\mathbf{0}$, then $\omega\left(x_{0}\right) \subseteq R P(V) \cap Y$.

Proof. Let $\left\{x_{t}\right\}$ be the solution to (D) with initial condition $x_{0}=\xi \in Y$, let $\chi \in \omega(\xi)$, and let $\left\{y_{t}\right\}$ be the solution to (D) with $y_{0}=\chi$. Since Y is inescapable, the closures of trajectories $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$ are contained in Y.

Suppose by way of contradiction that $\dot{L}(\chi) \neq 0$. Since $\chi \in \omega(\xi)$, we can find a divergent sequence of times $\left\{t_{k}\right\}_{k=1}^{\infty}$ such that $\lim _{k \rightarrow \infty} x_{t_{k}}=\chi=y_{0}$. Since solutions to (D) are unique, and hence continuous in their initial conditions, we have that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} x_{t_{k}+1}=y_{1} \text {, and hence that } \lim _{k \rightarrow \infty} L\left(x_{t_{k}+1}\right)=L\left(y_{1}\right) . \tag{7.40}
\end{equation*}
$$

But since $y_{0}=\chi \in \omega(\xi)$ and $\dot{L}(\chi) \neq 0$, applying Lemma 7.B. 1 to both $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$ yields

$$
L\left(x_{t}\right) \geq L(\chi)>L\left(y_{1}\right)
$$

for all $t \geq 0$, contradicting the second limit in (7.40). This proves the first claim of the theorem, and the second claim follows immediately from the first.

Theorem 7.B. 5 is an analogue of Theorem 7.B. 4 for upper hemicontinous differential inclusions. Where the proof of Theorem 7.B.4 relied on the continuity of solutions to (D) in their initial conditions, the proof of Theorem 7.B. 5 takes advantage of the upper hemicontinuity of the map from initial conditions ξ to solutions of (DI) starting from ξ.

Theorem 7.B.5. Let $Y \subset X$ be relatively open and inescapable under (DI). Let $L: Y \rightarrow \mathbf{R}$ be C^{1} and satisfy (i) $\frac{\partial L}{\partial v}(x) \equiv \nabla L(x)^{\prime} v \leq 0$ for all $v \in V(x)$ and $x \in Y$, and (ii) $[0 \notin V(x)$ implies that $\left.\frac{\partial L}{\partial v}(x)<0\right]$ for all $v \in V(x)$ and $x \in Y$. Then for all solutions $\left\{x_{t}\right\}$ of (DI) with $x_{0} \in Y$, we have that $\omega\left(\left\{x_{t}\right\}\right) \subseteq\{x \in Y: \mathbf{0} \in V(x)\}$.

Proof. Suppose that $\chi \in \omega\left(\left\{x_{t}\right\}\right)$, but that $0 \notin V(\chi)$. Then $\frac{\partial L}{\partial v}(\chi)<0$ for all $v \in V(\chi)$. Thus, since $V(\chi)$ is compact by assumption, there exists a $b>0$ such that $\frac{\partial L}{\partial v}(\chi)<-b$ for all $v \in V(\chi)$. Because V is upper hemicontinuous and L is C^{1}, it follows that $\frac{\partial L}{\partial \hat{v}}(\hat{\chi})<-\frac{b}{2}$ for all $\hat{v} \in V(\hat{\chi})$ and all $\hat{\chi}$ sufficiently close to χ. So since V is bounded, there is a time $u \in(0,1]$ such that all solutions $\left\{y_{t}\right\}$ of (DI) with $y_{0}=\chi$ satisfy

$$
\begin{equation*}
L\left(y_{t}\right) \leq L\left(y_{s}\right) \leq L(\chi)-\frac{b s}{2} \text { for all } s \in[0, u] \text { and } t>s \tag{7.41}
\end{equation*}
$$

Now let $\left\{t_{k}\right\}_{k=1}^{\infty}$ be a divergent sequence of times such that $\lim _{k \rightarrow \infty} x_{t_{k}}=\chi$, and for each k, define the trajectory $\left\{x_{t}^{k}\right\}_{t \geq 0}$ by $x_{t}^{k}=x_{t+t_{k}}$. Since the set of continuous trajectories $C_{[0, T]}(X)$ is compact in the sup norm topology, the sequence of trajectories $\left\{\left\{x_{t}^{k}\right\}\right\}_{k=1}^{\infty}$ has a convergent subsequence, which we take without loss of generality to be $\left\{\left\{x_{t}^{k}\right\}\right\}_{k=1}^{\infty}$ itself. We call the limit of this subsequence $\left\{\hat{y}_{t}\right\}$. Evidently, $\hat{y}_{0}=\chi$.

Given our conditions on the correspondence V, the set-valued map

$$
\hat{\chi} \mapsto\left\{\left\{x_{t}\right\}:\left\{x_{t}\right\} \text { is a solution to (DI) with } x_{0}=\hat{\chi}\right\}
$$

is upper hemicontinuous with respect to the sup norm topology on $C_{[0, T]}(X)$ (see Appendix 6.A). It follows that $\left\{\hat{y}_{t}\right\}$ is a solution to (DI). Consequently,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} x_{t_{k}+1}=\hat{y}_{1}, \text { and so } \lim _{k \rightarrow \infty} L\left(x_{t_{k}+1}\right)=L\left(\hat{y}_{1}\right) . \tag{7.42}
\end{equation*}
$$

But Lemma 7.B. 1 and inequality (7.41) imply that

$$
L\left(x_{t}\right) \geq L(\chi)>L\left(\hat{y}_{1}\right)
$$

for all $t \geq 0$, contradicting the second limit in (7.42).
Theorem 7.B. 6 is a simple convergence result for differential inclusions. Here the

Lyapunov function need only be Lipschitz continuous (rather than C^{1}), but the condition on the rate of decrease of this function is stronger than in the previous results.

Theorem 7.B.6. Let $Y \subset X$ be relatively open and inescapable under (DI), and let $L: Y \rightarrow \mathbf{R}_{+}$ be Lipschitz continuous. Suppose that along each solution $\left\{x_{t}\right\}$ of (DI) with $x_{0} \in Y$, we have that $\dot{L}\left(x_{t}\right) \leq-L\left(x_{t}\right)$ for almost all $t \geq 0$. Then $\omega\left(\left\{x_{t}\right\}\right) \subset\{x \in Y: L(x)=0\}$.

Proof. Observe that

$$
L\left(x_{t}\right)=L\left(x_{0}\right)+\int_{0}^{t} \dot{L}\left(x_{u}\right) \mathrm{d} u \leq L\left(x_{0}\right)+\int_{0}^{t}-L\left(x_{u}\right) \mathrm{d} u=L\left(x_{0}\right) \mathrm{e}^{-t}
$$

where the final equality follows from the fact that $\alpha_{0}+\int_{0}^{t}-\alpha_{u} \mathrm{~d} u$ is the value at time t of the solution to the linear $\operatorname{ODE} \dot{\alpha}_{t}=-\alpha_{t}$ with initial condition $\alpha_{0} \in \mathbf{R}$. It follows immediately that $\lim _{t \rightarrow \infty} L\left(x_{t}\right)=0$.

7.B. 3 Asymptotically Stable and Globally Asymptotically Stable Sets

Combining Theorem 7.B. 2 with Theorem 7.B.4,7.B.5, or 7.B. 6 yields asymptotic stability and global asymptotic stability results for deterministic dynamics. Corollary 7.B.7 offers such a result for the differential equation (D).

Corollary 7.B.7. Let $A \subseteq X$ be closed, and let $Y \subseteq X$ be a neighborhood of A. Let $L: Y \rightarrow \mathbf{R}_{+}$be C^{1} with $L^{-1}(0)=A$. If $\dot{L}(x) \equiv \nabla L(x)^{\prime} V(x)<0$ for all $x \in Y-A$, then A is asymptotically stable under (D). If in addition $Y=X$, then A is globally asymptotically stable under (D).

7.C Cooperative Differential Equations

Cooperative differential equations are defined by the property that increases in the value of one component of the state variable increase the growth rates of all other components. Their solutions have appealing monotonicity and convergence properties.

Let \leq denote the standard partial order on \mathbf{R}^{n} : that is, $x \leq y$ if and only if $x_{i} \leq y_{i}$ for all $i \in\{1, \ldots, n\}$. We write $x<y$ when $x \leq y$ and $x \neq y$, so that $x_{j}<y_{j}$ for some j. Finally, we write $x \ll y$ when $x_{i}<y_{i}$ for all $i \in\{1, \ldots, n\}$. We call a vector or a matrix strongly positive if all of its components are positive; thus, $x \in \mathbf{R}^{n}$ is strongly positive if $x \gg 0$.

Let $X \subset \mathbf{R}^{n}$ be a compact convex set that possesses a minimal and a maximal element with respect to the partial order \leq. Let $V: X \rightarrow \mathbf{R}^{n}$ be a C^{1} vector field with $V(x) \in T X(x)$
for all $x \in X$, so that the differential equation
is forward invariant on X. We call the differential equation (7.43) cooperative if

$$
\begin{equation*}
\frac{\partial V_{i}}{\partial x_{j}}(x) \geq 0 \text { for all } i \neq j \text { and } x \in X \tag{7.44}
\end{equation*}
$$

Equation (7.43) is irreducible if for every $x \in X$ and every nonempty proper subset I of the index set $\{1, \ldots n\}$, there exist indices $i \in I$ and $j \in\{1, \ldots, n\}-I$ such that $\frac{\partial V_{i}}{\partial x_{j}}(x) \neq 0$. An obvious sufficient condition for (7.43) to be irreducible is that it be strongly cooperative, meaning that the inequality in condition (7.44) is strict for all $i \neq j$ and $x \in X$.

In Appendix 4.A.3, we saw how to represent all solutions to the dynamic (7.43) simultaneously via the semiflow $\phi: \mathbf{R}_{+} \times X \rightarrow X$, defined by $\phi_{t}(\xi)=x_{t}$, where $\left\{x_{t}\right\}_{t \geq 0}$ is the solution to (7.43) with initial condition $x_{0}=\xi$. We say that the semiflow ϕ is monotone if $x \leq y$ implies that $\phi_{t}(x) \leq \phi_{t}(y)$ for all $t \geq 0$: that is, weakly ordered initial conditions induce weakly ordered solution trajectories. If in addition $x<y$ implies that $\phi_{t}(x) \ll \phi_{t}(y)$ for all $t>0$, we say that ϕ is strongly monotone.

Theorem 7.C. 1 tells us that cooperative irreducible differential equations generate strongly monotone semiflows.

Theorem 7.C.1. Suppose that $\dot{x}=V(x)$ is cooperative and irreducible. Then
(i) For all $t>0$, the derivative matrix of its semiflow ϕ is strongly positive: $D \phi_{t}(x) \gg 0$.
(ii) The semiflow ϕ is strongly monotone.

For the intuition behind Theorem 7.C.1, let $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$ be solutions to (7.43) with $x_{0}<y_{0}$. Suppose that at some time $t>0$, we have that $x_{t} \leq y_{t}$ and $\left(x_{t}\right)_{i}=\left(y_{t}\right)_{i}$. If we could show that $V_{i}\left(x_{t}\right) \leq V_{i}\left(y_{t}\right)$, then it seems reasonable to expect that $\left(x_{t+\varepsilon}\right)_{i}$ will not be able to surpass $\left(y_{t+\varepsilon}\right)_{i}$. But since x_{t} and y_{t} only differ in components other than i, the vector $z=y_{t}-x_{t} \geq 0$ has $z_{i}=0$, and so

$$
V_{i}\left(y_{t}\right)-V_{i}\left(x_{t}\right)=\int_{0}^{1} \nabla V_{i}\left(x_{t}+\alpha z\right)^{\prime} z \mathrm{~d} \alpha=\int_{0}^{1} \sum_{j \neq i} \frac{\partial V_{i}}{\partial x_{j}}\left(x_{t}+\alpha z\right) z_{j} \mathrm{~d} \alpha
$$

The final expression is nonnegative as long as $\frac{\partial V_{i}}{\partial x_{j}} \geq 0$ whenever $j \neq i$.
The next theorem sets out the basic properties of strongly monotone semiflows on X. To state this result, we let $C(\phi)=\left\{x \in X: \omega(x)=\left\{x^{*}\right\}\right.$ for some $\left.x^{*} \in R P(\phi)\right\}$ denote the set of initial conditions from which the semiflow ϕ converges to a rest point. Also, let
$\Omega(\phi)=\bigcup_{x \in X} \omega(x)$ be the set of ω-limit points under ϕ.
Theorem 7.C.2. Suppose that the semiflow ϕ on X is strongly monotone. Then
(i) (Convergence criteria) If $\phi_{T}(x) \geq x$ for some $T>0$, then $\omega(x)$ is periodic with period T. If $\phi_{t}(x) \geq x$ over some nonempty open interval of times, then $x \in C(\phi)$.
(ii) (Unordered ω-limit sets) If $x, y \in \omega(z)$, then $x \ngtr y$ and $y \ngtr x$.
(iii) (Minimal and maximal rest points) Let $\underline{x}=\min X$ and $\bar{x}=\max X$. Then $\underline{x}^{*}=\min R P(\phi)$ and $\bar{x}^{*}=\max R P(\phi)$ exist; in fact, $\omega(\underline{x})=\underline{x}^{*}$ and $\omega(\bar{x})=\bar{x}^{*}$. Moreover, $\left[\underline{x}^{*}, \bar{x}^{*}\right]$ contains $\Omega(\phi)$ and is globally asymptotically stable.

Proof. (i) If $\phi_{T}(x) \geq x$, then $\phi_{(n+1) T}(x) \geq \phi_{n T}(x)$ for all positive integers n, so monotonicity and the compactness of X imply that $\lim _{n \rightarrow \infty} \phi_{n T}(x)=y$ for some $y \in X$. By the continuity and group properties of the flow,

$$
\phi_{t+T}(y)=\phi_{t+T}\left(\lim _{n \rightarrow \infty} \phi_{n T}(x)\right)=\lim _{n \rightarrow \infty} \phi_{t+(n+1) T}(x)=\lim _{n \rightarrow \infty} \phi_{t}\left(\phi_{(n+1) T}(x)\right)=\phi_{t}(y),
$$

so the flow from y is T-periodic. A continuity argument shows that the orbit from y is none other than $\omega(x)$. The proof of the second claim is omitted.
(ii) Suppose that $x, y \in \omega(z)$ and that $x<y$. Since ϕ is strongly monotone, and by the continuity of $\phi_{t}(\xi)$ in ξ, there are neighborhoods $N_{x}, N_{y} \subset X$ of x and y and a time $T>0$ such that $\phi_{T}\left(N_{x}\right) \ll \phi_{T}\left(N_{y}\right)$. Choose $\tau_{y}>\tau_{x}>0$ such that $\phi_{\tau_{x}}(z) \in N_{x}$ and $\phi_{\tau_{y}}(z) \in N_{y}$. Then for all t close enough to τ_{y},

$$
\phi_{\tau_{x}+T}(z) \ll \phi_{t+T}(z)=\phi_{t-\tau_{x}}\left(\phi_{\tau_{x}+T}(z)\right) .
$$

Therefore, part (i) implies that $\omega(z)$ is a singleton.
(iii) Since \underline{x} and \bar{x} are the minimal and maximal points in X, part (i) implies that $\omega(\underline{x})=$ \underline{x}^{*} and $\omega(\bar{x})=\bar{x}^{*}$ for some $\underline{x}^{*}, \bar{x}^{*} \in R P(\phi)$. Hence, if $x \in X \subseteq[\underline{x}, \bar{x}]$, then $\phi_{t}(\underline{x}) \leq \phi_{t}(x) \leq \phi_{t}(\bar{x})$ for all $t \geq 0$, so taking limits yields $\underline{x}^{*} \leq \omega(x) \leq \bar{x}^{*}$; thus, $\Omega(\phi) \subseteq\left[\underline{x}^{*}, \bar{x}^{*}\right]$. Finally, if $\left[\underline{x}^{*}, \bar{x}^{*}\right] \subseteq[y, z] \subseteq X$, then $x \in[y, z]$ implies that $\phi_{t}(x) \in\left[\phi_{t}(y), \phi_{t}(z)\right] \subseteq[y, z]$, so $\left[\underline{x}^{*}, \bar{x}^{*}\right]$ is Lyapunov stable, and hence globally asymptotically stable by the previous argument.

If the derivative matrices of the semiflow are strongly positive, one can obtain even stronger results, including the convergence of solution trajectories from generic initial conditions to rest points.

Theorem 7.C.3. Suppose that the semiflow ϕ on X is strongly monotone, and that its derivative matrices $D \phi_{t}(x)$ are strongly positive for all $t>0$. Then
(i) (Limit set dichotomy) If $x<y$, then either $\omega(x)<\omega(y)$, or $\omega(x)=\omega(y)=\left\{x^{*}\right\}$ for some $x^{*} \in R P(\phi)$.
(ii) (Generic convergence to equilibrium) $C(\phi)$ is an open, dense, full measure subset of X.

7.N Notes

Section 7.1. The results in Section 7.1.1 are proved for symmetric random matching games in Hofbauer (2000), the seminal reference on Lyapunov functions for evolutionary dynamics. Global convergence in all potential games of dynamics satisfying positive correlation is proved in Sandholm (2001), building on earlier work of Hofbauer and Sigmund (1988) and Monderer and Shapley (1996). Convergence of perturbed best response dynamics in potential games is proved by Hofbauer and Sandholm (2007).

Shahshahani (1979), building on the early work of Kimura (1958), showed that the replicator dynamic for a potential game is a gradient dynamic after a "change in geometry"that is, after the introduction of an appropriate Riemannian metric on int (X). Subsequently, Akin $(1979,1990)$ proved that Shahshahani's (1979) result can also be represented using the change of variable presented in Theorem 7.1.9. The direct proof offered in the text is from Sandholm et al. (2008).

Section 7.2. Theorem 7.2.1 is due to Nagurney and Zhang (1997); the proof in the text is from Sandholm et al. (2008). Theorem 7.2.4 was first proved for normal form games with an interior ESS by Hofbauer et al. (1979) and Zeeman (1980). Akin (1990, Theorem 6.4) and Aubin (1991, Section 1.4) extend this result to nonlinear single population games, while Cressman et al. (2001) extend it to linear multipopulation games.

Section 7.2.2 follows Hofbauer and Sandholm $(2007,2008)$. These papers take inspiration from Hart and Mas-Colell (2001), which points out the role of integrability in models of regret-based learning in repeated normal form games. Hofbauer (2000) proves the convergence of the BNN, best response, and perturbed best response dynamics in normal form games with an interior ESS. A proof of the existence of a cycle in Example 7.2.6 can be found in Hofbauer and Sandholm (2008); this reference also contains a statement and proof of the version of Danskin's Envelope Theorem cited in the text. The probabilistic characterization of integrability alluded to the text is presented in Sandholm (2006). For subdifferentials of convex functions, see Hiriart-Urruty and Lemaréchal (2001); their Example D.3.4 is especially relevant to our discussion in the text.

Smith (1984) proves Theorem 7.2.11 for his dynamic; the general result presented here is due to Hofbauer and Sandholm (2008).

Kojima and Takahashi (2007) consider a class of single population random matching
games called anti-coordination games, in which at each state x, the worst response to x is always in the support of x. They prove (see also Hofbauer (1995b)) that such games must have a unique equilibrium, that this equilibrium is interior, and that it is globally asymptotically stable under the best response dynamic. However, also they present an example (due to Hofbauer) showing that neither the replicator dynamic nor the logit dynamic need converge in these games, the latter even at arbitrarily low noise levels.

Section 7.3. Section 7.3.1 follows Berger (2007). Exercise 7.3.1(ii) is due to Hofbauer (1995b), and Lemma 7.3.2(i) is due to Monderer and Sela (1997). It is worth noting that Theorem 7.3.4 extends immediately to ordinal supermodular games (also known as quasi-supermodular games; see Milgrom and Shannon (1994)). Moreover, since ordinal potential games (Monderer and Shapley (1996)) are defined by the absence of cycles of improvement steps, a portion of the proof of Theorem 7.3.4 establishes the convergence of simple solutions of (BR) in nondegenerate ordinal potential games.

Section 7.3.2 follows Hofbauer and Sandholm $(2002,2007)$.
Section 7.4. Akin (1980) shows that starting from any interior population state, the replicator dynamic eliminates strategies that are strictly dominated by a pure strategy. Versions of Theorems 7.4.4 and 7.4.5 can be found in Nachbar (1990) and Samuelson and Zhang (1992); see also Hofbauer and Weibull (1996).

Section 7.A. For properties of ω-limit sets of differential equations, see Robinson (1995); for ω-limit sets of differential inclusions, see Benaïm et al. (2005). For applications of chain recurrence in the theory of learning in games, see Benaïm and Hirsch (1999a), Hofbauer and Sandholm (2002), and Benaïm et al. $(2005,2006 b)$. The Fundamental Theorem of Dynamical Systems is due to Conley (1978); see Robinson (1995) for a textbook treatment. Other good general references on notions of recurrence for differential equations include Nemytskii and Stepanov (1960), Akin (1993), and Benaïm (1998, 1999).

Section 7.B. The standard reference on Lyapunov functions for flows is Bhatia and Szegő (1970).

Section 7.C. The standard reference on cooperative differential equations and monotone dynamical systems is Smith (1995). Theorems 7.C.1, 7.C.2(i), 7.C.2(ii), and 7.C.3(i) in the text are Smith's (1995) Theorems 4.1.1,1.2.1,1.2.3, and 2.4.5, respectively. Theorem 7.C.3(ii) combines Theorem 2.4.7 of Smith (1995) with Theorem 1.1 of Hirsch (1988), the latter after a reversal of time.

Local Stability under Evolutionary Dynamics

8.0 Introduction

In Chapter 7, we analyzed classes of games in which many evolutionary dynamics converge to equilibrium from all or most initial conditions. While we argued in Chapter 3 that games from many applications lie in these classes, it is certain that at least as many interesting games do not.

In cases where global convergence results are not available, one can turn instead to analyses of local stability. If a society somehow finds itself playing a particular equilibrium, how can we tell whether this equilibrium will persist in the face of occasional, small disturbances in behavior? This chapter introduces a refinement of Nash equilibriumthat of an evolutionarily stable state (or ESS) -that captures the robustness of the equilibrium to invasion by small groups exhibiting different aggregate behaviors. The main results in this chapter show that states satisfying a version of this concept called regular Taylor ESS are locally stable under many evolutionary dynamics.

We will see that games with an ESS share some structural properties with stable games, at least in the neighborhood of the ESS. Taking advantage of this connection, we show in Section 8.4 how to establish local stability of ESS under some dynamics through the use of local Lyapunov functions. Our results here build on our analyses in Section 7.2, where we constructed Lyapunov functions for many dynamics for use in stable games.

The other leading approach to local stability analysis is linearization. Given a rest point of a nonlinear (but smooth) dynamic, one can approximate the behavior of the dynamic in a neighborhood of the rest point by studying an appropriate linear dynamic: namely, the one defined by the derivative matrix of the nonlinear dynamic, evaluated at the rest
point in question. In Sections 8.5 and 8.6 , we use linearization to study the two families of smooth dynamics introduced in Chapters 5 and 6: the imitative dynamics, and the perturbed best response dynamics. Surprisingly, this analysis will lead us to a deep and powerful connection between the replicator and logit dynamics, one that seems difficult to reach by other means.

It is worth noting now that linearization is also very useful for establishing instability results. For this reason, the techniques we develop in this chapter will be a very important ingredient of our analyses in Chapter 9, where we study nonconvergent dynamics.

The first two sections of the chapter formally establish some results that were hinted at in earlier chapters. In Section 8.1, we indicate two senses in which a non-Nash rest point of an imitative dynamic cannot be stable. In Section 8.2, we show that under most dynamics, a Nash equilibrium of a potential game is locally stable if and only if it is a local maximizer of potential.

The linearization techniques used in Sections 8.5 and 8.6 and in Chapter 9 require a working knowledge of matrix analysis and linear differential equations; we present these topics in detail in Appendices 8.A and 8.B. The main theorems of linearization theory are themselves presented in Appendix 8.C.

8.1 Non-Nash Rest Points of Imitative Dynamics

We saw in Chapters 5 and 6 that under five of our six classes of evolutionary dynamics, rest points are identical to Nash equilibria (or to perturbed versions thereof). The lone exception is the imitative dynamics: Theorem 5.4.21 shows that the rest points of these dynamics are the restricted equilibria, a set that includes not only the Nash equilibria, but also any state that would be Nash equilibria were the strategies unused at that state removed from the game. Theorem 5.7.1 established one sense in which these extra rest points are fragile: by combining a small amount of a "better behaved" dynamic with an imitative dynamic, one obtains a new dynamic that satisfies Nash stationarity. But we mentioned in Section 5.4.6 that this fragility can be expressed more directly: there we claimed that non-Nash rest points of imitative dynamics cannot be locally stable, and so are not plausible predictions of play.

We are now in a position to formally establish this last claim. Recall from Observation 5.4.16 that imitative dynamics exhibit monotone percentage growth rates: they can be expressed in the form

$$
\begin{equation*}
\dot{x}_{i}^{p}=x_{i}^{p} G_{i}^{p}(x), \tag{8.1}
\end{equation*}
$$

with the percentage growth rates $G_{i}^{p}(x)$ ordered by payoffs $F_{i}^{p}(x)$ as in equation (5.17). This fact drives our instability result.

Theorem 8.1.1. Let V_{F} be an imitative dynamic for population game F, and let \hat{x} be a non-Nash rest point of V_{F}. Then \hat{x} is not Lyapunov stable under V_{F}, and no interior solution trajectory of V_{F} converges to \hat{x}.

Proof. $(p=1)$ Since \hat{x} is a restricted equilibrium that is not a Nash equilibrium, each strategy j in the support of \hat{x} satisfies $F_{j}(\hat{x})=\bar{F}(\hat{x})$, and any best response i to \hat{x} is an unused strategy that satisfies $F_{i}(\hat{x})>\bar{F}(\hat{x})$. Also, since \hat{x} is a rest point of V_{F}, equation (8.1) implies that each j in the support of \hat{x} has $G_{j}(\hat{x})=0$. Thus, monotonicity of percentage growth rates implies that $G_{i}(\hat{x})>G_{j}(\hat{x})=0$, and so the continuity of G_{i} implies $G_{i}(x) \geq k>0$ on some small neighborhood O of \hat{x}.

Now let $\left\{x_{t}\right\}$ be an interior solution trajectory of V_{F} (see Theorem 5.4.14). Then if $x_{s} \in O$ for all $s \in(t, u)$, it follows that

$$
\log \left(\left(x_{u}\right)_{i}\right)-\log \left(\left(x_{t}\right)_{i}\right)=\int_{t}^{u}\left(\frac{d}{d s} \log \left(\left(x_{s}\right)_{i}\right)\right) \mathrm{d} s=\int_{t}^{u} \frac{\left(\dot{x}_{s}\right)_{i}}{\left(x_{s}\right)_{i}} \mathrm{~d} s=\int_{t}^{u} G_{i}\left(x_{s}\right) \mathrm{d} s \geq k(u-t) .
$$

Rearranging and exponentiating yields

$$
\left(x_{u}\right)_{i} \geq\left(x_{t}\right)_{i} \exp (k(u-t)) .
$$

Thus, during intervals that x_{s} is in $O,\left(x_{s}\right)_{i}$ is strictly increasing. This immediately implies that there is no neighborhood O^{\prime} of \hat{x} such that solutions starting in O^{\prime} stay in O, and so \hat{x} is not Lyapunov stable. Also, since $\left(x_{t}\right)_{i}$ cannot decrease inside $O \cap \operatorname{int}(X)$, no interior solution trajectory can converge to \hat{x}.

8.2 Local Stability in Potential Games

We saw in Section 7.1 that in potential games, the potential function serves as a strict Lyapunov function for any evolutionary dynamic satisfying positive correlation (PC); solution trajectories of such dynamics ascend the potential function and converge to connected sets of rest points. For dynamics that also satisfy Nash stationarity (NS), these sets consist entirely of Nash equilibria.

That the potential function is a strict Lyapunov function has important implications for local stability of sets of rest points. Call $A \subseteq X$ a local maximizer set of the potential function $f: X \rightarrow \mathbf{R}$ if it is connected, if f is constant on A, and if there exists a neighborhood O of
A such that $f(x)>f(y)$ for all $x \in A$ and all $y \in O-A$. Theorem 3.1.7 implies that such a set consists entirely of Nash equilibria. We call the set $A \subseteq N E(F)$ isolated if there is a neighborhood of A that does not contain any Nash equilibria other than those in A.

If the value of f is nondecreasing along solutions of a dynamic, then they cannot escape from a neighborhood of a local maximizer set. If the value of f is actually increasing in this neighborhood, then solutions in the neighborhood should converge to the set. This is the content of the following theorem.

Theorem 8.2.1. Let F be a potential game with potential function f, let V_{F} be an evolutionary dynamic for F, and suppose that $A \subseteq N E(F)$ is a local maximizer set of f.
(i) If V_{F} satisfies positive correlation (PC), then A is Lyapunov stable under V_{F}.
(ii) If in addition V_{F} satisfies Nash stationarity (NS) and A is isolated, then A is an asymptotically stable set under V_{F}.

Proof. Part (i) of the theorem follows immediately from Lemma 7.1.1 and Theorem 7.B.2. To prove part (ii), note that (NS), (PC), and the fact that A is isolated imply that there is a neighborhood O of A such that $f(x)=\nabla f(x)^{\prime} V_{F}(x)>0$ for all $x \in O-A$. Corollary 7.B. 7 then implies that A is asymptotically stable.

For dynamics satisfying (PC) and (NS), being an isolated local maximizer set is not only a sufficient condition for being asymptotically stable; it is also necessary.

Theorem 8.2.2. Let F be a potential game with potential function f, let V_{F} be an evolutionary dynamic for F that satisfies (PC) and (NS). Suppose that $A \subseteq N E(F)$ is a smoothly connected asymptotically stable set under V_{F}. Then A is an isolated local maximizer set of f.

Proof. Since A is a smoothly connected set of Nash equilibria, Exercise 3.1.15 implies that f takes some fixed value c throughout A. Now let ξ be an initial condition in $O-A$, where O is the basin of attraction of A. Then $\omega(\xi) \subseteq A$. But since f is a strict Lyapunov function for V_{F}, it follows that $f(\xi)<c$. Since $\xi \in O-A$ was arbitrary, we conclude that that A is an isolated local maximizer set.

Theorems 8.2.1 and 8.2.2 allow us to characterize locally stable rest points for dynamics satisfying positive correlation (PC). Since the best response and perturbed best response dynamics do not satisfy this condition, the former because of lack of smoothness and the latter because of the perturbations, Theorems 8.2.1 and 8.2.2 do not apply.

In the case of the best response dynamic, Theorem 6.1.8 establishes analogues of (NS) and (PC), which in turn imply that solution trajectories ascend the potential function and converge to Nash equilibrium (Theorem 7.1.4). By using these results along with the arguments above, we obtain

Theorem 8.2.3. Let F be a potential game with potential function f, let V_{F} be the best response dynamic for F, and let $A \subseteq N E(F)$ be smoothly connected. Then A is an isolated local maximizer set of f if and only if A is asymptotically stable under V_{F}.

In the case of perturbed best response dynamics, the roles of conditions (PC) and (NS) are played by virtual positive correlation and perturbed stationarity (Theorem 6.2.13 and Observation 6.2.10). These in turn ensure that the dynamics ascend the perturbed potential function

$$
\tilde{f}(x)=f(x)-\sum_{p \in \mathcal{P}} m^{p} v^{p}\left(\frac{1}{m^{p}} x^{p}\right)
$$

(Theorem 7.1.6). Substituting these results into the arguments above yields
Theorem 8.2.4. Let F be a potential game with potential function f, let $V_{F, v}$ be the perturbed best response dynamic for F generated by the admissible deterministic perturbations $v=\left(v^{1}, \ldots, v^{p}\right)$, and let $A \subseteq P E(F, v)$ be smoothly connected. Then A is an isolated local maximizer set of \tilde{f} if and only if A is asymptotically stable under $V_{F, v}$.

8.3 Evolutionarily Stable States

In the remainder of this chapter, we introduce the notion of an evolutionarily stable state and show that it provides a sufficient condition for local stability under a wide range of evolutionary dynamics, including all of the dynamics that were shown to be globally convergent in stable games in Chapter 7.

The birth of evolutionary game theory can be dated to the definition of an evolutionarily stable strategy in single-population matching environments by Maynard Smith and Price. In introducing this concept, these authors envisioned model of evolution quite different from the dynamic models considered in this book. Maynard Smith and Price focused on monomorphic populations-populations whose members all choose the same strategybut allowed this common strategy to be a mixed strategy. Their notion of an evolutionarily stable strategy is meant to capture the capacity of a monomorphic population to resist invasion by a monomorphic mutant group whose members play some alternative mixed strategy.

Clearly, Maynard Smith and Price's model is different from the polymorphic-population, pure-strategist model studied in this book. Even so, Maynard Smith and Price's formal definition of an evolutionarily stable strategy remains coherent in our setting: indeed, we
adopt it as our definition of an evolutionarily stable state, allowing us use the acronym "ESS" without regard for context.

The interpretation of ESS in the polymorphic population setting is somewhat strained, since it relies on comparisons between the aggregate payoffs of the incumbent and invading populations, rather than on direct comparisons of the payoffs to different strategies. Still, the fact that the ESS condition is sufficient for stability under many population dynamics amply justifies its use.

Even restricting attention to single-population settings, the literature offers many alternate definitions of ESS and of related concepts. As we shall see, the differences between these definitions are rather subtle, and in random matching environments, all of the concepts we consider below are equivalent. But in multipopulation settings, there are two quite distinct definitions of ESS. One is most natural for studying monomorphic models à la Maynard Smith and Price, while the other is most natural for the polymorphic models considered here. It is a definition of the latter type, which we dub Taylor ESS, that provides our sufficient condition for stability for multipopulation dynamics.

8.3.1 Single-Population Games

Let us focus first on the case of single-population games. In this context, we call $x \in X$ an evolutionarily stable state (ESS) of F if
(8.2) \quad There is a neighborhood O of x such that $(y-x)^{\prime} F(y)<0$ for all $y \in O-\{x\}$.

Two equivalent characterizations of ESS are provided in Theorems 8.3.1 and 8.3.5 below. While the conditions from Theorem 8.3.5 are the closest to the original definition of ESS (see the Notes), we use the definition above because it is the most concise.

We can interpret definition (8.2) using the notion of invasion from Section 3.3.3. Fix $x \in X$, and let $y \in O$ be a population state near x. Condition (8.2) requires that if there is an incumbent population whose aggregate behavior is described by y, and an infinitesimal group of invaders whose aggregate behavior is described by x, then the average payoff of the invaders must exceed the average payoff in the incumbent population.

While it is appealingly simple, it not immediately clear why definition (8.2) should be viewed as a stability condition for x : it considers invasions of other states y by x, while one would expect a stability condition for x to address invasions of x by other states. We argue next that (8.2) is equivalent to a condition that is somewhat more cumbersome, but that is stated in terms of invasions of x by other states.

This new condition is stated in terms of inequalities of the form

$$
\begin{equation*}
(y-x)^{\prime} F(\varepsilon y+(1-\varepsilon) x)<0 \tag{8.3}
\end{equation*}
$$

Suppose that an incumbent population with aggregate behavior x is invaded by group with aggregate behavior y, with the invaders making up an ε share of the post-entry population. Inequality (8.3) requires that the average payoffs of the incumbents exceed the average payoffs of the invaders.

Now, consider the following requirement on the population state x :

$$
\begin{equation*}
\text { There is an } \bar{\varepsilon}>0 \text { such that (8.3) holds for all } y \in X-\{x\} \text { and } \varepsilon \in(0, \bar{\varepsilon}) \text {. } \tag{8.4}
\end{equation*}
$$

Condition (8.4) says that x admits a uniform invasion barrier: so long as the proportion of invaders in the post-entry population is less than $\bar{\varepsilon}$, the incumbents will receive higher payoffs than the invaders in aggregate. If we define the invasion barrier of x against y by

$$
b_{x}(y)=\inf \left(\left\{\varepsilon \in(0,1):(y-x)^{\prime} F(\varepsilon y+(1-\varepsilon) x) \geq 0\right\} \cup\{1\}\right),
$$

then condition (8.4) says that $b_{x}(y) \geq \bar{\varepsilon}>0$ for all $y \in X-\{x\}$.
Theorem 8.3 .1 shows that ESSs are characterized by the existence of a uniform invasion barrier.

Theorem 8.3.1. State $x \in X$ is an ESS if and only if condition (8.4) holds.
Exercise 8.3.2. Prove Theorem 8.3.1 via the following three steps.
(i) Show that if condition (8.4) holds, then there is a $\delta>0$ such that the set $U=$ $\left\{(1-\lambda) x+\lambda y: y \in X, \lambda \in\left[0, b_{x}(y)\right)\right\}$ contains a δ-neighborhood of x. (Hint: Start by representing each point in $X-\{x\}$ as a convex combination of x and a point in the set $C=\left\{y \in X: y_{i}=0\right.$ for some $\left.i \in \operatorname{support}(x)\right\}$.)
(ii) Use part (i) to show that condition (8.4) is equivalent to the following condition:
(8.5) There is a neighborhood O of x such that (8.3) holds for all $y \in O-\{x\}$ and $\varepsilon \in(0,1)$.
(iii) Finally, show that x is an ESS if and only if condition (8.5) holds.

Exercise 8.3.3. Consider the following variant of condition (8.4):

(8.6) For each $y \in X-\{x\}$, there is an $\bar{\varepsilon}>0$ such that (8.3) holds for all $\varepsilon \in(0, \bar{\varepsilon})$.

This condition requires a positive invasion barrier $b_{x}(y)$ for each $y \in X-\{x\}$, but does not require uniformity: invasion barriers need not be bounded away from 0 .
(i) Show that if $F(x)=A x$ is linear, then condition (8.6) is equivalent to condition (8.4), and so characterizes ESS in these games. (Hint: Observe that

$$
b_{x}(y)= \begin{cases}\frac{(x-y)^{\prime} A x}{(x-y)^{\prime} A(x-y)} & \text { if }(y-x)^{\prime} A x<0 \text { and }(y-x)^{\prime} A y>0 \\ 0 & \text { otherwise. } .\end{cases}
$$

(ii) Construct a three-strategy game with a state x^{*} that satisfies condition (8.6) but that is not an ESS. (Hint: Let $x^{*}=\left(0, \frac{1}{2}, \frac{1}{2}\right)$, and let D_{1} and D_{2} be closed disks in $X \subset \mathbf{R}^{3}$ that are tangent to $\operatorname{bd}(X)$ at x^{*} and whose radii are r_{1} and $r_{2}>r_{1}$. Introduce a payoff function of the form $F(x)=-c(x)\left(x-x^{*}\right)$, where $c(x)$ is positive on $\operatorname{int}\left(D_{1}\right) \cup\left(X-D_{2}\right)$ and negative on $\operatorname{int}\left(D_{2}\right)-D_{1}$. Then use Proposition 8.3.4 below.)

We now turn to the relationship between ESS and Nash equilibrium. As a first step, we show that the former is a refinement of the latter:

Proposition 8.3.4. Every ESS is an isolated Nash equilibrium.

Proof. Let x be an ESS of F, let O be the neighborhood posited in condition (8.2), and let $y \in X-\{x\}$. Then for all small enough $\varepsilon>0, x_{\varepsilon}=\varepsilon y+(1-\varepsilon) x$ is in O, and so satisfies $\left(x-x_{\varepsilon}\right)^{\prime} F\left(x_{\varepsilon}\right)>0$. Simplifying and dividing by ε yields $(x-y)^{\prime} F\left(x_{\varepsilon}\right) \geq 0$, so taking ε to zero yields $(y-x)^{\prime} F(x) \leq 0$. That is, x is a Nash equilibrium. Moreover, if $w \in O-\{x\}$ were a Nash equilibrium, we would have $(w-x)^{\prime} F(w) \geq 0$, contradicting that x satisfies (8.2).

The converse of Proposition 8.3 .4 is false: the mixed equilibrium of a two-strategy coordination game provides a simple counterexample.

Theorem 8.3 .5 shows precisely what restrictions ESS adds to those already imposed by Nash equilibrium.

Theorem 8.3.5. Suppose that F is Lipschitz continuous. Then state x is an ESS if and only if
(8.7) $\quad x$ is a Nash equilibrium: $(y-x)^{\prime} F(x) \leq 0$ for all $y \in X$.

There is a neighborhood O of x such that for all $y \in O-\{x\}$,

$$
(y-x)^{\prime} F(x)=0 \text { implies that }(y-x)^{\prime} F(y)<0
$$

According to the theorem, an ESS x is a Nash equilibrium that satisfies the following additional property: if a state y near x is an alternative best response to x, then an infinitesimal group of invaders whose aggregate behavior is described by x can invade an incumbent population playing y.

Exercise 8.3.6. Show that if $F(x)=A x$ is linear, then condition (8.8) is equivalent to the global condition

$$
\begin{equation*}
\text { For all } y \in X-\{x\},(y-x)^{\prime} F(x)=0 \text { implies that }(y-x)^{\prime} F(y)<0 . \tag{8.9}
\end{equation*}
$$

Proof of Theorem 8.3.5. That condition (8.2) implies conditions (8.7) and (8.8) follows easily from Proposition 8.3.4. While the converse is immediate if $x \in \operatorname{int}(X)$, in general the proof of the converse requires a delicate argument.

To begin, suppose that $x \in X$ satisfies conditions (8.7) and (8.8). Let $S^{*}=\operatorname{argmax}_{i \in S} F_{i}(x)$ be the set of pure best responses to x, let $S^{0}=S-S^{*}$, let $X^{*}=\left\{v^{*} \in X: \operatorname{support}\left(v^{*}\right) \subseteq S^{*}\right\}$ be the set of mixed best responses to x, and let and $X^{0}=\left\{v^{0} \in X\right.$: support $\left.\left(v^{0}\right) \subseteq S^{0}\right\}$ be the set of states at which all best responses to x are unused. Since x is a Nash equilibrium, we have that $\operatorname{support}(x) \subseteq S^{*}$ and $x \in X^{*}$. Moreover, each $y \in X$ can be represented as a convex combination of the form

$$
y=(1-\lambda) y^{*}+\lambda y^{0},
$$

where $y^{*} \in X^{*}, y^{0} \in X^{0}$, and $\lambda=\sum_{j \in S^{0}} y_{j} \in[0,1]$. Evidently, we have $y^{*}=y$ when $\lambda=0$, and $y^{0}=y$ when $\lambda=1$; in all other cases, y uniquely determines both y^{*} and y^{0}.

We want to show that for some neighborhood U of x, we have $(y-x)^{\prime} F(y)<0$ for all $y \in U-\{x\}$. To do so, we introduce the decomposition

$$
\begin{align*}
(y-x)^{\prime} F(y) & =\left((1-\lambda) y^{*}+\lambda y^{0}-x\right)^{\prime} F(y) \tag{8.10}\\
& =\lambda\left(y^{0}-x\right)^{\prime} F(y)+(1-\lambda)\left(y^{*}-x\right)^{\prime}\left(F(y)-F\left(y^{*}\right)\right)+(1-\lambda)\left(y^{*}-x\right)^{\prime} F\left(y^{*}\right) \\
& \equiv T_{1}(y)+T_{2}(y)+T_{3}(y)
\end{align*}
$$

To prove the theorem, it is enough to establish these two claims:

$$
\begin{align*}
& T_{1}(y)+T_{2}(y) \leq 0 \text { when } y \in U, \text { and } T_{1}(y)+T_{2}(y)<0 \text { when } y \in U-X^{*} ; \tag{8.11}\\
& T_{3}(y) \leq 0 \text { when } y \in U, \text { and } T_{3}(y)<0 \text { when } y \in U \cap X^{*}-\{x\} . \tag{8.12}
\end{align*}
$$

To accomplish this, let $\|v\|=\sum_{i=1}^{n}\left|v_{i}\right|$ denote the L^{1} norm of $v \in \mathbf{R}^{n}$, and let K be the Lipschitz constant for F with respect to this norm. Also, let O be the neighborhood from condition (8.8), and choose $r>0$ so that O contains a ball of radius r centered at x.

Since $x \in X^{*}$ and $y^{0} \in X^{0}$, we have that $\left(y^{0}-x\right)^{\prime} F(x)<0$. Therefore, since F is continuous,
we can pick a neighborhood U^{\prime} of x and a positive constant ε such that

$$
\begin{equation*}
\lambda\left(y^{0}-x\right)^{\prime} F(y)<-\lambda \varepsilon \text { for all } y \in U^{\prime} \tag{8.13}
\end{equation*}
$$

Moreover, we can choose a neighborhood $U \subseteq U^{\prime}$ of x such that

$$
\begin{equation*}
\|y-x\|<\min \left\{\frac{\varepsilon}{20 K}, \frac{r}{5}, \frac{1}{2}\right\} \text { whenever } y \in U \tag{8.14}
\end{equation*}
$$

Suppose that $\|y-x\| \leq \frac{1}{2}$. Since support $(x) \cap S^{0}=\varnothing$, we have that

$$
\lambda=\sum_{j \in S^{0}}\left|y_{j}\right|=\sum_{j \in S^{0}}\left|y_{j}-x_{j}\right| \leq \sum_{i \in S^{*}}\left|y_{i}-x_{i}\right|+\sum_{j \in S^{0}}\left|y_{j}-x_{j}\right|=\|y-x\| \leq \frac{1}{2}
$$

and so that $\frac{1}{1-\lambda} \leq 2$. Since $\|v-y\| \leq 2$ for any $v \in X$, it follows that

$$
\begin{aligned}
\left\|y^{*}-x\right\| & =\left\|\frac{1}{1-\lambda}\left(y-\lambda y^{0}\right)-x\right\| \\
& \leq\|y-x\|+\frac{\lambda}{1-\lambda}\left\|y^{0}-y\right\| \\
& \leq\|y-x\|+4 \lambda \\
& \leq 5\|y-x\| .
\end{aligned}
$$

Equation (8.14) therefore yields

$$
\begin{equation*}
\left\|y^{*}-x\right\|<\min \left\{\frac{\varepsilon}{4 K}, r\right\} \text { whenever } y \in U . \tag{8.15}
\end{equation*}
$$

Now suppose that $y \in U$. Applying the first bound in (8.15), we find that

$$
\begin{aligned}
(1-\lambda)\left(y^{*}-x\right)^{\prime}\left(F(y)-F\left(y^{*}\right)\right) & \leq\left\|y^{*}-x\right\| K\left\|y-y^{*}\right\| \\
& =\left\|y^{*}-x\right\| K\left\|\lambda\left(y^{0}-y^{*}\right)\right\| \\
& =2 \lambda K\left\|y^{*}-x\right\| \\
& \leq \frac{1}{2} \lambda \varepsilon .
\end{aligned}
$$

Since $\lambda>0$ when $y \notin X^{*}$, combining this bound with (8.13) yields claim (8.11).
The second bound in (8.15) tells us that $y^{*} \in O$. Since $y^{*} \in X^{*}$ as well, we have that $\left(y^{*}-x\right)^{\prime} F(x)=0$, so condition (8.8) tells us that

$$
\left(y^{*}-x\right)^{\prime} F\left(y^{*}\right) \leq 0, \text { with equality if and only if } y^{*}=x
$$

Since y^{*} is distinct from x whenever $y \in X^{*}-\{x\}$, we have claim (8.12). This completes the
proof of the theorem.

8.3.2 Multipopulation Games

As we noted at the start of this section, there are two rather different ways of extending the definition of ESS from a single-population setting to a multipopulation setting. If F is a game played by $p \geq 1$ populations, we call $x \in X$ a Taylor $E S S$ of F if
(8.16) \quad There is a neighborhood O of x such that $(y-x)^{\prime} F(y)<0$ for all $y \in O-\{x\}$.
(The text of this condition is identical that in (8.2); the only difference is that F may now be a multipopulation game.) We call x a Cressman ESS of F if

There is a neighborhood O of x such that for all $y \in O-\{x\}$, there is a $p \in \mathcal{P}$ such that $\left(y^{p}-x^{p}\right)^{\prime} F^{p}(y)<0$.

Condition (8.17) is identical to condition (8.16) in single-population settings. But in multipopulation settings, it is weaker. Both conditions consider invasions of a collection of incumbent populations $y=\left(y^{1}, \ldots, y^{p}\right) \in O-\{x\}$ by a collection of invading populations $x=\left(x^{1}, \ldots, x^{p}\right)$. For x to be a Taylor ESS, the aggregate payoff of the invading populations must exceed the aggregate payoff of the incumbent populations. But for x to be a Cressman ESS, it is enough that one of the invading populations x^{p} earn a higher average payoff than the corresponding incumbent population y^{p}.

If we focus on the evolutionary setting studied by Maynard Smith and Price-that of monomorphic populations of mixed strategists-then the appropriate extension of the ESS concept to multiple populations is Cressman ESS. (See the Notes for an extended discussion.) But to understand the dynamics of behavior in polymorphic populations of pure strategists, Taylor ESS turns out to be the more useful condition. Because of this, we will write "ESS" in place of "Taylor ESS" in some of the discussions below.

Exercise 8.3.7. Let $F=\left(F^{1}, F^{2}\right)$ be a population game, and let $\hat{F}=\left(F^{1}, 2 F^{2}\right)$ be the game obtained by doubling the payoffs of population 2's strategies. Show that F and \hat{F} have the same Nash equilibria and Cressman ESSs, but that their Taylor ESSs may differ.

Exercise 8.3.8. Suppose that F has no own-population interactions: $F^{p}(x)$ is independent of x^{p} for all $p \in \mathcal{P}$. Show that if x^{*} is a Cressman ESS of F, then it is a pure social state: $\left(x^{*}\right)^{p}=m^{p} e_{i}^{p}$ for some $i \in S^{p}$ and $p \in \mathscr{P}$. Of course, this implies that any Taylor ESS is a pure social state as well. See Proposition 3.3 .10 for a closely related result in the context
of stable games. (Hint: If x^{p} is not pure, consider an invasion by $y=\left(y^{p}, x^{-p}\right)$, where y^{p} is an alternate best response to x.)

8.3.3 Regular Taylor ESS

While in Section 8.3.2 we focused on the distinction between Taylor ESS and Cressman ESS, it is also the case that each of these concepts admits a number of characterizations corresponding to those of single population ESS. For example, Theorem 8.3.5 has the following analogue for Taylor ESS

Corollary 8.3.9. Suppose that F is Lipschitz continuous. Then x is a Taylor ESS if and only if
x is a Nash equilibrium: $(y-x)^{\prime} F(x) \leq 0$ for all $y \in X$.
There is a neighborhood O of x such that for all $y \in O-\{x\}$,

$$
\begin{equation*}
(y-x)^{\prime} F(x)=0 \text { implies that }(y-x)^{\prime} F(y)<0 \tag{8.19}
\end{equation*}
$$

The text of these conditions is identical to that in conditions (8.7) and (8.8), but F is now allowed to be a multipopulation game.

Some of our local stability results require a slight strengthening of these conditions. To strengthen the Nash equilibrium condition (8.18), we suppose that x is a quasistrict equilibrium: within each population, all strategies in use earn the same payoff, a payoff that is strictly greater than that of each unused strategy. (This is a generalization of strict equiibrium, which in addition requires x to be a pure state.) To strengthen (8.19), we replace the inequality in this condition with a differential version. All told, we call $x \in X$ a regular Taylor ESS if
(8.20) $\quad x$ is a quasistrict equilibrium: $F_{i}^{p}(x)=\bar{F}^{p}(x)>F_{j}^{p}(x)$ whenever $x_{i}^{p}>0$ and $x_{j}^{p}=0$.
(8.21) For all $y \in X-\{x\},(y-x)^{\prime} F(x)=0$ implies that $(y-x)^{\prime} D F(x)(y-x)<0$.

When $p=1$, we can call a state x satisfying (8.20) and (8.21) a regular ESS for short.
Exercise 8.3.10. (i) Confirm that every regular Taylor ESS is a Taylor ESS.
(ii) Show that condition (8.21) does not change if the implication is only checked for $y \neq x$ in a neighborhood of x, as in condition (8.19).
(iii) Show that if F is linear, then condition (8.21) is equivalent to condition (8.19).

It is useful to have a more concise characterization of regular Taylor ESS. For any set of strategies $I \subset \bigcup_{p \in \mathcal{P}} S^{p}$, let $\mathbf{R}_{I}^{n}=\left\{y \in \mathbf{R}^{n}: y_{j}^{p}=0\right.$ whenever $\left.j \notin I\right\}$ denote the set of vectors in \mathbf{R}^{n} whose components corresponding to strategies outside I equal zero. Also, let $S(x) \subseteq \bigcup_{p \in \mathcal{P}} S^{p}$ denote the support of state x. Then it is easy to verify

Observation 8.3.11. State x is a regular Taylor ESS if and only if is a quasistrict equilibrium that satisfies

$$
\begin{equation*}
z^{\prime} D F(x) z<0 \text { for all nonzero } z \in T X \cap \mathbf{R}_{S(x)}^{n} . \tag{8.22}
\end{equation*}
$$

Condition (8.22) resembles the derivative condition we associate with strictly stable games. However, the condition need only hold at the equilibrium, and negative definiteness is only required to hold in directions that move along the face of X on which the equilibrium lies.

8.4 Local Stability via Lyapunov Functions

In this remainder of this chapter, we show that any regular Taylor ESS x^{*} is locally stable under many evolutionary dynamics. In this section, our approach is to construct a strict local Lyapunov function for each dynamic in question: that is, a nonnegative function defined in a neighborhood of x^{*} that vanishes precisely at x^{*} and whose value decreases along solution of the dynamic other than the stationary one at x^{*}. The results presented in Appendix 7.B show that the existence of such a function ensures the asymptotically stability of x^{*}.

The similarity between the definitions of regular ESS and of stable games-in particular, the negative semidefiniteness conditions that play a central role in both contextssuggests the Lyapunov functions for stable games from Section 7.2 as the natural starting points for our stability analyses of ESSs. In some cases-under the projection and replicator dynamics, and whenever the ESS is interior-we will be able to use the Lyapunov functions from Section 7.2 without amendment. But more generally, we will need to modify these functions in order to make them local Lyapunov functions for ESSs.

8.4.1 The Replicator and Projection Dynamics

The analysis is simplest in the cases of the replicator and projection dynamics. In Section 7.2, we proved global convergence of these dynamics in every strictly stable game by showing that measures of "distance" from the game's unique Nash equilibrium served as global Lyapunov functions. The proofs of these convergence results relied on nothing about the payoff structure of the game apart from the fact that the game's unique Nash equilibrium is also a GESS.

This observation suggests that if state x^{*} is a Taylor ESS of an arbitrary population game, the same "distance" functions will serve as local Lyapunov functions for x^{*} under
the two dynamics. We confirm this logic in the following theorem.
Theorem 8.4.1. Let x^{*} be a Taylor ESS of F. Then x^{*} is asymptotically stable under
(i) the replicator dynamic for F;
(ii) the projection dynamic for F.

Exercise 8.4.2. Prove Theorem 8.4 .1 by showing that the functions $H_{x^{*}}$ and $E_{x^{*}}$ from Theorems 7.2.4 and 7.2.1 define strict local Lyapunov functions for the two dynamics.

8.4.2 Target and Pairwise Comparison Dynamics: Interior ESS

In proving convergence results for other classes of dynamics in Section 7.2, we relied directly on the negative semidefiniteness condition (3.16) that characterizes stable games. If a game admits an interior ESS that satisfies the strict inequalities in (8.22), then condition (3.16) holds in a neighborhood of the ESS. This allows us again to use the Lyapunov functions from Section 7.2 without amendment to prove local stability results.

Theorem 8.4.3. Let $x^{*} \in \operatorname{int}(X)$ be a regular Taylor ESS of F. Then x^{*} is asymptotically stable under
(i) any separable excess payoff dynamic for F;
(ii) the best response dynamic for F;
(iii) any impartial pairwise comparison dynamic for F.

Exercise 8.4.4. Prove Theorem 8.4 .3 by showing that the functions Γ, G, and Ψ from Theorems 7.2.8, 7.2.9, and 7.2.11 define a strict local Lyapunov functions for an ESS x^{*} under the three dynamics.

Rest points of perturbed best response dynamics generally do not coincide with Nash equilibria, and hence with ESSs. Nevertheless, the next exercise indicates that an appropriate negative definiteness condition is still enough to ensure local stability.

Exercise 8.4.5. Let \tilde{x} be a perturbed equilibrium of (F, v) for some admissible deterministic perturbations $v=\left(v^{1}, \ldots v^{p}\right)$, and suppose that $z^{\prime} D F(\tilde{x}) z<0$ for all nonzero $z \in T X$. Show that \tilde{x} is isolated in the set of perturbed equilibria, and that the function \tilde{G} from Theorem 7.2.10 defines a strict local Lyapunov function for \tilde{x}. (Hint: To show that \tilde{x} is isolated, use the argument at the end of the proof of Theorem 7.2.10.)

For consistency with our previous results, it is natural to try prove stability results for perturbed best response dynamics for games with an interior ESS. To do so, we need to assume that the size of the perturbations is "small", in the hopes that there will be a perturbed equilibrium that is "close" to the ESS. Since the logit dynamic is parameterized by a noise level η, it provides a natural setting for the result we seek.

Theorem 8.4.6. Let $x^{*} \in \operatorname{int}(X)$ be a regular Taylor ESS of F. Then for some neighborhood O of x^{*} and each $\eta>0$ less than some $\hat{\eta}>0$, there is a unique $\operatorname{logit}(\eta)$ equilibrium \tilde{x}^{η} in O, and this equilibrium is asymptotically stable under the $\operatorname{logit}(\eta)$ dynamic. Finally, \tilde{x}^{η} varies continuously in η, and $\lim _{\eta \rightarrow 0} \tilde{x}^{\eta}=x^{*}$.

Proof. $(p=1)$ Theorem 7.2.10 and Exericises 6.2 .6 and 6.2 .7 show that for $\eta>0$, the function

$$
\tilde{G}^{\eta}(x)=\eta \log \left(\sum_{j \in S} \exp \left(\eta^{-1} \hat{F}_{j}(x)\right)\right)+\eta \sum_{j \in S} x_{j} \log x_{j}
$$

(with $0 \log 0 \equiv 0$) is a Lyapunov function for the $\operatorname{logit}(\eta)$ dynamic when F is a stable game. If we define

$$
\tilde{G}^{0}(x) \equiv G(x)=\max _{j \in S} \hat{F}_{j}(x)
$$

to be the Lyapunov function for the best response dynamic in stable games, then $\tilde{G}^{\eta}(x)$ is continuous in (x, η) on $X \times[0, \infty)$,

By Exercise 8.4.4, G defines a strict local Lyapunov function for the best response dynamic at the interior ESS x^{*}. In particular, x^{*} is local minimizer of G : there is an open, convex neighborhood $O \subset X$ of x^{*} such that $G(x)>G\left(x^{*}\right)$ for all $x \in O-\left\{x^{*}\right\}$. Moreover, since F is C^{1} and satisfies $z^{\prime} D F\left(x^{*}\right) z<0$ for all nonzero $z \in T X$, we can choose O in such a way that $z^{\prime} D F(x) z<0$ for all nonzero $z \in T X$ and $x \in O$.

Because $\tilde{G}^{\eta}(x)$ is continuous in (x, η), the Theorem of the Maximum (see the Notes) implies that the map

$$
\eta \mapsto \tilde{\beta}(\eta) \equiv \underset{x \in \mathrm{cl}(O)}{\operatorname{argmin}} \tilde{G}^{\eta}(x) .
$$

is upper hemicontinuous on $[0, \infty)$. Thus, since $\tilde{\beta}(0)=\left\{x^{*}\right\} \subset O$ (in particular, since $\left.x^{*} \notin \operatorname{bd}(O)\right)$, there is an $\hat{\eta}>0$ such that $\tilde{\beta}(\eta) \subset O$ for all $\eta<\hat{\eta}$. This implies that each $\tilde{x}^{\eta} \in \tilde{\beta}(\eta)$ is a local minimizer of \tilde{G}^{η} not only with respect to $\mathrm{cl}(O)$, but also with respect to the full state space X.

Exercise 8.4.5 implies that the value of \tilde{G}^{η} is decreasing along solutions to the $\operatorname{logit}(\eta)$ dynamic in the set O, implying that each local minimizer \tilde{x}^{η} is a rest point of this dynamicindeed, \tilde{x}^{η} must be an asymptotically stable rest point. Finally, since O is convex, the last paragraph of the proof of Theorem 7.2 .10 shows that when $\eta<\hat{\eta}, \tilde{\beta}(\eta) \subset O$ is a singleton. This completes the proof of the theorem.

8.4.3 Target and Pairwise Comparison Dynamics: Boundary ESS

It remains for us to prove local stability results for boundary ESSs for the the dynamics considered in Theorem 8.4.3.

Theorem 8.4.7. Let x^{*} be a regular Taylor ESS of F. Then x^{*} is asymptotically stable under
(i) any separable excess payoff dynamic for F;
(ii) the best response dynamic for F;
(iii) any impartial pairwise comparison dynamic for F.

To prove Theorem 8.4.7, we show that suitably modified versions of the Lyapunov functions for stable games serve as local Lyapunov functions here. Letting $S^{p}\left(x^{*}\right)=$ support $\left(\left(x^{*}\right)^{p}\right)$ and $C>0$, we augment the functions Γ, G, and Ψ from Section 7.2 by the function

$$
\begin{equation*}
\Upsilon_{x^{*}}(x)=C \sum_{p \in \mathcal{P}} \sum_{j \notin S^{P}\left(x^{*}\right)} x_{j}^{p}, \tag{8.23}
\end{equation*}
$$

which is proportional to the number of agents using strategies outside the support of x^{*}. We provide a detailed proof of the theorem for the case of impartial pairwise comparison dynamics, and leave the proofs of the other two cases as exercises.

Proof of Theorem 8.4.7(iii). $(p=1)$ Let $\dot{x}=V_{F}(x)$ be an impartial pairwise comparison dynamic for F. Define the C^{1} function $\Psi_{x^{*}}: X \rightarrow \mathbf{R}$ by

$$
\Psi_{x^{*}}(x)=\Psi(x)+\Upsilon_{x^{*}}(x)=\Psi(x)+C \sum_{j \notin S\left(x^{*}\right)} x_{j} .
$$

Here Ψ is the Lyapunov function defined in Theorem 7.2.11, and $\Upsilon_{x^{*}}$ is as defined in equation (8.23); the constant $C>0$ will be determined later.

Since V_{F} is an impartial pairwise comparison dynamic, Theorem 7.2.11 shows that the function Ψ is nonnegative, with $\Psi(x)=0$ if and only if $x \in N E(F)$. It follows that $\Psi_{x^{*}}$ too is nonnegative, with $\Psi_{x^{*}}(x)=0$ if and only if x is a Nash equilibrium of F with $\operatorname{support}(x) \subseteq \operatorname{support}\left(x^{*}\right)$. Thus, since x^{*} is an ESS, it is isolated in the set of Nash equilibria (Proposition 8.3.4), so there is a neighborhood O of x^{*} on which x^{*} is the unique zero of $\Psi_{x^{*}}$. If we can show that there is also a neighborhood O^{\prime} of x^{*} such that $\Psi_{x^{*}}(x)<0$ for all $x \in O^{\prime}-\left\{x^{*}\right\}$, then $\Psi_{x^{*}}$ is a strict local Lyapunov function for x^{*}, so the conclusion of the theorem will follow from Corollary 7.B.7.

To reduce the amount of notation in the analysis to come, let $\mathbf{1}^{0} \in \mathbf{R}^{n}$ be the vector whose j th component equals 0 if $j \in \operatorname{support}\left(x^{*}\right)$ and equals 1 otherwise, so that $\left(\mathbf{1}^{0}\right)^{\prime} x$ is
the mass of agents who use strategies outside the support of x^{*} at state x. Then we can write $\Psi_{x^{*}}(x)=\Psi(x)+C\left(\mathbf{1}^{0}\right)^{\prime} x$, and so can express the time derivative of $\Psi_{x^{*}}$ as

$$
\dot{\Psi}_{x^{*}}(x)=\dot{\Psi}(x)+C\left(1^{0}\right)^{\prime} \dot{x}
$$

Now the proof of Theorem 7.2.11 shows that the time derivative of Ψ satisfies

$$
\dot{\Psi}(x) \leq \dot{x}^{\prime} D F(x) \dot{x}
$$

with equality holding precisely at the Nash equilibria of V_{F}. To finish the proof, it is enough to show that

$$
\dot{x}^{\prime} D F(x) \dot{x}+C\left(\mathbf{1}^{0}\right)^{\prime} \dot{x} \leq 0
$$

for all $x \in O^{\prime}-\left\{x^{*}\right\}$. This follows directly from the following lemma, choosing $C \geq M / N$.
Lemma 8.4.8. Let $\dot{x}=V_{F}(x)$ be a pairwise comparison dynamic for F, and let x^{*} be a regular ESS of F. Then there is a neighborhood O^{\prime} of x^{*} and constants $M, N>0$ such that for all $x \in O^{\prime}$,
(i) $\dot{x}^{\prime} D F(x) \dot{x} \leq M\left(\mathbf{1}^{0}\right)^{\prime} x$;
(ii) $\left(\mathbf{1}^{0}\right)^{\prime} \dot{x} \leq-N\left(\mathbf{1}^{0}\right)^{\prime} x$.

Proof. Suppose without loss of generality that $S\left(x^{*}\right)=\operatorname{support}\left(x^{*}\right)$ is given by $\left\{1, \ldots, n^{*}\right\}$. Then to complement $\mathbf{1}^{0} \in \mathbf{R}^{n}$, let $\mathbf{1}^{*} \in \mathbf{R}^{n}$ be the vector whose first n^{*} components equal 1 and whose remaining components equal 0 , so that $\mathbf{1}=\mathbf{1}^{*}+\mathbf{1}^{0}$. Next, decompose the identity matrix I as $I^{*}+I^{0}$, where $I^{*}=\operatorname{diag}\left(\mathbf{1}^{*}\right)$ and $I^{0}=\operatorname{diag}\left(\mathbf{1}^{0}\right)$, and finally, decompose I^{*} as $\Phi^{*}+\Xi^{*}$, where $\Xi^{*}=\frac{1}{n^{*}} \mathbf{1}^{*}\left(\mathbf{1}^{*}\right)^{\prime}$ and $\Phi^{*}=I^{*}-\Xi^{*}$. Notice that Φ^{*} is the orthogonal projection of \mathbf{R}^{n} onto $\mathbf{R}_{0}^{n} \cap \mathbf{R}_{S\left(x^{*}\right)}^{n}=\left\{z \in \mathbf{R}_{0}^{n}: z_{j}=0\right.$ whenever $\left.j \notin S\left(x^{*}\right)\right\}$, and that $I=\Phi^{*}+\Xi^{*}+I^{0}$.

Using this decomposition of the identity matrix, we can write

$$
\begin{align*}
\dot{x}^{\prime} D F(x) \dot{x} & =\left(\left(\Phi^{*}+\Xi^{*}+I^{0}\right) \dot{x}\right)^{\prime} D F(x)\left(\left(\Phi^{*}+\Xi^{*}+I^{0}\right) \dot{x}\right) \\
& =\left(\Phi^{*} \dot{x}\right)^{\prime} D F(x)\left(\Phi^{*} \dot{x}\right)+\left(\left(\Xi^{*}+I^{0}\right) \dot{x}\right)^{\prime} D F(x) \dot{x}+\left(\Phi^{*} \dot{x}\right)^{\prime} D F(x)\left(\left(\Xi^{*}+I^{0}\right) \dot{x}\right) . \tag{8.24}
\end{align*}
$$

Since x^{*} is a regular ESS, we know that $z^{\prime} D F\left(x^{*}\right) z<0$ for all nonzero $z \in T X \cup \mathbf{R}_{S\left(x^{*}\right)}^{n}$. Thus, since $D F(x)$ is continuous in x, there is a neighborhood \hat{O} of x^{*} on which the first term of (8.24) is nonpositive.

Turning to the second term, note that since $\mathbf{1}^{\prime} \dot{x}=0$ and $\left(\mathbf{1}^{0}\right)^{\prime}=\mathbf{1}^{\prime} I^{0}$, we have that

$$
\left(\Xi^{*}+I^{0}\right) \dot{x}=\left(\frac{1}{n^{*}} \mathbf{1}^{*}\left(\mathbf{1}^{*}\right)^{\prime}+I^{0}\right) \dot{x}=\left(-\frac{1}{n^{*}} \mathbf{1}^{*}\left(\mathbf{1}^{0}\right)^{\prime}+I^{0}\right) \dot{x}=\left(\left(I-\frac{1}{n^{*}} \mathbf{1}^{*} \mathbf{1}^{\prime}\right) I^{0}\right) \dot{x} .
$$

Let $\|A\|$ denote the spectral norm of the matrix A (see Appendix 8.A.6). Then applying spectral norm inequalities and the Cauchy-Schwarz inequality, we find that

$$
\begin{equation*}
\left(\left(\Xi^{*}+I^{0}\right) \dot{x}\right)^{\prime} D F(x) \dot{x}=\left(\left(I-\frac{1}{n^{*}} \mathbf{1}^{*} \mathbf{1}^{\prime}\right) I^{0} \dot{x}\right)^{\prime} D F(x) \dot{x} \leq\left|I^{0} \dot{x}\right|\left\|I-\frac{1}{n^{*}} \mathbf{1}\left(\mathbf{1}^{*}\right)^{\prime}\right\|\|D F(x)\||\dot{x}| . \tag{8.25}
\end{equation*}
$$

Since $D F(x), V_{F}(x)$, and $\rho_{i j}(F(x), x)$ are continuous in x on the compact set X, we can find constants K and R such that

$$
\begin{equation*}
\left\|I-\frac{1}{n^{*}} \mathbf{1}\left(\mathbf{1}^{*}\right)^{\prime}\right\|\|D F(x)\||\dot{x}| \leq K \text { and } \max _{i, j \in S} \rho_{i j}(F(x), x) \leq R \quad \text { for all } x \in X . \tag{8.26}
\end{equation*}
$$

Now since x^{*} is a quasistrict equilibrium, we have that $F_{i}\left(x^{*}\right)=\bar{F}\left(x^{*}\right)>F_{j}\left(x^{*}\right)$ for all $i \in \operatorname{support}\left(x^{*}\right)=\left\{1, \ldots, n^{*}\right\}$ and all $j \notin \operatorname{support}\left(x^{*}\right)$. Thus, since the pairwise comparison dynamic satisfies sign preservation (5.24), we have $\rho_{i j}\left(F\left(x^{*}\right), x^{*}\right)=0$ for such i and j, and because F is continuous, there is a neighborhood $O^{\prime} \subseteq \hat{O}$ of x^{*} on which for such i and j we have $F_{i}(x)>F_{j}(x)$, and hence $\rho_{i j}(F(x), x)=0$. From this argument and the bound on $\rho_{i j}$ in (8.26), it follows that for $x \in O^{\prime}$, we have that

$$
\begin{aligned}
\left|I^{0} \dot{x}\right| & =\sqrt{\sum_{j>n^{*}}\left|\dot{x}_{j}\right|^{2}} \\
& \leq \sum_{j>n^{*}}\left|\dot{x}_{j}\right| \\
& =\sum_{j>n^{*}}\left|\sum_{k \in S} x_{k} \rho_{k j}(F(x), x)-x_{j} \sum_{k \in S} \rho_{j k}(F(x), x)\right| \\
& \left.\leq \sum_{j>n^{*}} \sum_{k \in S} x_{k} \rho_{k j}(F(x), x)+x_{j} \sum_{k \in S} \rho_{j k}(F(x), x)\right) \\
& =\sum_{j>n^{*}} \sum_{k>n^{*}} x_{k} \rho_{k j}(F(x), x)+\sum_{j>n^{*}} x_{j} \sum_{k \in S} \rho_{j k}(F(x), x) \\
& \leq 2 R n \sum_{j>n^{*}} x_{j} \\
& =2 R n\left(\mathbf{1}^{0}\right)^{\prime} x .
\end{aligned}
$$

We therefore conclude that at all $x \in O^{\prime}$,

$$
\left(\left(\Xi^{*}+I^{0}\right) \dot{x}\right)^{\prime} D F(x) \dot{x} \leq 2 K R n\left(\mathbf{1}^{0}\right)^{\prime} x .
$$

Essentially the same argument provides a similar bound on the third term of (8.24),
completing the proof of part (i) of the lemma.
We proceed with the proof of part (ii). Following the line of argument after equation (8.26) above, we note that since x^{*} is quasistrict and since the pairwise comparison dynamic satisfies sign preservation, we have $\rho_{j i}\left(F\left(x^{*}\right), x^{*}\right)>0$ and $\rho_{i j}\left(F\left(x^{*}\right), x^{*}\right)=0$ whenever $i \in \operatorname{support}\left(x^{*}\right)=\left\{1, \ldots, n^{*}\right\}$ and $j \notin \operatorname{support}\left(x^{*}\right)$. So, since F and ρ are continuous, sign preservation implies that there is a neighborhood O^{\prime} of x^{*} and an $r>0$ such that $\rho_{j i}(F(x), x)>r$ and $\rho_{i j}(F(x), x)=0$ for all $i \leq n^{*}, j>n^{*}$, and $x \in O^{\prime}$. Applying this observation and then canceling like terms when both j and k are greater than n^{*} in the sums below, we find that for all $x \in O^{\prime}$,

$$
\begin{aligned}
\left(\mathbf{1}^{0}\right)^{\prime} \dot{x} & =\sum_{j>n^{*}} \dot{x}_{j} \\
& =\sum_{j>n^{*}}\left(\sum_{k \in S} x_{k} \rho_{k j}(F(x), x)-x_{j} \sum_{k \in S} \rho_{j k}(F(x), x)\right) \\
& =\sum_{j>n^{*}}\left(\sum_{k>n^{*}} x_{k} \rho_{k j}(F(x), x)-x_{j} \sum_{k \in S} \rho_{j k}(F(x), x)\right) \\
& =-\sum_{j>n^{*}} x_{j} \sum_{i \leq n^{*}} \rho_{j i}(F(x), x) \\
& \leq-r n^{*}\left(\mathbf{1}^{0}\right)^{\prime} x .
\end{aligned}
$$

This completes the proof of the lemma, and thus the proof of Theorem 8.4.7.

Exercise 8.4.9. Prove Theorem 8.4.7(ii) (for $p=1$) by showing that under the best response dynamic, the function

$$
G_{x^{*}}(x)=G(x)+\Upsilon_{x^{*}}(x)=\max _{y \in X}(y-x)^{\prime} F(x)+C \sum_{j \notin\left(x^{*}\right)} x_{j}
$$

is a strict local Lyapunov function for any regular ESS x^{*}. (Hint: The proof is nearly the same as the one above, but building on the proof of Theorem 7.2.9 instead of the proof of Theorem 7.2.11, and using Theorems 7.B. 2 and 7.B. 6 in place of Corollary 7.B.7.)

Exercise 8.4.10. Prove Theorem 8.4.7(i) (for $p=1$) by showing that under the separable excess payoff dynamic with revision protocol τ, the function

$$
\Gamma_{x^{*}}(x)=\Gamma(x)+\Upsilon_{x^{*}}(x)=\sum_{i \in S} \int_{0}^{\hat{F}_{i}(x)} \tau_{i}(s) \mathrm{d} s+C \sum_{j \notin S\left(x^{*}\right)} x_{j}
$$

is a strict local Lyapunov function for any regular ESS x^{*}. (Hint: Establish this variant of Lemma 8.4.8: under the excess payoff dynamic generated by τ, there is a neighborhood O^{\prime} of x^{*} such that
(i) $\quad \dot{x}^{\prime} D F(x) \dot{x} \leq K T(x)\left(\mathbf{1}^{0}\right)^{\prime} x$ and
(ii) $\left(\mathbf{1}^{0}\right)^{\prime} \dot{x}=-T(x)\left(\mathbf{1}^{0}\right)^{\prime} x$,
for all $x \in O^{\prime}$, where $T(x)=\sum_{i \in S} \tau_{i}\left(\hat{F}_{i}(x)\right)$.)

8.5 Linearization of Imitative Dynamics

In this section and the next, we study the stability of rest points of evolutionary dynamics using linearization. This technique requires the dynamic in question to be smooth, at least near the rest point in question, and it can be inconclusive in borderline cases. But, more optimistically, it does not require the guesswork needed to find Lyapunov functions. Furthermore, instead of establishing just asymptotic stability, a rest point found stable via linearization (that is, one that is linearly stable) must attract solutions from all nearby initial conditions at an exponential rate. Linearization is also very useful for proving that a rest point is unstable, a fact we will avail ourselves of repeatedly when studying nonconvergence in Chapter 9. Finally, linearization techniques allow us to prove local stability results for imitative dynamics other than the replicator dynamic, for which no Lyapunov functions have been proposed.

In the Appendix, we explain the techniques from matrix analysis (Appendix 8.A), linear differential equation theory (Appendix 8.B), and linearization theory (Appendix 8.C) used in this chapter and the next. We assume in the remainder of this chapter and in the next chapter that payoffs are defined on the positive orthant (see Appendix 3.A.7), as doing so will allow us to avoid using affine calculus. Reviewing multivariate product and chain rules from Appendix 3.A. 4 may be helpful for following the arguments to come.

We begin the analysis with some general background on linearization of evolutionary dynamics. Recall that a single population dynamic
(D) $\quad \dot{x}=V(x)$
describes the evolution of the population state through the simplex X. In evaluating the stability of the rest point x^{*} using linearization, we are relying on the fact that near x^{*}, the dynamic (D) can typically be well approximated by the linear dynamic
(L) $\quad \dot{y}=D V\left(x^{*}\right) y$.

Because we are only interested in how (D) behaves on the simplex, we only care about how (L) behaves on the tangent space TX. Indeed, it is only because (D) defines a dynamic on X that it makes sense to think of (L) as a dynamic on TX. At each state $x \in X$, $V(x) \in T X$ describes the current direction of motion through the simplex. It follows that the derivative $D V(x)$ must map any tangent vector z into $T X$, as one can verify by writing

$$
V(x+z)=V(x)+D V(x) z+o(|z|)
$$

and noting that $V(x)$ and $V(x+z)$ are both in $T X$. Thus, in $(\mathrm{L}), \dot{y}$ lies in $T X$ whenever y lies in $T X$, implying that $T X$ is invariant under (L).

Keeping this argument in mind is important when using linearization to study stability under the dynamic (D): rather than looking at all the eigenvalues of $D V\left(x^{*}\right)$, we should only consider those associated with the restricted linear map $D V\left(x^{*}\right): T X \rightarrow T X$, which sends each tangent vector $z \in T X$ to a new tangent vector $D V\left(x^{*}\right) z \in T X$. The scalar $\lambda=a+\mathrm{i} b$ is an eigenvalue of this restricted map if $D V\left(x^{*}\right) z=\lambda z$ for some vector z whose real and imaginary parts are both in $T X$. If all eigenvalues of this restricted map have negative real part, then the rest point x^{*} is linearly stable under (D) (cf Corollary 8.C.2).

Hines's Lemma, stated next and proved in Appendix 8.A.7, is often the key to making these determinations. In stating this result, we let $\mathbf{R}_{0}^{n}=\left\{z \in \mathbf{R}^{n}: \mathbf{1}^{\prime} z=0\right\}$ denote the tangent space of the simplex. In the single population case, $T X$ and \mathbf{R}_{0}^{n} are the same, but it is useful to separate these two notations in multipopulation cases, where $T X=\prod_{p \in \mathcal{P}} \mathbf{R}_{0}^{n^{p}}$

Lemma 8.5.1. Suppose that $Q \in \mathbf{R}^{n \times n}$ is symmetric, satisfies $Q \mathbf{1}=\mathbf{0}$, and is positive definite with respect to \mathbf{R}_{0}^{n}, and that $A \in \mathbf{R}^{n \times n}$ is negative definite with respect to \mathbf{R}_{0}^{n}. Then each eigenvalue of the linear map $Q A: \mathbf{R}_{0}^{n} \rightarrow \mathbf{R}_{0}^{n}$ has negative real part.

8.5.1 The Replicator Dynamic

In this section, we show that any regular Taylor ESS x^{*} is linearly stable under the replicator dynamic. To begin, we focus on the case in which x^{*} is interior.

Theorem 8.5.2. Let $x^{*} \operatorname{int}(X)$ be a regular Taylor ESS of F. Then x^{*} is linearly stable under the replicator dynamic.

Proof. $(p=1)$ The single population replicator dynamic is given by
(R) $\quad \dot{x}_{i}=V_{i}(x)=x_{i} \hat{F}_{i}(x)$.

To compute $D V(x)$, recall from equation (7.21) that the derivative of the excess payoff
function $\hat{F}(x)=F(x)-\mathbf{1} \bar{F}(x)$ is given by

$$
D \hat{F}(x)=D F(x)-\mathbf{1}\left(x^{\prime} D F(x)+F(x)^{\prime}\right)=\left(I-\mathbf{1} x^{\prime}\right) D F(x)-\mathbf{1} F(x)^{\prime} .
$$

Then applying the product rule for componentwise products (see Appendix 3.A.4), we find that

$$
\begin{align*}
D V(x) & =D(\operatorname{diag}(x) \hat{F}(x)) \tag{8.27}\\
& =\operatorname{diag}(x) D \hat{F}(x)+\operatorname{diag}(\hat{F}(x)) \\
& =\operatorname{diag}(x)\left(\left(I-\mathbf{1} x^{\prime}\right) D F(x)-\mathbf{1} F(x)^{\prime}\right)+\operatorname{diag}(\hat{F}(x)) \\
& =Q(x) D F(x)-x F(x)^{\prime}+\operatorname{diag}(\hat{F}(x))
\end{align*}
$$

where we write $Q(x)=\operatorname{diag}(x)-x x^{\prime}$.
Since x^{*} is an interior Nash equilibrium, $F\left(x^{*}\right)$ is a constant vector, implying that $F\left(x^{*}\right)^{\prime} \Phi=\mathbf{0}^{\prime}$ and that $\hat{F}\left(x^{*}\right)=\mathbf{0}$. Thus, equation (8.27) becomes

$$
\begin{equation*}
D V\left(x^{*}\right) \Phi=Q\left(x^{*}\right) D F\left(x^{*}\right) \Phi . \tag{8.28}
\end{equation*}
$$

Since the matrices $Q\left(x^{*}\right)$ and $D F\left(x^{*}\right) \Phi$ satisfy the conditions of Hines's Lemma, the eigenvalues of $D V\left(x^{*}\right) \Phi$ (and hence of $D V\left(x^{*}\right)$) corresponding to directions in \mathbf{R}_{0}^{n} have negative real part. This completes the proof of the theorem.

Exercise 8.5.3. Let x^{*} be an interior Nash equilibrium of F that satisfies $z^{\prime} D F\left(x^{*}\right) z>0$ for all nonzero $z \in T X$. Show that x^{*} is a source under the replicator dynamic: all relevant eigenvalues of $D V\left(x^{*}\right)$ have positive real part, implying that all solutions of the replicator dynamic that start near x^{*} are repelled. (Hint: See the discussion in Appendix 8.A.7.) Also, construct a game with an equilibrium that satisfies the conditions of this result.

Exercise 8.5.4. Show that if $x^{*} \operatorname{int}(X)$ is a regular Taylor ESS, then x is linearly stable under the projection dynamic.

The next example highlights the fact that being a regular ESS is only a sufficient condition for an interior equilibrium to be locally stable under the replicator dynamic, not a necessary condition.

Example 8.5.5. Zeeman's game revisited. In Example 6.1.7, we introduced the single popu-
lation game $F(x)=A x$ generated by random matching in

$$
A=\left(\begin{array}{ccc}
0 & 6 & -4 \\
-3 & 0 & 5 \\
-1 & 3 & 0
\end{array}\right)
$$

This game admits Nash equilibria at states $x^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),\left(\frac{4}{5}, 0, \frac{1}{5}\right)$ and e_{1}; the replicator dynamic has rest points at these states, as well as at the restricted equilibria $\left(0, \frac{5}{8}, \frac{3}{8}\right), e_{2}$, and e_{3}. Examining the phase diagram in Figure 8.5.1, we see that the behavior of the dynamic near the non-Nash rest points is consistent with Theorem 8.1.1.

Since F is not a stable game (why not?), Theorem 8.5.2 does not tell us whether x^{*} is stable. But we can check this directly: following the proof of Theorem 8.5.2, we compute

$$
D V\left(x^{*}\right) \Phi=Q\left(x^{*}\right) D F\left(x^{*}\right) \Phi=Q\left(x^{*}\right) A \Phi=\frac{1}{9}\left(\begin{array}{ccc}
4 & 9 & -13 \\
-5 & -9 & 14 \\
1 & 0 & -1
\end{array}\right)
$$

In addition to the irrelevant eigenvalue of 0 corresponding to eigenvector 1 , this matrix has pair of complex eigenvalues, $-\frac{1}{3} \pm i \frac{\sqrt{2}}{3}$, corresponding to eigenvectors $(-2 \pm i(3 \sqrt{2}), 1 \mp$ $\mathrm{i}(3 \sqrt{2}), 1)^{\prime}$ whose real and complex parts lie in \mathbf{R}_{0}^{n}. Since the real parts of the relevant eigenvalues are both $-\frac{1}{3}$, the Nash equilibrium x^{*} is linearly stable under the replicator dynamic. §

We now establish the stability of all regular Taylor ESSs.
Theorem 8.5.6. Let x^{*} be a regular Taylor ESS of F. Then x^{*} is linearly stable under the replicator dynamic.

Proof. ($p=1$) Suppose without loss of generality that the support of x^{*} is $\left\{1, \ldots, n^{*}\right\}$, so that the number of unused strategies at x^{*} is $n^{0}=n-n^{*}$. For any matrix $M \in \mathbf{R}^{n \times n}$, we let $M^{++} \in \mathbf{R}^{n^{*} \times n^{*}}$ denote the upper left $n^{*} \times n^{*}$ block of M, and we define the blocks $M^{+0} \in \mathbf{R}^{n^{*} \times n^{0}}, M^{0+} \in \mathbf{R}^{n^{0} \times n^{*}}$, and $M^{00} \in \mathbf{R}^{n^{0} \times n^{0}}$ similarly. Also, for each vector $v \in \mathbf{R}^{n}$, we let $v^{+} \in \mathbf{R}^{n^{*}}$ and $v^{0} \in \mathbf{R}^{n^{0}}$ denote the upper and lower "blocks" of v.

Recall our expression (8.27) for the derivative matrix of the replicator dynamic:

$$
D V(x)=Q(x) D F(x)-x F(x)^{\prime}+\operatorname{diag}(\hat{F}(x)),
$$

where $Q(x)=\operatorname{diag}(x)-x x^{\prime}$. Now observe that $x_{j}^{*}=0$ for all $j>n^{*}$, that $\hat{F}_{i}\left(x^{*}\right)=0$ for all $i \leq n^{*}$, and, since x^{*} is quasistrict, that $\hat{F}_{j}\left(x^{*}\right)<0$ for all $j>n^{*}$ (see the proof of Lemma

Figure 8.5.1: The replicator dynamic in Zeeman's game.
5.5.4). Therefore, by writing $Q=Q\left(x^{*}\right), D=D F\left(x^{*}\right), \pi=F\left(x^{*}\right)$, and $\hat{\pi}=\hat{F}\left(x^{*}\right)$, we can express $D V\left(x^{*}\right)$ in the block diagonal form

$$
D V\left(x^{*}\right)=\left(\begin{array}{cc}
Q^{++} D^{++}-\left(x^{*}\right)^{+}\left(\pi^{+}\right)^{\prime} & Q^{++} D^{+0}-\left(x^{*}\right)^{+}\left(\pi^{0}\right)^{\prime} \tag{8.29}\\
\mathbf{0} & \operatorname{diag}\left(\hat{\pi}^{0}\right)
\end{array}\right) .
$$

To complete the proof of the theorem, we need to show that if $v+\mathrm{i} w$ with $v, w \in \mathbf{R}_{0}^{n}$ is an eigenvector of $D V\left(x^{*}\right)$ with eigenvalue $a+\mathrm{i} b$, then $a<0$.

We split the analysis into two cases. Suppose first that $(v+\mathrm{i} w)^{0}=\mathbf{0}$ (i.e., that $v_{j}=w_{j}=0$ whenever $j>n^{*}$). Then it is easy to see that $(v+\mathrm{i} w)^{+}$must be an eigenvector of $D V\left(x^{*}\right)^{++}=$ $Q^{++} D^{++}-\left(x^{*}\right)^{+}\left(\pi^{+}\right)^{\prime}$. Now because x^{*} is a Nash equilibrium with support $\left\{1, \ldots, n^{*}\right\}, \pi^{+}$is a constant vector, and since $v, w \in \mathbf{R}_{0}^{n}$ and $(v+\mathrm{i} w)^{0}=\mathbf{0}$, the components of $(v+\mathrm{i} w)^{+}$sum to zero. Together, these observations imply that $\left(x^{*}\right)^{+}\left(\pi^{+}\right)^{\prime}(v+i w)^{+}=0$. Finally, $Q^{++} \in \mathbf{R}^{n^{*} \times n^{*}}$ and $D^{++} \in \mathbf{R}^{n^{*} \times n^{*}}$ satisfy the conditions of Hines's Lemma, the latter by requirement (8.22) for regular ESSs, and so this lemma enables us to conclude that $a<0$.

Now suppose that $(v+i w)^{0} \neq 0$, so that $v_{j}+\mathrm{i} w_{j} \neq 0$ for some $j>n^{*}$. Then since the lower right block of $D V\left(x^{*}\right)$ is the diagonal matrix $\operatorname{diag}\left(\hat{\pi}^{0}\right)$, the j th component of the eigenvector equation for $D V\left(x^{*}\right)$ is $\hat{\pi}_{j}\left(v_{j}+\mathrm{i} w_{j}\right)=(a+\mathrm{i} b)\left(v_{j}+\mathrm{i} w_{j}\right)$, implying that $a=\hat{\pi}_{j}$ (and
also that $b=w_{j}=0$). But as we noted above, the fact that x^{*} is a quasistrict equilibrium implies that $\hat{\pi}_{j}<0$, and so that $a<0$. This completes the proof of the theorem.

Exercise 8.5.7. Suppose that $x^{*}=e_{i}$ is a strict equilibrium of F. Show that for each $j \neq i$, the vector $e_{j}-e_{i}$ is an eigenvector of $D V\left(x^{*}\right)$ with eigenvalue $F_{j}\left(x^{*}\right)-F_{i}\left(x^{*}\right)$.

Exercise 8.5.8. Suppose that x^{*} is a quasistrict Nash equilibrium of F. We saw in Theorem 8.5.6 that for each unused strategy j, the excess payoff $\hat{F}_{j}\left(x^{*}\right)$ is an eigenvalue of $D V\left(x^{*}\right)$ corresponding to an eigenvector in $T X$. Assume that $\hat{F}_{j}\left(x^{*}\right)$ is not an eigenvalue of $D V\left(x^{*}\right)$ corresponding to an eigenvector in $T X \cap \mathbf{R}_{S\left(x^{*}\right)}^{n}$. Show that

$$
\binom{\zeta+\frac{1}{n^{*}}}{-\iota_{j}} \in T X
$$

is an eigenvector of $D V\left(x^{*}\right)$ corresponding to eigenvalue $\hat{F}_{j}\left(x^{*}\right)$, where ι_{j} is the appropriate standard basis vector in $\mathbf{R}^{n^{0}}$, and where ζ is the unique vector in $\mathbf{R}^{n^{*}}$ satisfying $\mathbf{1}^{\prime} \zeta=0$ and

$$
\left(Q^{++} D^{++}-\hat{\pi}_{j} I\right) \zeta=\hat{\pi}_{j}\left(\frac{1}{n^{*}} \mathbf{1}-\left(x^{*}\right)^{+}\right)+Q^{++}\left(D^{+0} \iota_{j}-\frac{1}{n^{*}} D^{++} \mathbf{1}\right) .
$$

Why is there exactly one vector that satisfies these conditions? What goes wrong if the restriction on $\hat{F}_{j}\left(x^{*}\right)$ does not hold?

8.5.2 General Imitative Dynamics

Theorem 8.5.6 established the local stability of all regular Taylor ESSs under the replicator dynamic. Theorem 8.5.9 parlays the previous analysis into a local stability result for all imitative dynamics.

Theorem 8.5.9. Assume that x^{*} is a hyperbolic rest point of both the replicator dynamic (R) and a given imitative dynamic (5.5). Then x^{*} is linearly stable under (R) if and only if it is linearly stable under (5.5). Thus, if x^{*} is a regular Taylor ESS that satisfies the hyperbolicity assumptions, it is linearly stable under (5.5).

Proof. $(p=1)$ We only consider the case in which x^{*} is interior; for boundary cases, see Exercise 8.5.12.

Recall from Observation 5.4.16 that any imitative dynamic (5.5) has monotone percentage growth rates: we can express the dynamic as

$$
\begin{equation*}
\dot{x}_{i}=x_{i} G_{i}(x), \text { where } \tag{8.30}
\end{equation*}
$$

$$
\begin{equation*}
G_{i}(x) \geq G_{j}(x) \text { if and only if } F_{i}(x) \geq F_{j}(x) . \tag{8.31}
\end{equation*}
$$

Lemma 8.5.10 shows that property (8.31) imposes a remarkable amount of structure on the derivative matrix of the percentage growth rate function G at the equilibrium x^{*}.

Lemma 8.5.10. Let x^{*} be an interior Nash equilibrium, and suppose that $\Phi D F\left(x^{*}\right)$ and $\Phi D G\left(x^{*}\right)$ define invertible maps from TX to itself. Then $\Phi D G\left(x^{*}\right) \Phi=c \Phi D F\left(x^{*}\right) \Phi$ for some $c>0$.

Proof. Since x^{*} is a Nash equilibrium, and hence a rest point of (8.30), we have that $\Phi F\left(x^{*}\right)=\Phi G\left(x^{*}\right)=\mathbf{0}$. It follows that

$$
\begin{equation*}
\Phi F\left(x^{*}+\varepsilon z\right)=\varepsilon \Phi D F\left(x^{*}\right) z+o(\varepsilon) \text { and } \Phi G\left(x^{*}+\varepsilon z\right)=\varepsilon \Phi D G\left(x^{*}\right) z+o(\varepsilon) \tag{8.32}
\end{equation*}
$$

for all $z \in T X$. Since we can rewrite condition (8.31) as

$$
\left(e_{i}-e_{j}\right)^{\prime} G(x) \geq 0 \text { if and only if }\left(e_{i}-e_{j}\right)^{\prime} F(x) \geq 0
$$

and since $e_{i}-e_{j} \in T X$, equation (8.32) implies that for all $i, j \in S$ and $z \in T X$,

$$
\begin{equation*}
\left(e_{i}-e_{j}\right)^{\prime} \Phi D G\left(x^{*}\right) z \geq 0 \text { if and only if }\left(e_{i}-e_{j}\right)^{\prime} \Phi D F\left(x^{*}\right) z \geq 0 \tag{8.33}
\end{equation*}
$$

(This observation is trivial when $z=0$, and when $z \neq 0$ it follows from the fact that the linear terms dominate in (8.32) when ε is small.) By Proposition 3.B.6, condition (8.33) is equivalent to the requirement that for all $i, j \in S$, there is a $c_{i j}>0$ such that

$$
\begin{equation*}
\left(e_{i}-e_{j}\right)^{\prime} \Phi D G\left(x^{*}\right) \Phi=c_{i j}\left(e_{i}-e_{j}\right)^{\prime} \Phi D F\left(x^{*}\right) \Phi . \tag{8.34}
\end{equation*}
$$

Now write $g_{i j}=\left(e_{i}-e_{j}\right)^{\prime} \Phi D G\left(x^{*}\right) \Phi$ and $f_{i j}=\left(e_{i}-e_{j}\right)^{\prime} \Phi D F\left(x^{*}\right) \Phi$. Since by assumption $\Phi D F\left(x^{*}\right) \Phi$ is an invertible map from $T X$ to itself, so is its transpose (see Exercise 8.5.11 below). Therefore, when i, j, and k are distinct, the unique decomposition of $f_{i k}$ as a linear combination of $f_{i j}$ and $f_{j k}$ is as $f_{i j}+f_{j k}$. But equation (8.34) reveals that

$$
c_{i j} f_{i j}+c_{j k} f_{j k}=g_{i j}+g_{j k}=g_{i k}=c_{i k} f_{i k},
$$

and so $c_{i j}=c_{j k}=c_{i k}$. This and the fact that $c_{i j}=c_{j i}$ imply that $c_{i j}$ is independent of i and j. So, since vectors of the form $e_{i}-e_{j}$ span $T X$, we conclude from equation (8.34) that $\Phi D G\left(x^{*}\right) \Phi=c \Phi D F\left(x^{*}\right) \Phi$, where c is the common value of the constants $c_{i j}$. This completes the proof of the lemma.

We proceed with the proof of Theorem 8.5.9. Let $V(x)=\operatorname{diag}(x) \hat{F}(x)$ and $W(x)=$
$\operatorname{diag}(x) G(x)$ denote the replicator dynamic (R) and the dynamic (8.30), respectively. Since $W(x) \in T X$, we have that $\mathbf{1}^{\prime} W(x)=x^{\prime} G(x)=0$, and hence that $\hat{G}(x) \equiv G(x)-\mathbf{1} x^{\prime} G(x)=G(x)$. Thus (8.30) can be rewritten as $W(x)=\operatorname{diag}(x) \hat{G}(x)$.

Now, repeating calculation (8.27) reveals that

$$
D W(x)=Q(x) D G(x)-\mathbf{1} G(x)^{\prime}+\operatorname{diag}(\hat{G}(x))
$$

Since x^{*} is an interior rest point of $W, G\left(x^{*}\right)$ is a constant vector, and so

$$
D W\left(x^{*}\right) \Phi=Q\left(x^{*}\right) D G\left(x^{*}\right) \Phi=Q\left(x^{*}\right) \Phi D G\left(x^{*}\right) \Phi,
$$

where the second equality follows from the fact that $Q\left(x^{*}\right) \mathbf{1}=\mathbf{0}$. Similar reasoning for the replicator dynamic V shows that

$$
D V\left(x^{*}\right) \Phi=Q\left(x^{*}\right) \Phi D F\left(x^{*}\right) \Phi
$$

Lemma 8.5.10 tells us that $\Phi D G\left(x^{*}\right) \Phi=c \Phi D F\left(x^{*}\right) \Phi$ for some $c>0$. We therefore conclude from the previous two equations that if x^{*} is a hyperbolic rest point under V and W, its stability properties under the two dynamics are the same.

Exercise 8.5.11. Suppose that $A \in \mathbf{R}^{n \times n}$ defines an invertible map from \mathbf{R}_{0}^{n} to itself and maps the vector 1 to the origin. Show that A^{\prime} must also have these properties. (Hint: Use the Fundamental Theorem of Linear Algebra (8.41).)

Exercise 8.5.12. Extend the proof of Theorem 8.5.9 above to the case of boundary equilibria. (Hint: Combine Lemma 8.5.10 with the proof of Theorem 8.5.6.)

8.6 Linearization of Perturbed Best Response Dynamics

Linearization is also a useful tool for studying perturbed best response dynamics, our other main class of differentiable evolutionary dynamics.

8.6.1 Deterministically Perturbed Best Response Dynamics

In Chapter 6, we saw that perturbed best response dynamics can be defined in terms of either stochastic or deterministic payoff perturbations. But Theorem 6.2.2 showed that there is no loss of generality in focusing on the latter case, and so we will do so here.

Our first result shows that a negative definiteness condition on the payoff derivative is a sufficient condition for stability. The conclusion here is similar to that from Exercise 8.4.5, but the analysis is much simpler, and establishes not only asymptotic stability, but also linear stability.

Theorem 8.6.1. Consider the perturbed best response dynamic for the pair (F, v), and let \tilde{x} be a perturbed equilibrium of this pair. If $D F(\tilde{x})$ is negative definite with respect to $T X$, then \tilde{x} is linearly stable.

Proof. $(p=1)$ In the single population case, the stochastically perturbed best response dynamic takes the form

$$
\begin{equation*}
\dot{x}=\tilde{M}(F(x))-x, \tag{8.35}
\end{equation*}
$$

where the perturbed maximizer function \tilde{M} is defined in equation (6.12). By the chain rule, the derivative of law of motion (8.35) is

$$
\begin{equation*}
D V(x)=D \tilde{M}(F(x)) D F(x)-I \tag{8.36}
\end{equation*}
$$

To determine the eigenvalues of the product $D \tilde{M}(F(x)) D F(x)$, let us recall the properties of the derivative matrix $D \tilde{M}(\pi)$ from Corollary 6.C.5: it is symmetric, positive definite on \mathbf{R}_{0}^{n}, and satisfies $D \tilde{M}(\pi) \mathbf{1}=\mathbf{0}$. Since we have assumed that $D F(\tilde{x})$ is negative definite with respect to \mathbf{R}_{0}^{n}, Hines's Lemma implies that the eigenvalues of $D \tilde{M}(F(\tilde{x})) D F(\tilde{x}$) (as a map from \mathbf{R}_{0}^{n} to itself) have negative real part. Subtracting the identity matrix I from the matrix product reduces each of these eigenvalues by 1 , so the theorem is proved.

Exercise 8.6.2. Show that the conclusion of the theorem continues to hold if $D F(x)$ is only negative semidefinite with respect to TX. (Hint: See the discussion in Appendix 8.A.7.)

Exercise 8.6.3. Let \tilde{x} be a perturbed equilibrium for (F, v). Let $\bar{\lambda}$ be the largest eigenvalue of $D \tilde{M}(F(\tilde{x}))$, and let \bar{s} be the largest singular value of $\Phi D F(\tilde{x}) \Phi$ (see Section 8.A.6). Show that if $\bar{\lambda} \bar{s}<1$, then \tilde{x} is linearly stable: that is, \tilde{x} is stable whenever choice probabilities are not too sensitive to changes in payoffs, or payoffs are not too sensitive to changes in the state.

8.6.2 The Logit Dynamic

Imposing the additional structure provided by logit choice allows us to carry our local stability analysis further. First, building on Theorem 8.4.6, we argue that any regular
interior ESS must have a linearly stable $\operatorname{logit}(\eta)$ equilibrium nearby whenever the noise level η is sufficiently small.

Corollary 8.6.4. Let $x^{*} \operatorname{int}(X)$ be a regular Taylor ESS of F. Then for some neighborhood O of x^{*} and all $\eta>0$ less than some $\hat{\eta}>0$, there is a unique and linearly stable $\operatorname{logit}(\eta)$ equilibrium \tilde{x}^{η} in O.

Proof. $(p=1)$ Theorem 8.4.6 tells us that for η small enough, the equilibrium \tilde{x}^{η} exists and is unique, and that $\lim _{\eta \rightarrow 0} \tilde{x}^{\eta}=x^{*}$. Since x^{*} is a regular interior $\operatorname{ESS}, D F\left(x^{*}\right)$ is negative definite with respect to $T X$, so by continuity, $D F\left(\tilde{x}^{\eta}\right)$ is negative definite with respect to TX for all η close enough to 0 . The result therefore follows from Theorem 8.6.1.

The derivative matrix for the logit dynamic takes an especially appealing form. Recall from Exercise 6.2.7 that the derivative matrix of the logit (η) choice function is

$$
\begin{equation*}
D \tilde{M}^{\eta}(\pi)=\eta^{-1}\left(\operatorname{diag}\left(\tilde{M}^{\eta}(\pi)\right)-\tilde{M}^{\eta}(\pi) \tilde{M}^{\eta}(\pi)^{\prime}\right)=\eta^{-1} Q\left(\tilde{M}^{\eta}(\pi)\right) \tag{8.37}
\end{equation*}
$$

Now by definition, the logit equilibrium \tilde{x}^{η} satisfies $\tilde{M}^{\eta}\left(F\left(\tilde{x}^{\eta}\right)\right)=\tilde{x}^{\eta}$. Substituting this fact into equations (8.36) and (8.37) yields

$$
\begin{equation*}
D V^{\eta}\left(\tilde{x}^{\eta}\right)=\eta^{-1} Q\left(\tilde{x}^{\eta}\right) D F\left(\tilde{x}^{\eta}\right)-I . \tag{8.38}
\end{equation*}
$$

To see the importance of this equation, recall from equation (8.28) that at interior rest points, the derivative matrix for the replicator dynamic satisfies

$$
\begin{equation*}
D V\left(x^{*}\right) \Phi=Q\left(x^{*}\right) D F\left(x^{*}\right) \Phi . \tag{8.39}
\end{equation*}
$$

Together, equations (8.38) and (8.39) show that when evaluated at their respective rest points and in the relevant tangent directions, the linearizations of the replicator and logit dynamics at their interior rest points differ only by a positive affine transformation!

Example 8.6.5. To obtain the cleanest connections between the two dynamics, consider a game that admits a Nash equilibrium $x^{*}=\frac{1}{n} 1$ at the barycenter of the simplex. Then by symmetry, $\tilde{x}^{\eta}=x^{*}$ is also a logit (η) equilibrium for every $\eta>0$. By the logic above, λ is a relevant eigenvalue of (8.39) if and only if $\eta^{-1} \lambda-1$ is a relevant eigenvalue of (8.38). It follows that if x^{*} is linearly stable under the replicator dynamic, then it is also linearly stable under the $\operatorname{logit}(\eta)$ dynamic for any $\eta>0$. §

The foregoing discussion shows how analyses of local stability under the replicator and logit dynamics can be closely linked. Pushing these arguments further, one can use
equations (8.38) and (8.39) to connect the long run behaviors of the replicator and best response dynamics starting from arbitrary initial conditions-see the Notes for further discussion.

Appendix

8.A Matrix Analysis

In this section we review some basic ideas from matrix analysis. In doing so, we lay the groundwork for our introduction to linear differential equations in Appendix 8.B; this in turn underlies our introduction to local linearization of nonlinear differential equations in Appendix 8.C. The techniques presented here are also used to perform the explicit calculations that arise when using linearization to analyze evolutionary dynamics.

8.A. 1 Rank and Invertibility

While in most of this section we focus on square matrices, we start by considering matrices $A \in \mathbf{R}^{m \times n}$ of arbitrary dimensions. The rank of A is the number of linearly independent columns of A, or, equivalently, the dimension of its range. The nullspace (or kernel) of A is the set of vectors that the matrix maps to the origin, and the dimension of this set is called the nullity of A. The rank and nullity of a matrix must sum to its number of columns:

$$
\begin{align*}
& \operatorname{dim}(\operatorname{nullspace}(A))+\operatorname{dim}(\operatorname{range}(A))=n ; \\
& \operatorname{dim}\left(\operatorname{nullspace}\left(A^{\prime}\right)\right)+\operatorname{dim}\left(\operatorname{range}\left(A^{\prime}\right)\right)=m \tag{8.40}
\end{align*}
$$

In Appendix 3.B.2, we introduced the Fundamental Theorem of Linear Algebra:

$$
\begin{equation*}
\operatorname{range}(A)=\left(\operatorname{nullspace}\left(A^{\prime}\right)\right)^{\perp} \tag{8.41}
\end{equation*}
$$

To derive a key implication of (8.41) for the ranks of matrices, first recall that any subspace $V \subseteq \mathbf{R}^{m}$ satisfies $\operatorname{dim}(V)+\operatorname{dim}\left(V^{\perp}\right)=m$. Letting $V=\operatorname{nullspace}\left(A^{\prime}\right)$ and then combining the result with equation (8.40), we obtain

$$
\operatorname{dim}\left(\operatorname{range}\left(A^{\prime}\right)\right)=\operatorname{dim}\left(\left(\operatorname{nullspace}\left(A^{\prime}\right)^{\perp}\right)\right.
$$

Therefore, (8.41) yields

$$
\operatorname{dim}\left(\operatorname{range}\left(A^{\prime}\right)\right)=\operatorname{dim}(\operatorname{range}(A))
$$

In words: every matrix has the same rank as its transpose.
From this point forward, we suppose that $A \in \mathbf{R}^{n \times n}$ is a square matrix. We say that A is invertible if it admits an inverse matrix A^{-1} : that is, a matrix satisfying $A^{-1} A=I$. Such a matrix also satisfies $A A^{-1}=I$, and when an inverse matrix exists, it is unique. Invertible matrices can be characterized in a variety of ways: for instance, a matrix is invertible if and only if it has full rank (i.e., if $A \in \mathbf{R}^{n \times n}$ has rank n); alternatively, a matrix is invertible if and only if its determinant is nonzero.

8.A. 2 Eigenvectors and Eigenvalues

Let $A \in \mathbf{R}^{n \times n}$, and suppose that

$$
\begin{equation*}
A x=\lambda x \tag{8.42}
\end{equation*}
$$

for some complex scalar $\lambda \in \mathbf{C}$ and some nonzero complex vector $x \in \mathbf{C}^{n}$. Then we call λ an eigenvalue of A, and x an eigenvector of A associated with λ; sometimes, the pair (λ, x) is referred to as an eigenpair.

The eigenvector equation (8.42) can be rewritten as $(\lambda I-A) x=0$. This equation can only be satisfied by a nonzero vector if $(\lambda I-A)$ is not invertible, or, equivalently, if $\operatorname{det}(\lambda I-A)=0$. It follows that λ is an eigenvalue of A if and only if λ is a root of the characteristic polynomial $\operatorname{det}(t I-A)$.

Since $\operatorname{det}(t I-A)$ is a polynomial of degree n in t, the Fundamental Theorem of Algebra ensures that it has n complex roots:

$$
\begin{equation*}
\operatorname{det}(t I-A)=\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right) \ldots\left(t-\lambda_{n}\right) \tag{8.43}
\end{equation*}
$$

To be sure to obtain n roots, we must "count multiplicities": if the values of λ_{i} in the above expression are not all distinct, the repeated values must be tallied each time they appear. Evidently, each λ_{i} in (8.43) is an eigenvalue of A; if the value λ is repeated k times in (8.43), we say that λ is an eigenvalue of A of (algebraic) multiplicity k.

We note in passing that that the sum and the product of the eigenvalues of A can be
described very simply:

$$
\sum_{i=1}^{n} \lambda_{i}=\operatorname{tr}(A) ; \prod_{i=1}^{n} \lambda_{i}=\operatorname{det}(A) .
$$

(Here, the $\operatorname{trace} \operatorname{tr}(A)$ of the matrix A is the sum of its diagonal elements.) To remember these formulas, notice that they are trivially true if A is a diagonal matrix, since in this case the eigenvalues of A are its diagonal entries.

Each eigenvalue of A corresponds to at least one eigenvector of A, and if an eigenvalue λ is of algebraic multiplicity k, then there can be as many as k linearly independent eigenvectors of A corresponding to this eigenvalue. This number of linearly independent eigenvectors is called the geometric multiplicity of λ. The collection of all eigenvectors corresponding to λ, the eigenspace of λ, is a subspace of \mathbf{C}^{n} of dimension equal to the geometric multiplicity of λ.

Example 8.A.1. Let $a, b \in \mathbf{R}$ be nonzero, and consider these three 2×2 matrices:

$$
A=\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right) ; \quad B=\left(\begin{array}{ll}
a & b \\
0 & a
\end{array}\right) ; \quad C=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) .
$$

The matrix A has just one eigenvalue, a, which therefore has algebraic multiplicity 2 . It also has geometric multiplicity 2 , as its eigenspace is all of $\mathbf{C}^{2}=\operatorname{span}\left(\left\{e_{1}, e_{2}\right\}\right)$. (This description of \mathbf{C}^{2} relies on our allowing complex scalars when taking linear combinations of e_{1} and e_{2}.)

The matrix B also has a lone eigenvalue of a of algebraic multiplicity 2 . But here the geometric multiplicity of a is just 1 , since its eigenspace is $\operatorname{span}\left(\left\{e_{1}\right\}\right)$.

The matrix C has no real eigenvalues or eigenvectors; however, it has complex eigenvalues $a \pm i b \in \mathbf{C}$ corresponding to the complex eigenvectors $e_{1} \pm i e_{2} \in \mathbf{C}^{2}$.

Let us explain for future reference the geometry of the linear map $x \mapsto C x$. By writing $r=\sqrt{a^{2}+b^{2}}$ and $\theta=\cos ^{-1}\left(\frac{a}{r}\right)$, we can express the matrix C as

$$
C=r\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right) .
$$

Computing $C x$ for various values of $x\left(\operatorname{try} x=e_{1}\right.$ and $\left.x=e_{2}\right)$, reveals that the map $x \mapsto C x$ first rotates the vector x around the origin clockwise by an angle of θ, and then rescales the result by a factor of r. §

8.A. 3 Similarity, (Block) Diagonalization, and the Spectral Theorem

The matrix $A \in \mathbf{R}^{n \times n}$ is similar to matrix $B \in \mathbf{R}^{n \times n}$ if there exists an invertible matrix $S \in \mathbf{C}^{n \times n}$, called a similarity matrix, such that

$$
B=S^{-1} A S
$$

When A is similar to B, the linear transformations $x \mapsto A x$ and $y \mapsto B y$ are equivalent up to a linear change of variable. Similarity defines an equivalence relation on the set of $n \times n$ matrices, and matrices that are similar have the same characteristic polynomial and the same eigenvalues, counting either algebraic or geometric multiplicities.

If A is similar to a diagonal matrix D-that is, if A is diagonalizable-then the eigenvalues of A are simply the diagonal elements of D. In this definition the similarity matrix is allowed to be complex; if the similarity can be achieved via a real similarity matrix $S \in \mathbf{R}^{n \times n}$, then the diagonal matrix D is also real, and we call A real diagonalizable.

It follows easily from our definitions that a matrix A is diagonalizable if and only if the sum of the geometric multiplicities of the eigenvalues of A is n. Equivalently, A is diagaonalizable if and only if each of its eigenvalues has equal algebraic and geometric multiplicities. It is simple to verify that in this case, a similarity matrix S can be constructed by choosing n linearly independent eigenvectors of A to be its columns.

It is especially convenient when similarity can be achieved using similarity matrix that is itself of a simple form. The most important instance occurs when this matrix is an orthogonal matrix, meaning that its columns form an orthonormal basis for \mathbf{R}^{n} : each column is of length 1, and distinct columns are orthogonal. (It would make more sense to call such a matrix an "orthonormal matrix", but the term "orthogonal matrix" is traditional.)

Orthogonal matrices can be characterized in a variety of ways:
Theorem 8.A.2. The following are equivalent:
(i) R is an orthogonal matrix.
(ii) $R R^{\prime}=I$.
(iii) $R^{\prime}=R^{-1}$.
(iv) The map $x \mapsto R x$ preserves lengths: $|R x|=|x|$ for all $x \in \mathbf{R}^{n}$.
(v) The map $x \mapsto R x$ preserves inner products: $(R x)^{\prime}(R y)=x^{\prime} y$ for all $x, y \in \mathbf{R}^{n}$;.
(vi) The map $x \mapsto R x$ is a composition of rotations and reflections.

The last three items are summarized by saying that the linear transformation $x \mapsto R x$ defined by an orthogonal matrix R is a Euclidean isometry.

While showing that a matrix is similar to a diagonal matrix is quite useful, showing similarity to a block diagonal matrix often serves just as well. We focus on block diagonal
matrices with diagonal blocks of these two types:

$$
J_{1}=(\lambda) ; \quad J_{2}=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

For reasons that will become clear in Section 8.A.5, we call block diagonal matrices of this form simple Jordan matrices. Calculations with simple Jordan matrices are often little more difficult than those with diagonal matrices: for instance, multiplying such a matrix by itself retains its block diagonal structure.

To muster these ideas, let us call the matrix $A \in \mathbf{R}^{n \times n}$ normal if it commutes with itself: that is, if $A^{\prime} A=A A^{\prime}$.

Theorem 8.A. 3 (The Spectral Theorem for Real Normal Matrices). The matrix $A \in \mathbf{R}^{n \times n}$ is normal if and only if it is similar via an orthogonal matrix R to a simple Jordan matrix $B=R^{-1} A R$. The matrix B is unique up to the ordering of the diagonal blocks.

The spectral decomposition of A provides a full account of the eigenvalues and eigenvectors of A. Each J_{1} block (λ) contains a real eigenvalue of A, and the pair of complex numbers $a \pm i b$ derived from each J_{2} block are complex eigenvalues of A. Moreover, columns of the orthogonal similarity matrix R either are real eigenvectors of A, or are real and imaginary parts of complex eigenvectors of A.

The spectral theorem tells us that if A is normal, the behavior of the linear map $x \mapsto A x=R B R^{-1} x$ can be decomposed into three simple steps. First, one applies the orthogonal transformation $R^{-1}=R^{\prime}$ to x, obtaining $y=R^{\prime} x$. Second, one applies the block diagonal matrix B to y : each J_{1} block rescales a component of y, while each J_{2} block rotates and rescales a pair of components of y (cf Example 8.A.1). Third, one applies R to $B R^{\prime} x$ to undo the initial orthogonal transformation.

Additional restrictions on the J_{1} and J_{2} blocks yield characterizations of important subclasses of the normal matrices.

Corollary 8.A.4. (i) The matrix $A \in \mathbf{R}^{n \times n}$ is symmetric $\left(A^{\prime}=A\right)$ if and only if it is similar via an orthogonal matrix R to a simple Jordan matrix containing only J_{1} blocks. Thus, the symmetric matrices are the normal matrices with real eigenvalues.
(ii) The matrix $A \in \mathbf{R}^{n \times n}$ is skew-symmetric $\left(A^{\prime}=-A\right)$ if and only if it is similar via an orthogonal matrix R to a simple Jordan matrix whose J_{1} blocks all have $\lambda=0$ and whose J_{2} blocks all have $a=0$. Thus, the skew-symmetric matrices are the normal matrices with purely imaginary eigenvalues.
(iii) The matrix $A \in \mathbf{R}^{n \times n}$ is orthogonal $\left(A^{\prime}=A^{-1}\right)$ if and only if if it is similar via an orthogonal matrix R to a simple Jordan matrix whose J_{1} blocks all have $\lambda^{2}=1$ and whose
J_{2} blocks all have $a^{2}+b^{2}=1$. Thus, the orthogonal matrices are the normal matrices whose eigenvalues have modulus 1 .

8.A. 4 Symmetric Matrices

Which matrices are real diagonalizable by an orthogonal matrix? The spectral theorem for symmetric matrices tells us that A is real diagonalizable by an orthogonal matrix if and only if it is symmetric. (This is just a restatement of Corollary 8.A.4.) Among other things, the spectral theorem implies that the eigenvalues of a symmetric matrix are real.

While we often associate a matrix A with the linear transformation $x \mapsto A x$, a symmetric matrix is naturally associated with a quadratic form, $x \mapsto x^{\prime} A x$. In fact, the eigenvalues of a symmetric matrix can be characterized in terms of its quadratic form. The RayleighRitz Theorem provides simple descriptions of the $\bar{\lambda}$ and $\underline{\lambda}$, the maximal and minimal eigenvalues of A :

$$
\bar{\lambda}=\max _{x \in \mathbf{R}^{n}:|x|=1} x^{\prime} A x ; \quad \underline{\lambda}=\min _{x \in \mathbf{R}^{n}:|x|=1} x^{\prime} A x .
$$

The Courant-Fischer Theorem shows how the remaining eigenvalues of A can be expressed in terms of a related sequence of minmax problems.

We say that the matrices $A, B \in \mathbf{R}^{n \times n}$ are congruent if there is an invertible matrix $Q \in \mathbf{R}^{n \times n}$ such that

$$
B=Q A Q^{\prime} .
$$

Congruence plays the same role for quadratic forms as similarity does for linear transformations: if two symmetric matrices are congruent, they define the same quadratic form up to a linear change of variable. Like similarity, congruence defines an equivalence relation on the set of $n \times n$ matrices. Lastly, note that two symmetric matrices that are similar by an orthogonal matrix Q are also congruent, since in this case $Q^{\prime}=Q^{-1}$.

The eigenvalues of congruent symmetric matrices are closely linked. Define the inertia of a symmetric matrix to be the ordered triple consisting of the numbers of positive, negative, and zero eigenvalues of the matrix. Sylvester's Law of Inertia tells us that congruent symmetric matrices have the same inertia. Ostrowski's Theorem provides a quantitative extension of this result: if we list the eigenvalues of A and the eigenvalues of B in increasing order, then the ratios between pairs of corresponding eigenvalues are bounded by the minimal and maximal eigenvalues of $Q^{\prime} Q$.

8.A. 5 The Real Jordan Canonical Form

How can we tell if two matrices are similar? If the matrices are diagonalizable, then one can check for similarity by diagonalizing the two matrices and seeing whether the same diagonal matrix is obtained in each case. To apply this logic beyond the diagonalizable case, we would need to find a simple class of matrices with the property that every matrix is similar to a unique representative from this class. Such a class of matrices would also provide a powerful computational aid, since calculations involving arbitrary matrices could be reduced by similarity to calculations with these simple matrices.

With this motivation, we define a real Jordan matrix to be a block diagonal matrix whose diagonal blocks, known as Jordan blocks, are of these four types:

$$
J_{1}=(\lambda) ; J_{2}=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) ; \quad J_{3}=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & 0 & 0 \\
0 & \lambda & 1 & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \lambda & 1 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right) ; J_{4}=\left(\begin{array}{ccccc}
J_{2} & I & 0 & 0 & 0 \\
0 & J_{2} & I & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & J_{2} & I \\
0 & 0 & 0 & 0 & J_{2}
\end{array}\right) .
$$

Theorem 8.A.5. Every matrix $A \in \mathbf{R}^{n \times n}$ is similar via a real similarity matrix S to a real Jordan matrix $J=S^{-1} A S$. The latter matrix is unique up to the ordering of the Jordan blocks.

The real Jordan matrix in the statement of the theorem is called the real Jordan canonical form of A.

The blocks in the real Jordan form of A provide detailed information about the eigenvalues of A : each J_{1} block corresponds to a real eigenvalue λ; each J_{2} block corresponds to a pair of complex eigenvalues $a \pm \mathrm{i} b$; each J_{3} block corresponds to a real eigenvalue with less than full geometric multiplicity; and each J_{4} block corresponds to a pair of complex eigenvalues with less than full geometric multiplicities. (We can say more if each Jordan block represents a distinct eigenvalue: then each eigenvalue has geometric multiplicity 1 ; the J_{1} and J_{2} blocks correspond to eigenvalues whose algebraic multiplicities are also 1 ; and the J_{3} and J_{4} blocks correspond to eigenvalues with higher algebraic multiplicities, with these multiplicities being given by the number of appearances of λ (in a J_{3} block) or of J_{2} blocks (in a J_{4} block).)

Example 8.A.6. Suppose that $A \in \mathbf{R}^{2 \times 2}$ has complex eigenvalues $a \pm \mathrm{i} b$ with complex eigenvectors $v \pm \mathrm{i} w$. Then $A(v+\mathrm{i} w)=(a+\mathrm{i} b)(v+\mathrm{i} w)$. Equating the real and imaginary
parts of this equation yields

$$
A\left(\begin{array}{ll}
v & w
\end{array}\right)=\left(\begin{array}{ll}
v & w
\end{array}\right)\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

Premultiplying by $(v w)^{-1}$ reveals that the real Jordan form of A is a single J_{2} block. \S
Example 8.A.7. Suppose that $A \in \mathbf{R}^{2 \times 2}$ has a lone eigenvalue, $\lambda \in \mathbf{R}$, which is of algebraic multiplicity 2 but geometric multiplicity 1 . Let $x \in \mathbf{R}^{2}$ be an eigenvector of A, so that $(A-\lambda I) x=\mathbf{0}$. It can be shown that there exists a vector y that is linearly independent of x and that satisfies $(A-\lambda I) y=x$. (Such a vector (and, more generally, vectors that satisfy higher iterates of this equation) is called a generalized eigenvector of A.) Rewriting the two equations above, we obtain

$$
A\left(\begin{array}{ll}
x & y
\end{array}\right)=\left(\begin{array}{ll}
\lambda x & x+\lambda y
\end{array}\right)=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)
$$

Premultiplying the first and last expressions by $\left(\begin{array}{ll}x & y\end{array}\right)^{-1}$ shows that A has a real Jordan form consisting of a single J_{3} block. \S

8.A. 6 The Spectral Norm and Singular Values

It is often useful to be able to place bounds on the amount of "expansion" generated by a linear map $x \mapsto A x$, or by a composite linear map $x \mapsto B x \mapsto A B x$. One can obtain such bounds by introducing the spectral norm of a matrix $A \in \mathbf{R}^{n \times n}$, defined by

$$
\|A\|=\max _{x:|x|=1}|A x|
$$

(As always in this book, $|x|$ denotes the Euclidean norm of the vector x.) It is not difficult to check that the spectral norm is submultiplicative, in the following two senses:

$$
\begin{aligned}
& |A x| \leq\|A\||x| ; \text { and } \\
& \|A B\| \leq\|A\|\|B\| .
\end{aligned}
$$

These inequalities often work hand in hand with the Cauchy-Schwarz inequality, which expresses the submultiplicativity of inner products of vectors:

$$
\left|x^{\prime} y\right| \leq|x||y|
$$

To compute the spectral norm of a matrix, it is best to describe it in a different way. The product $A^{\prime} A$ generated by any matrix A is symmetric. It therefore has n real eigenvalues (see Section 8.A.4), and it can be shown that these eigenvalues are nonnegative. The square roots of the eigenvalues of $A^{\prime} A$ are called the singular values of A.

One can show that the spectral norm of A equals the largest singular value of A :

$$
\|A\|=\max \left\{\sqrt{\lambda}: \lambda \text { is an eigenvalue of } A^{\prime} A\right\} .
$$

It makes no difference here if we replace $A^{\prime} A$ with $A A^{\prime}$, since for any $A, B \in \mathbf{R}^{n \times n}, A B$ and $B A$ have the same eigenvalues.

The notion of a singular value also underpins the singular value decomposition
Theorem 8.A.8. Every matrix $A \in \mathbf{R}^{n \times n}$ can be expressed as $A=V \Sigma W^{\prime}$, where V and W are orthogonal matrices, and where Σ is a diagonal matrix whose diagonal entries are the singular values of A.

In this decomposition, the columns of V are eigenvectors of $A A^{\prime}$, and the columns of W are eigenvectors of $A^{\prime} A$.

8.A. 7 Hines's Lemma

In Section 8.5, we introduced Hines's Lemma:
Lemma 8.5.1. Suppose that $Q \in \mathbf{R}^{n \times n}$ is symmetric, satisfies $Q 1=\mathbf{0}$, and is positive definite with respect to \mathbf{R}_{0}^{n}, and that $A \in \mathbf{R}^{n \times n}$ is negative definite with respect to \mathbf{R}_{0}^{n}. Then each eigenvalue of the linear map $Q A: \mathbf{R}_{0}^{n} \rightarrow \mathbf{R}_{0}^{n}$ has negative real part.

If we ignored the complications caused by the fact that our dynamics are restricted to the simplex, Lemma 8.5.1 would reduce to

Lemma 8.A.9. If Q is symmetric positive definite and A is negative definite, then the eigenvalues of $Q A$ have negative real parts.

The proof of Lemma 8.A. 9 is a simpler version of the proof below.
The argument below can also be used when other definiteness conditions are imposed on A. In particular, if A is only negative semidefinite with respect to \mathbf{R}_{0}^{n}, then the relevant eigenvalues of $Q A$ have nonpositive real parts, and if A is positive definite with respect to \mathbf{R}_{0}^{n}, the relevant eigenvalues of $Q A$ have positive real part.

Proof of Lemma 8.5.1. Since Q is positive definite with respect to \mathbf{R}_{0}^{n}, since $Q \mathbf{1}=\mathbf{0}$, and since $\mathbf{R}^{n}=\mathbf{R}_{0}^{n} \oplus \operatorname{span}(\{\mathbf{1}\})$, we have that nullspace $(Q)=\operatorname{span}(\{\mathbf{1}\})$. Thus, because Q is symmetric, the Fundamental Theorem of Linear Algebra (8.41) tells us that

$$
\operatorname{range}(Q)=\left(\operatorname{nullspace}\left(Q^{\prime}\right)\right)^{\perp}=(\text { nullspace }(Q))^{\perp}=(\operatorname{span}(\{\mathbf{1}\}))^{\perp}=\mathbf{R}_{0}^{n} .
$$

In other words, Q maps \mathbf{R}_{0}^{n} onto itself, and so is invertible on this space.
Now suppose that

$$
\begin{equation*}
Q A(v+\mathrm{i} w)=(a+\mathrm{i} b)(v+\mathrm{i} w) \tag{8.44}
\end{equation*}
$$

for some $v, w \in \mathbf{R}_{0}^{n}$ with $v+\mathrm{i} w \neq \mathbf{0}$ and some a, b in \mathbf{R}. Since Q is invertible on \mathbf{R}_{0}^{n}, there exist $y, z \in \mathbf{R}_{0}^{n}$, at least one of which is not $\mathbf{0}$, such that $Q y=v$ and $Q z=w$. We can thus rewrite equation (8.44) as

$$
Q A(v+\mathrm{i} w)=(a+\mathrm{i} b) Q(y+\mathrm{i} z)
$$

Since Q is invertible on \mathbf{R}_{0}^{n}, this implies that

$$
A(v+\mathrm{i} w)=(a+\mathrm{i} b)(y+\mathrm{i} z) .
$$

Premultiplying by $(v-\mathrm{i} w)^{\prime}=(Q(y-\mathrm{i} z))^{\prime}$ yields

$$
(v-\mathrm{i} w)^{\prime} A(v+\mathrm{i} w)=(a+\mathrm{i} b)(y-\mathrm{i} z)^{\prime} Q(y+\mathrm{i} z)
$$

Equating the real parts of each side yields

$$
v^{\prime} A v+w^{\prime} A w=a\left(y^{\prime} Q y+z^{\prime} Q z\right)
$$

Since Q is positive definite with respect to \mathbf{R}_{0}^{n} and A is negative definite with respect to \mathbf{R}_{0}^{n}, we conclude that $a<0$.

8.B Linear Differential Equations

The simplest ordinary differential equations on \mathbf{R}^{n} are linear differential equations:
(L) $\dot{x}=A x$,
where $A \in \mathbf{R}^{n \times n}$. Although our main interest in this book is in nonlinear differential equations, linear differential equations are still very important to us: as we explain in Section 8.C, the behavior of a nonlinear equation in the neighborhood of a rest point is often well appproximated by the behavior of linear equation in a neighborhood of the origin.

8.B. 1 Examples

Example 8.B.1. Linear dynamics on the line. In the one-dimensional case, equation (L) becomes $\dot{x}=a x$. We described the solution to this equation from initial condition $x_{0}=\xi$ in Example 4.A.1: they are of the form $x_{t}=\xi \exp (a t)$. Thus, if $a \neq 0$, the equation has its unique rest point at the origin. If $a>0$, all solutions other than the stationary one move away from the origin, while if $a<0$, all solutions converge to the origin. §

One can always apply a linear change of variable to (L) to reduce it to a simpler form. In particular, if $B=S A S^{-1}$ is similar to A, let $y=S x$; then since $\dot{y}=S \dot{x}$, we can rewrite (L) as $S^{-1} \dot{y}=A S^{-1} y$, and hence as $\dot{y}=B y$. It follows from this observation and from Theorem 8.A. 5 that to understand linear differential equations, it is enough to understand linear differential equations defined by real Jordan matrices.

Example 8.B.2. Linear dynamics on the plane. There are three generic types of 2×2 matrices: diagonalizable matrices with two real eigenvalues, diagonalizable matrices with two complex eigenvalues, and nondiagonlizable matrices with a single real eigenvalue. The corresponding real Jordan forms are a diagonal matrix (which contains two J_{1} blocks), a J_{2} matrix, and a J_{3} matrix, respectively. We therefore consider linear differential equations based on these three types of real Jordan matrices.

When A is diagonal, the linear equation (L) and its solution from initial condition $x_{0}=\xi$ are of the following form:

$$
\dot{x}=A x=\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu
\end{array}\right)\binom{x_{1}}{x_{2}} ; \quad x_{t}=\binom{\xi_{1} \mathrm{e}^{\lambda t}}{\xi_{2} \mathrm{e}^{\mu t}} .
$$

The phase diagrams in Figure 8.B. 1 show that the behavior of this dynamic depends on the values of the eigenvalues λ and μ : if both are negative, the origin is a stable node, if their signs differ, the origin is a saddle, and if both are positive, the origin is an unstable node.

Now suppose that A is the real Jordan form of a matrix with complex eigenvalues

Figure 8.B.1: Linear dynamics on the plane: two real eigenvalues λ, μ.

Figure 8.B.2: Linear dynamics on the plane: complex eigenvalues $a \pm \mathrm{i} b, b<0$.
$a \pm \mathrm{i} b$. Then we have

$$
\dot{x}=A x=\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\binom{x_{1}}{x_{2}} ; \quad x_{t}=\binom{\xi_{1} \mathrm{e}^{a t} \cos b t+\xi_{2} \mathrm{e}^{a t} \sin b t}{-\xi_{1} \mathrm{e}^{a t} \sin b t+\xi_{2} \mathrm{e}^{a t} \cos b t} .
$$

Phase diagrams for this equation are presented in Figure 8.B.2. Evidently, the stability of the origin is determined by the real part of the eigenvalues: if $a<0$, the origin is a stable spiral, while if $a>0$, the origin is an unstable spiral. In the nongeneric case where $a=0$, the origin is a center, with each solution following a closed orbit around the origin. The value of b determines the orientation of the cycles. The diagrams in Figure 8.B.2 use $b<0$, which causes solutions to cycle counterclockwise; had we chosen $b>0$, these orientations would have been reversed.

Figure 8.B.3: Linear dynamics on the plane: A not diagonalizable, one real eigenvalue λ.

Finally, suppose that A is the real Jordan form of a nondiagonalizable matrix with lone eigenvalue λ. Then we obtain

$$
\dot{x}=A x=\left(\begin{array}{cc}
\lambda & 1 \\
0 & \lambda
\end{array}\right)\binom{x_{1}}{x_{2}} ; \quad x_{t}=\binom{\xi_{1} \mathrm{e}^{\lambda t}+\xi_{2} t \mathrm{e}^{\lambda t}}{\xi_{1} \mathrm{e}^{\lambda t}} .
$$

The phase diagrams in Figure 8.B. 3 reveal the origin to be an improper (or degenerate) node. It is stable if the eigenvalue λ is negative and unstable if λ is positive. \S

8.B. 2 Solutions

The Picard-Lindelöf Theorem (Theorem 4.A.2) implies that for any matrix $A \in \mathbf{R}^{n \times n}$ there is a unique solution to the linear equation (L) starting from each initial condition $\xi \in \mathbf{R}^{n}$. While solutions of nonlinear differential equations generally cannot be expressed in closed form, the solutions to linear equations can always be described explicitly. In the planar case, Example 8.B. 2 provided explicit formulas when A is a Jordan matrix, and the solutions for other matrices can be obtained through a change of variable. Similar logic can be employed in the general case, yielding the following result:

Theorem 8.B.3. Let $\left\{x_{t}\right\}_{t \in(-\infty, \infty)}$ be the solution to (L) from initial condition x_{0}. Then each coordinate of x_{t} is a linear combination of terms of the form $t^{k} \mathrm{e}^{a t} \cos (b t)$ and $t^{k} \mathrm{e}^{a t} \sin (b t)$, where $a+\mathrm{i} b \in \mathbf{C}$ is an eigenvalue of A and $k \in \mathbf{Z}_{+}$is less than the algebraic multiplicity of this eigenvalue.

For analytic purposes, it is often convenient to express solutions of the linear equation (L) in terms of matrix exponentials. Given a matrix $A \in \mathbf{R}^{n \times n}$, we define $\mathrm{e}^{A} \in \mathbf{R}^{n \times n}$ by
applying the series definition of the exponential function to the matrix A : that is,

$$
\begin{equation*}
\mathrm{e}^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!} \tag{8.45}
\end{equation*}
$$

where A^{k} denotes the k th power of A and $A^{0} \equiv I$ is the identity matrix.
Recall that the flow $\phi:(-\infty, \infty) \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ generated by (L) is defined by $\phi_{t}(\xi)=x_{t}$, where $\left\{x_{t}\right\}_{t \in(-\infty, \infty)}$ is the solution to (L) with initial condition $x_{0}=\xi$. Theorem 8.B.4 provides a concise expression for solutions to (L) in terms of matrix exponentials.

Theorem 8.B.4. The flow of (L) is $\phi_{t}(\xi)=\mathrm{e}^{A t} \xi$.
A benefit of representing solutions to (L) in this way is that properties established for matrix exponentials can be given immediate interpretations in terms of solutions to (L). For examples, consider these properties:

Proposition 8.B.5.

(i) If A and B commute, then $\mathrm{e}^{A+B}=\mathrm{e}^{B} \mathrm{e}^{A}$.
(ii) If $B=S^{-1} A S$, then $\mathrm{e}^{B}=S^{-1} \mathrm{e}^{A} S$.
(iii) $\mathrm{e}^{\left(A^{\prime}\right)}=\left(\mathrm{e}^{A}\right)^{\prime}$.

Applying part (i) of the proposition to matrices $A s$ and $A t$ yields the group property of the flow of (L) : $\phi_{s+t}(\xi)=\phi_{t}\left(\phi_{s}(\xi)\right)$. Part (ii) shows that linear flows generated by similar matrices are linearly conjugate (i.e., that they are equivalent up to a linear change of variables), as we discussed before Example 8.B.2. Applying parts (iii) and (i) to At when A is skew-symmetric shows that in this case, $e^{A t}$ is an orthogonal matrix: thus, for each fixed time t, the $\operatorname{map} \xi \mapsto \phi_{t}(\xi)$ is a Euclidean isometry (cf Figure 8.B.2(ii)).

8.B.3 Stability and Hyperbolicity

Theorem 8.B. 3 shows in generic cases, the stability of the origin under the linear equation (L) is determined by the eigenvalues $\left\{a_{1}+\mathrm{i} b_{1}, \ldots, a_{n}+\mathrm{i} b_{n}\right\}$ of A : more precisely, by the real parts a_{i} of these eigenvalues. If each a_{i} is negative, then all solutions to (L) converge to the origin; in this case, the origin is called a sink, and the flow $\phi_{t}(x)=\mathrm{e}^{A t} x$ is called a contraction. If instead each a_{i} is positive, then all solutions besides the stationary solution at the origin move away from the origin; in this case, the origin is called a source, and the flow of (L) is called an expansion.

When the origin is a sink, solutions to (L) converge to the origin at an exponential rate. Define a norm on \mathbf{R}^{n} by $\|x\|=\left|S^{-1} x\right|$, where S is the similarity matrix from the Jordan
decomposition $J=S^{-1} A S$ of A. Then for any $a>0$ satisfying $a<\left|a_{i}\right|$ for all $i \in\{1, \ldots n\}$, the flow ϕ of (L) satisfies

$$
\mathbf{0} \text { is a sink } \Leftrightarrow\left\|\phi_{t}(\xi)\right\| \leq \mathrm{e}^{-a t}\|\xi\| \text { for all } t \geq 0 \text { and all } \xi \in \mathbf{R}^{n} .
$$

A similar statement in terms of the Euclidean norm holds if one introduces an appropriate multiplicative constant $C=C(a) \geq 1$:

$$
\begin{equation*}
\mathbf{0} \text { is a sink } \Leftrightarrow\left|\phi_{t}(\xi)\right| \leq C \mathrm{e}^{-a t}|\xi| \text { for all } t \geq 0 \text { and all } \xi \in \mathbf{R}^{n} . \tag{8.46}
\end{equation*}
$$

If the origin is the source, analogous statements hold if time is run backward: for instance,

$$
\begin{equation*}
\mathbf{0} \text { is a source } \Leftrightarrow\left|\phi_{t}(\xi)\right| \leq C \mathrm{e}^{-a|t|}|\xi| \text { for all } t \leq 0 \text { and all } \xi \in \mathbf{R}^{n} \tag{8.47}
\end{equation*}
$$

More generally, the flow of (L) may be contracting in some directions and expanding in others. In the generic case in which each real part a_{i} of an eigenvalue of A is nonzero, the differential equation $\dot{x}=A x$, its rest point at the origin, and its flow $\phi_{t}(x)=\mathrm{e}^{A t} x$ are all said to be hyperbolic. Hyperbolic linear flows come in three varieties: contractions (if all a_{i} are negative), expansions (if all a_{i} are positive), and saddles (if there is at least one a_{i} of each sign). If a flow is hyperbolic, then the origin is globally asymptotically stable if it is a sink, and it is unstable otherwise.

If (L) is hyperbolic, then A has k eigenvalues with negative real part (counting algebraic multiplicities) and $n-k$ eigenvalues with positive real part. In this case, we can view $\mathbf{R}^{n}=E^{s} \oplus E^{u}$ as the direct sum of subspaces of dimensions $\operatorname{dim}\left(E^{s}\right)=k$ and $\operatorname{dim}\left(E^{u}\right)=n-k$, where the stable subspace E^{s} contains all solutions of (L) that converge to the origin at an exponential rate (as in (8.46)), while the unstable subspace E^{u} contains all solutions of (L) that converge to the origin at an exponential rate if time is run backward (as in (8.47)).

If A is real diagonalizable, then it follows easily from Theorem 8.B. 3 that E^{s} and E^{u} are the spans of the eigenvectors of A corresponding to the negative and positive eigenvalues of A, respectively. More generally, E^{s} and E^{u} can be computed by way of the real Jordan form $J=S^{-1} A S$ of A. Arrange S and J so that the Jordan blocks of J corresponding to eigenvalues of A with negative real parts appear in the first k rows and columns, while the blocks corresponding to eigenvalues with positive real parts appear in the remaining $n-k$ rows and columns. Then E^{s} is the span of the first k columns of the similarity matrix S, and E^{u} is the span of the remaining $n-k$ columns of S. (The columns of S are the real and imaginary parts of the so-called generalized eigenvectors of A —see Example 8.A.7.)

8.C Linearization of Nonlinear Differential Equations

Virtually all of the differential equations we study in this book are nonlinear. Nevertheless, when studying the behavior of nonlinear equations in the neighborhood of a rest point, the theory of linear equations takes on a central role.

Consider the C^{1} differential equation

$$
\text { (D) } \quad \dot{x}=V(x)
$$

with rest point x^{*}. By the definition of the derivative, we can approximate the value of V in the neighborhood of x^{*} via

$$
V(y)=\mathbf{0}+D V\left(x^{*}\right)\left(y-x^{*}\right)+o\left(\left|y-x^{*}\right|\right) .
$$

This suggests that the behavior of the dynamic (D) near x^{*} can be approximated by the behavior near the origin of the linear equation
(L) $\quad \dot{y}=D V\left(x^{*}\right) y$.

To make this idea precise, we must introduce the notion of topological conjugacy of flows. To begin, let X and Y be subsets of \mathbf{R}^{n}. Then the function $h: X \rightarrow Y$ is homeomorphism if it is bijective (i.e., one-to-one and onto) and continuous with a continuous inverse.

Now let I be an interval containing 0 , and let $\phi: I \times X \rightarrow X$ and $\psi: I \times Y \rightarrow Y$ be two flows. We say that ϕ and ψ are topologically conjugate on X and Y if there is a homeomorphism $h: X \rightarrow Y$ such that $\phi_{t}\left(x_{0}\right)=h^{-1} \circ \psi_{t} \circ h\left(x_{0}\right)$ for all times $t \in I$. In other words, ϕ and ψ are topologically conjugate if there is a continuous map with continuous inverse that sends trajectories of ϕ to trajectories of ψ (and vice versa), preserving the rate of passage of time. Therefore, to find $\phi_{t}\left(x_{0}\right)$, the position at time t under flow ϕ when the initial state is $x_{0} \in X$, one can apply $h: X \rightarrow Y$ to x_{0} to obtain the transformed initial condition $y_{0}=h\left(x_{0}\right) \in Y$, then run the flow ψ from y_{0} for t time units, and finally apply h^{-1} to the result. We summarize this construction in the diagram below:

The use of linearization to study the behavior of nonlinear differential equations around fixed points is justified by the Hartman-Grobman Theorem.

Theorem 8.C. 1 (The Hartman-Grobman Theorem). Let ϕ and ψ be the flows of the C^{1} equation (D) and the linear equation (L), where x^{*} is a hyperbolic rest point of (D). Then there exist neighborhoods $O_{x^{*}}$ of x^{*} and O_{0} of the origin $\mathbf{0}$ on which ϕ and ψ are topologically conjugate.

Combining the Hartman-Grobman Theorem with our analysis in Section 8.B.3 provides a simple characterization of the stability of hyperbolic rest points of (D).

Corollary 8.C.2. Let x^{*} be a hyperbolic rest point of (D). Then x^{*} is asymptotically stable if all eigenvalues of $D V\left(x^{*}\right)$ have strictly negative real parts, and x^{*} is unstable otherwise.

By virtue of these results, we say that x^{*} is linearly stable if the eigenvalues of $D V\left(x^{*}\right)$ all have negative real part. While the Hartman-Grobman Theorem implies that a linearly stable rest point is asymptotically stable, it can be shown further that solutions starting near a linearly stable rest point converge to it at an exponential rate, as in equation (8.46).

We say that x^{*} is linearly unstable if $D V\left(x^{*}\right)$ has at least one eigenvalue with positive real part. (We do not require x^{*} to be hyperbolic.) It can be shown that as long as one eigenvalue of $D V\left(x^{*}\right)$ has positive real part, most solutions of (D) will move away from x^{*} at an exponential rate.

While the topological conjugacy established in Theorem 8.C. 1 is sufficient for local stability analysis, one should understand that topological conjugacy need not preserve the geometry of a flow. The following result for linear equations makes this point clear.

Theorem 8.C.3. Let $\dot{x}=A x$ and $\dot{y}=B y$ be hyperbolic linear differential equations on \mathbf{R}^{n} with flows ϕ and ψ. If A and B have the same numbers of eigenvalues with negative real part (counting algebraic multiplicities), then ϕ and ψ are topologically conjugate throughout \mathbf{R}^{n}.

Looking back at Example 8.B.2, we see that the phase diagrams of stable nodes (Figure 8.B.1(i)), stable spirals (Figure 8.B.2(i)), and stable improper nodes (Figure 8.B.3(i)) have very different appearances. Nevertheless, Theorem 8.C. 3 reveals that the flows described in these figures are topologically conjugate-that is, they can be continuously transformed into one another! To ensure that the geometry of phase diagrams is preserved, one needs not only topological conjugacy, but rather differentiable conjugacy: that is, conjugacy under a diffeomorphism (a differentiable transformation with differentiable inverse). As it turns out, it is possible to establish a local differentiable conjugacy between (D) near x^{*} and (L) near $\mathbf{0}$ if V is sufficiently smooth, and if the eigenvalues of $D V\left(x^{*}\right)$ are distinct and satisfy a mild nonresonance condition (see the Notes).

Much additional information about the flow of (D) can be surmised from the derivative matrix $D V\left(x^{*}\right)$ at a hyperbolic rest point x^{*}. Suppose that $D V\left(x^{*}\right)$ has k eigenvalues with negative real part and $n-k$ eigenvalues with positive real part, counting algebraic
multiplicities. The Stable Manifold Theorem tells us that within some neighborhood of x^{*}, there is k dimensional local stable manifold $M_{l o c}^{s}$ on which solutions converge to x^{*} at an exponential rate (as in (8.46)), and an $n-k$ dimensional local unstable manifold $M_{l o c}^{u}$ on which solutions converge to x^{*} at an exponential rate if time is run backward (as in (8.47)).

Moreover, both of these manifolds can be extended globally: the k dimensional (global) stable manifold M^{s} includes all solutions of (D) that converge to x^{*}, while the $n-k$ dimensional (global) unstable manifold M^{u} includes all solutions that converge to x^{*} as time runs backward. Among other implications of the existence of these manifolds, it follows that if x^{*} is hyperbolic and unstable, then the set M^{s} of states from which solutions converge to x^{*} is of measure zero, while the complement of this set is open, dense, and of full measure.

8.N Notes

Section 8.1: Theorem 8.1.1 is established by Bomze (1986) for the replicator dynamic and by Nachbar (1990) for general imitative dynamics; see also Weibull (1995).

Section 8.2: This section follows Sandholm (2001). Bomze (2002) provides an exhaustive treatment of local stability under the replicator dynamic for single-population linear potential games (which are generated by random matching in common interest games), and the connections between this stability analysis and quadratic programming.

Section 8.3: The notion of an evolutionarily stable strategy was introduced by Maynard Smith and Price (1973). The distinction between evolutionarily stable strategies and evolutionarily stable states is emphasized by Thomas (1984). General references on ESS theory include the survey of Hines (1987) and the monographs of Bomze and Pötscher (1989) and Cressman (1992).

Most early work on evolutionarily stable strategies considers the single-population random matching model. The original ESS definition of Maynard Smith and Price (1973) (see also Maynard Smith (1974)) is via conditions (8.7) and (8.9). The characterizations of ESS in terms of invasion barriers (8.6) and invasion of nearby states (8.2) in this linear setting are due to Taylor and Jonker (1978) and Hofbauer et al. (1979), respectively. That invasion barriers are uniform in this setting (Exercise 8.3.3(ii)) is pointed out explicitly by Vickers and Cannings (1987); see also Bomze (1986), Zeeman (1980), and Hofbauer and Sigmund (1988).

Turning now to single-population games with nonlinear payoffs, Theorem 8.3.5 is announced in Pohley and Thomas (1983), where a state satisfying condition (8.2) is called a "local ESS". The theorem is proved in Thomas (1985), and our proof in the text is a streamlined version of Thomas's (1985) proof. Theorem 8.3.1 is due to Bomze (1991),
who calls a a state satisfying our ESS condition (8.2) "strongly uninvadable", and a state satisfying the uniform invasion barrier condition (8.4) "uninvadable"; see also Bomze and Weibull (1995). Exercise 8.3.3(ii) is Example 18 of Bomze and Pötscher (1989).

Definition (8.16) of Taylor ESS is introduced by Taylor (1979); also see Schuster et al. (1981a). Exercise 8.3 .8 is essentially due to Selten (1980); see also van Damme (1991) and Swinkels (1992).

Definition (8.17) of Cresssman ESS is due to Cressman (1992, 1995, 1996, 2006) and Cressman et al. (2001), who refer to it as monomorphic ESS and as p-species ESS. To show that this definition is the heir of the single-population ESS of Maynard Smith and Price (1973), these papers study a collection of p-dimensional replicator systems, with one system for each strategy profile $y=\left(y^{1}, \ldots, y^{p}\right)$ other than the candidate for stability, $x=\left(x^{1}, \ldots, x^{p}\right)$. The p th component of the state variable in the p-dimensional system describes the fraction of the p th species using mixed strategy y^{p}; the remainder of the species uses the incumbent mixed strategy x^{p}. Results in Cressman et al. (2001) and Cressman (2006) imply that the origin (i.e., the state at which all members of each species p choose mixed strategy x^{p}) is asymptotically stable in each such system if and only if x satisfies condition (8.17). (To see this, use equations (1) and (6) in Cressman et al. (2001) to show that the B-matrix conditions appearing in Theorems 3 and 5 of that paper are equivalent to condition (8.17) here.) Interestingly, Cressman (1992) shows that in two-population linear games, any Cressman ESS is asymptotically stable under the replicator dynamic, but that this is not true in games played by more than two populations.

The notion of regular ESS is introduced in a single-population setting by Taylor and Jonker (1978), who prove that a regular ESS is asympotically stable under the replicator dynamic. Taylor (1979) extends this notion to the multi-population case, and observes that the stability result for the replicator dynamic extends to this setting.

Thomas (1985), Swinkels (1992), Balkenborg and Schlag (2001), and Cressman (2003) consider set-valued generalizations of the ESS concept, which are particularly useful in the context of random matching in extensive form games.

Section 8.4: Theorem 8.4.1(i) on the local stability of ESS under the replicator dynamic is one of the earliest results on evolutionary game dynamics; see Taylor and Jonker (1978), Taylor (1979), Hofbauer et al. (1979), Zeeman (1980), and Schuster et al. (1981a). Theorem 8.4.1(ii) follows easily from results of Nagurney and Zhang (1997); see also Sandholm et al. (2008). The results in Section 8.4.2 are extensions of ones from Hofbauer and Sandholm (2008). For the Theorem of the Maximum, see Ok (2007). Theorem 8.4.7 is due to Sandholm (2008c). Hofbauer (1995b) establishes the asymptotic stability of ESS under the best response dynamic in a single population random matching using a different
construction than the one presented here.
Section 8.5: Lemma 8.5.1 is due to Hines (1980); see also Hofbauer and Sigmund (1988), Hopkins (1999), and Sandholm (2007a). Versions of Theorems 8.5.2 and 8.5.6 can be found in Taylor and Jonker (1978), Taylor (1979), Hines (1980), and Cressman (1992, 1997). Example 8.5.5 is taken from Zeeman (1980). Theorem 8.5.9 is due to Cressman (1997).

Section 8.6: Linearization of perturbed best response dynamics is studied by Hopkins (1999, 2002), Hofbauer (2000), Hofbauer and Sandholm (2002, 2007), Hofbauer and Hopkins (2005), and Sandholm (2007a). Exercise 8.6.3 is used in Sandholm (2007a) to show that Nash equilibria of normal form games can always be purified (in the sense of Harsanyi (1973)) in an evolutionarily stable fashion through an appropriate choice of payoff noise. See Ellison and Fudenberg (2000) and Ely and Sandholm (2005) for related results. Example 8.6 .5 is due to Hopkins (1999). Hopkins (2002) uses this result to show that the replicator dynamic closely approximates the evolution of choice probabilities under stochastic fictitious play. Hofbauer et al. (2007) use similar ideas to establish an exact relationship between the long run time averaged behavior of the replicator dynamic and the long run behavior of the best response dynamic.

Appendix 8.A: Horn and Johnson (1985) is an outstanding general reference on matrix analysis. Many of the results we described are also presented in Hirsch and Smale (1974).

Appendix 8.B: Both Hirsch and Smale (1974) and Robinson (1995) provide thorough treatments of linear differential equations at the undergraduate and graduate levels, respectively.

Appendix 8.C: Robinson (1995) is an excellent reference on dynamical systems in general and on linearization in particular. For more on differentiable conjugacy around rest points, see Hartman (1964).

Nonconvergence of Evolutionary Dynamics

9.0 Introduction

We began our study of the global behavior of evolutionary dynamics in Chapter 7, focusing on combinations of games and dynamics generating global or almost global convergence to equilibrium. The analysis there demonstrated that global payoff structure-in particular, the structure captured in the definitions of potential, stable, and supermodular games-makes compelling evolutionary justifications of the Nash prediction possible.

On the other hand, once we move beyond these classes of well-behaved games, it is not clear how often convergence will occur. The present chapter counterbalances Chapter 7 by investigating nonconvergence of evolutionary dynamics for games, describing a variety of environments in which cycling or chaos offer the best predictions of long run behavior.

Section 9.1 leads with a study of conservative properties of evolutionary dynamics, focusing on the existence of constants of motion and on the preservation of volume under the replicator and projection dynamics. Section 9.2 continues with a panoply of examples of nonconvergence. Among other things, this section offers games in which no reasonable evolutionary dynamic converges to equilibrium, demonstrating that no evolutionary dynamic can provide a blanket justification for the prediction of Nash equilibrium play. Section 9.3 proceeds by offering examples of chaotic evolutionary dynamics-that is, dynamics exhibiting complicated attracting sets and sensitive dependence on initial conditions.

The possibility of nonconvergence has surprising implications for evolutionary support of traditional solution concepts. Under dynamics that satisfy Nash stationarity (NS), solution trajectories that converge necessarily converge to Nash equilibria. But since no
reasonable evolutionary dynamic converges in all games, general support for standard solution concepts is not assured.

Since the Nash prediction is not always supported by an evolutionary analysis, it is natural to turn to a less demanding notion-namely, the elimination of strategies that are strictly dominated by a pure strategy. As this requirement is the mildest employed in standard game theoretic analyses, it is natural to expect to find support for this requirement via an evolutionary approach.

In Section 9.4, we present the striking finding that evolutionary dynamics satisfying four mild conditions-continuity, Nash stationarity, positive correlation, and innovationdo not eliminate strictly dominated strategies in all games. Moreover, while we saw in Chapter 7 that imitative dynamics and the best response dynamic eliminate strictly dominated strategies, we show here that small perturbations of these dynamics do not. This analysis demonstrates that evolutionary dynamics provide surprisingly little support for a basic rationality criterion.

As always, the appendices provide the mathematical background necessary for our analysis. Appendix 9.A describes some classical theorems on nonconvergence used throughout the chapter. Appendix 9.B introduces the notion of an attractor of a dynamic, and establishes the continuity properties of attractors that underlie our analysis of dominated strategies.

9.1 Conservative Properties of Evolutionary Dynamics

It is often impossible to provide precise descriptions of long run behavior under nonconvergent dynamics. An important exception occurs in cases where the dynamics lead certain quantities to be preserved. We explore this idea in the current section, where we argue that in certain strategic environments, the replicator and projection dynamics exhibit noteworthy conservative properties.

9.1.1 Constants of Motion in Null Stable Games

In Section 7.2.1, we introduced null stable population games. These games are defined by the requirement that

$$
(y-x)^{\prime}(F(y)-F(x))=0 \text { for all } x, y \in X,
$$

and include zero-sum games (Example 3.3.7) and multi-zero-sum games (Exercise 3.3.9) as special cases.

In Exercise 7.2.2, we saw if x^{*} is an interior Nash equilibrium of a null stable game $F: X \rightarrow \mathbf{R}^{n}$, then the value of the function

$$
E_{x^{*}}(x)=\left|x-x^{*}\right|^{2}
$$

is preserved along interior segments of solution trajectories of the projection dynamic: thus, as these segments are traversed, Euclidean distance from the equilibrium x^{*} is fixed. Similar conclusions hold for interior solutions of the replicator dynamic: Exercise 7.2.5 shows that such solutions preserve the value of the function

$$
H_{x^{*}}(x)=\sum_{p \in \mathcal{P}} h_{\left(x^{*}\right)^{p}}^{p}\left(x^{p}\right), \quad \text { where } h_{y^{p}}^{p}\left(x^{p}\right)=\sum_{i \in S^{p}\left(y^{p}\right)} y_{i}^{p} \log \frac{y_{i}^{p}}{x_{i}^{p}}
$$

is a relative entropy function.
When x^{*} is interior, the level sets of $E_{x^{*}}$ and $H_{x^{*}}$ foliate from x^{*} like the layers of an onion. Each solution trajectory is limited to one of these layers, a manifold whose dimension is one less than that of X.

Example 9.1.1. In Figure 5.3.1, we presented phase diagrams of the six basic evolutionary dynamics for standard Rock-Paper-Scissors,

$$
F(x)=\left(\begin{array}{l}
F_{R}(x) \\
F_{P}(x) \\
F_{S}(x)
\end{array}\right)=\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{R} \\
x_{P} \\
x_{S}
\end{array}\right)=\left(\begin{array}{l}
x_{S}-x_{P} \\
x_{R}-x_{S} \\
x_{P}-x_{R}
\end{array}\right)
$$

a zero-sum game with unique Nash equilibrium $x^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. Figures 5.3.1(i) and 5.3.1(ii) show that interior solutions of the replicator and projection dynamics form closed orbits around x^{*}. These orbits describe the level sets of the functions $E_{x^{*}}$ and $H_{x^{*}}$. Note that an affine transformation of $H_{x^{*}}$ yields a simpler constant of motion for the replicator dynamic, $\mathcal{H}(x)=-\sum_{i \in S} \log x_{i} . \S$

When $\operatorname{dim}(X)>2$, the level sets of $E_{x^{*}}$ and $H_{x^{*}}$ need not pin down the locations of interior solutions of (P) and (R). But if the null stable game F has multiple Nash equilibria, then there are multiple collections of level sets, and intersections of these sets do determine the positions of interior solutions.

Example 9.1.2. Consider the population game F generated by random matching in the

Figure 9.1.1: Solutions of the projection dynamic on level set $E_{x^{*}}(x)=\frac{\sqrt{3}}{12}, x^{*}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$.
symmetric zero-sum game A :

$$
F(x)=A x=\left(\begin{array}{cccc}
0 & -1 & 0 & 1 \tag{9.1}\\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
x_{4}-x_{2} \\
x_{1}-x_{3} \\
x_{2}-x_{4} \\
x_{3}-x_{1}
\end{array}\right)
$$

The Nash equilibria of F are the points on line segment $N E$ connecting states $\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right)$ and ($0, \frac{1}{2}, 0, \frac{1}{2}$).

The arguments above show that interior solutions to the projection dynamic maintain a constant distance from every Nash equilibrium of F. This is illustrated in Figure 9.1.1, which presents solutions on the sphere inscribed in the pyramid X; this is the level set on which $E_{x^{*}}$ takes the value $\frac{\sqrt{3}}{12}$, where $x^{*}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$. Each solution drawn in the figure is a circular closed orbit orthogonal to line segment $N E$.

Figure 9.1.2 presents solution trajectories of the replicator dynamic for game F. Diagrams (i) and (ii) show solutions on level sets of $H_{x^{*}}$ where $x^{*}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$; the first (smaller) level set is nearly spherical, while the second approximates the shape of the pyramid X. Diagrams (iii) and (iv) present solutions on level sets of $H_{x^{*}}$ with $X^{*}=\left(\frac{3}{8}, \frac{1}{8}, \frac{3}{8}, \frac{1}{8}\right)$ and $x^{*}=\left(\frac{1}{8}, \frac{3}{8}, \frac{1}{8}, \frac{3}{8}\right)$. By our previous discussion, the intersection of the two level sets is a closed curve describing a single orbit of the dynamic. §

Example 9.3.2 will show that even in zero-sum games, very complicated dynamics can arise within the level sets of $H_{x^{*}}$.

Exercise 9.1.3. (i) Suppose that $A \in \mathbf{R}^{n \times n}$ is skew-symmetric. Show that the eigenvalues of A all have zero real part, and so that the number of nonzero eigenvalues is even.

Figure 9.1.2: Solutions of the replicator dynamic on level sets of $H_{x^{*}}$.
(ii) Suppose that $A \in \mathbf{R}^{n \times n}$ is a symmetric zero-sum game that admits an interior Nash equilibrium x^{*}. Show that if n is even, then x^{*} is contained in a line segment consisting entirely of Nash equilibria. (Hint: Consider the matrix $Ф А Ф$.

The previous analysis shows that in zero-sum games, typical solutions of the replicator dynamic do not converge. The next exercise shows that the time averages of these solutions do converge, and that the limits of the time averages are Nash equilibria.
Exercise 9.1.4. Convergence of time averages under the replicator dynamic. Let $F(x)=A x$ be the population game generated by the symmetric normal form game $A \in \mathbf{R}^{n \times n}$, and let $\dot{x}=V_{F}(x)$ be the replicator dynamic for this game. Suppose that $\left\{x_{t}\right\}_{t \geq 0}$ is a solution to V_{F} that is bounded away from $\operatorname{bd}(X)$ (i.e., that there is an $\varepsilon>0$ such that $\left(x_{t}\right)_{i} \geq \varepsilon$ for all $t \geq 0$ and $i \in S$). Let

$$
\bar{x}_{t}=\frac{1}{t} \int_{0}^{t} x_{s} \mathrm{~d} s
$$

be the average value of the state over the time interval [$0, t$]. Following the steps below, prove that $\left\{\bar{x}_{t}\right\}_{t \geq 0}$ converges to the set of (interior) Nash equilibria of F as t approaches infinity:
(9.2) $\quad \lim _{t \rightarrow \infty} \min _{x^{*} \in N E(F)}\left|\bar{x}_{t}-x^{*}\right|=0$.

In particular, if F has a unique interior Nash equilibrium x^{*}, then $\left\{\bar{x}_{t}\right\}$ converges to x^{*}.
(i) Define $y_{t} \in \mathbf{R}^{n}$ by $\left(y_{t}\right)_{i}=\log \left(x_{t}\right)_{i}$. Compute $\frac{d}{d t} y_{t}$.
(ii) Show that

$$
\frac{1}{t}\left(y_{t}-y_{0}\right)=\frac{1}{t} \int_{0}^{t}\left(A x_{s}-\mathbf{1} x_{s}^{\prime} A x_{s}\right) \mathrm{d} s
$$

(iii) Let \bar{x}^{*} be an ω-limit point of the trajectory $\left\{\bar{x}_{t}\right\}$. Show that $A \bar{x}^{*}$ is a constant vector, and hence that \bar{x}^{*} is a Nash equilibrium. (Hint: Use the fact that the trajectory $\left\{y_{t}\right\}$ is constrained to a compact set.)
(iv) Conclude that (9.2) holds. (Hint: Use the fact that the trajectory $\left\{\bar{x}_{t}\right\}$ is constrained to a compact set.)

Exercise 9.1.5. Prove that the conclusion of Exercise 9.1.4 continues to hold in a twopopulation random matching setting.

Exercise 9.1.6. Explain why the argument in Exercise 9.1.4 does not allow its conclusion to be extended to random matching in $p \geq 3$ populations.

9.1.2 Preservation of Volume

Let $\dot{x}=V(x)$ be differential equation on X with flow $\phi: \mathbf{R} \times X \rightarrow X$, and let μ denote Lebesgue measure on X. The differential equation is said to volume preserving (or incompressible) on $Y \subseteq X$ if for any measurable set $A \subseteq Y$, we have $\mu\left(\phi_{t}(A)\right)=\mu(A)$ for all $t \in \mathbf{R}$. Preservation of volume has strong implications for local stability of rest points: since an asymptotically stable rest point must draw in all nearby initial condition, no such rest points can exist in regions where volume is preserved (see Theorem 9.A.4).

We now show that in single population zero-sum games, the replicator dynamic is volume preserving after a well-chosen change in speed. Compared to the standard replicator dynamic, the speed-adjusted replicator dynamic on $\operatorname{int}(X)$,

$$
\begin{equation*}
\dot{x}_{i}^{p}=q(x) x_{i}^{p} \hat{F}_{i}^{p}(x), \quad \text { where } q(x)=\prod_{r \in \mathcal{P}} \prod_{j \in S} \frac{1}{x_{j}^{r}}, \tag{9.3}
\end{equation*}
$$

moves relatively faster at states closer to the boundary of the simplex, with speeds approaching infinity as the boundary is approached. The solution trajectories of (9.3) have the same locations as those of the standard replicator dynamic (see Exercise 5.4.10), so the implications of volume preservation for stability of rest points extend immediately to the latter dynamic.

Theorem 9.1.7. Let $F(x)=A x$ be generated by random matching in the symmetric zero-sum game $A=-A^{\prime} \in \mathbf{R}^{n \times n}$. Then the dynamic (9.3) for F is volume preserving on $\operatorname{int}(X)$. Therefore, no interior Nash equilibrium of F is asymptotically stable under the replicator dynamic.

The proof of Theorem 9.1.7 is based on Liouville's Theorem, which tells us that the rate at which the dynamic $\dot{x}=V(x)$ expands or contracts volume near state x is given by the divergence $\operatorname{div} V(x) \equiv \operatorname{tr}(D V(x))$. More precisely, Liouville's Theorem tells us that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu\left(\phi_{t}(A)\right)=\int_{\phi_{t}(A)} \operatorname{div} V(x) \mathrm{d} \mu(x)
$$

for each Lebesgue measurable set A. Thus, if $\operatorname{div} V \equiv 0$, so that V is divergence free, then the flow ϕ is volume preserving. See Section 9.A. 1 for a proof and further discussion of this result.

Proof. The replicator dynamic is described by the vector field $R: X \rightarrow T X$, where

$$
R(x)=\operatorname{diag}(x)\left(F(x)-\mathbf{1} x^{\prime} F(x)\right)
$$

Since $F(x)=A x$, and since $x^{\prime} A x \equiv 0$ (because A is symmetric zero-sum), we can simplify the previous expression to

$$
\begin{equation*}
R(x)=\operatorname{diag}(x) A x \tag{9.4}
\end{equation*}
$$

The dynamic (9.3) can be written as

$$
V(x)=q(x) R(x)
$$

where q is the function from $\operatorname{int}(X) \rightarrow \mathbf{R}_{+}$defined in equation (9.3). If we can show that V is divergence free on $\operatorname{int}(X)$, then our result will follow from Liouville's Theorem.

To compute $D V(x)$, let $\hat{q}: \operatorname{int}\left(\mathbf{R}_{+}^{n}\right) \rightarrow \mathbf{R}_{+}$and $\hat{R}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the natural extensions of q and R, so that $\nabla q(x)=\Phi \nabla \hat{q}(x)$ and $D R(x)=D \hat{R}(x) \Phi$. Then the chain rule implies that

$$
\begin{equation*}
D V(x)=q(x) D R(x)+R(x) \nabla q(x)^{\prime}=\left(q(x) D \hat{R}(x)+R(x) \nabla \hat{q}(x)^{\prime}\right) \Phi . \tag{9.5}
\end{equation*}
$$

To evaluate this expression, write $\left[x^{-1}\right]=\left(\frac{1}{x_{1}}, \ldots, \frac{1}{x_{n}}\right)^{\prime}$, and compute from equations (9.3) and (9.4) that

$$
\nabla \hat{q}(x)=-\hat{q}(x)\left[x^{-1}\right] \text { and } D \hat{R}(x)=\operatorname{diag}(x) A+\operatorname{diag}(A x) .
$$

Substituting into equation (9.5) yields

$$
\begin{aligned}
D V(x)= & q(x)\left(\left(\operatorname{diag}(x) A+\operatorname{diag}(A x)-\operatorname{diag}(x) A x\left[x^{-1}\right]^{\prime}\right) \Phi\right. \\
= & q(x)\left[\left(\operatorname{diag}(x) A+\operatorname{diag}(A x)-\operatorname{diag}(x) A x\left[x^{-1}\right]^{\prime}\right)\right. \\
& \left.-\frac{1}{n}\left(\operatorname{diag}(x) A+\operatorname{diag}(A x)-\operatorname{diag}(x) A x\left[x^{-1}\right]^{\prime}\right) \mathbf{1 1}^{\prime}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\operatorname{div} V(x)=q(x)[& \sum_{i \in S} x_{i} A_{i i}+\sum_{i \in S}(A x)_{i}-\sum_{i \in S} x_{i}(A x)_{i} \frac{1}{x_{i}} \\
& \left.-\frac{1}{n} \sum_{i \in S} x_{i} \sum_{j \in S} A_{i j}-\frac{1}{n} \sum_{i \in S} \sum_{j \in S} A_{i j} x_{j}+\frac{1}{n} \sum_{i \in S} \sum_{j \in S} x_{i} A_{i j} x_{j} \sum_{k \in S} \frac{1}{x_{k}}\right] .
\end{aligned}
$$

The first term in the brackets equals 0 since $A_{i i}=0$; the second and third terms cancel; the fourth and fifth terms cancel since $A_{i j}=-A_{j i}$; and the sixth term is 0 since $x^{\prime} A x=0$. We therefore conclude that $\operatorname{div} V(x)=0$ on $\operatorname{int}(X)$, and hence that the flow of (9.3) is volume
preserving. The conclusion about asymptotic stability follows from Theorem 9.A.4.
Under single population random matching, volume preservation under the replicator dynamic is only assured in zero-sum games. Remarkably, moving to multipopulation random matching ensures volume preservation regardless of the payoffs in the underlying normal form game.

Suppose the population game F is generated by random matching of members of $p \geq 2$ populations to play a p player normal form game. Since each agent's opponents in a match will be members of the other populations, the agent's payoffs do not depend on his own population's state: $F^{p}(x) \equiv F^{p}\left(x^{-p}\right)$. Theorem 9.1.8 shows that this last condition is sufficient to prove that the flow of the replicator dynamic for F is volume preserving.

Theorem 9.1.8. Let F be a game played by $p \geq 2$ populations that satisfies $F^{p}(x) \equiv F^{p}\left(x^{-p}\right)$. Then the dynamic (9.3) for F is volume preserving on $\operatorname{int}(X)$. Therefore, no interior Nash equilibrium of F is asymptotically stable under the replicator dynamic.

Exercise 9.1.9. Prove Theorem 9.1.8. To simplify the notation, assume that each population is of unit mass. (Hint: To prove that the vector field V from equation (9.3) is divergence free, start by showing that the derivative matrix of V^{p} at x with respect to directions in $T X^{p}$ is the $n^{p} \times n^{p}$ matrix

$$
D_{T X^{p}} V^{p}(x)=q(x)\left(\operatorname{diag}\left(\pi^{p}\right)-\bar{\pi}^{p} I-x^{p}\left(\pi^{p}\right)^{\prime}-\operatorname{diag}\left(x^{p}\right) \pi^{p}\left[\left(x^{p}\right)^{-1}\right]^{\prime}+\bar{\pi}^{p} x^{p}\left[\left(x^{p}\right)^{-1}\right]^{\prime}\right) \Phi,
$$

where $\pi^{p}=F^{p}\left(x^{-p}\right)$ and $\left.\bar{\pi}^{p}=\bar{F}^{p}\left(x^{-p}\right)=\left(x^{p}\right)^{\prime} \pi^{p}.\right)$
Analogues of Theorems 9.1.7 and 9.1.8 can be established for the projection dynamics via much simpler calculations, and without introducing a change in speed.

Exercise 9.1.10. Let $F(x)=A x$ be generated by random matching in the symmetric zero sum game $A=-A^{\prime} \in \mathbf{R}^{n \times n}$. Show that the projection dynamic for F is volume preserving on $\operatorname{int}(X)$.

Exercise 9.1.11. Let F be a game played by $p \geq 2$ unit-mass populations that satisfies $F^{p}(x) \equiv F^{p}\left(x^{-p}\right)$. Show that the projection dynamic for F is volume preserving on $\operatorname{int}(X)$.

9.2 Games with Nonconvergent Evolutionary Dynamics

In this section, we introduce examples of games for which many evolutionary dynamics fail to converge to equilibrium.

9.2.1 Circulant Games

The matrix $A \in \mathbf{R}^{n \times n}$ is called a circulant matrix if it is of the form

$$
A=\left(\begin{array}{ccccc}
a_{0} & a_{1} & \cdots & a_{n-2} & a_{n-1} \\
a_{n-1} & a_{0} & a_{1} & \cdots & a_{n-2} \\
\ddots & \ddots & \ddots & \ddots & \ddots \\
a_{2} & \cdots & a_{n-1} & a_{0} & a_{1} \\
a_{1} & a_{2} & \cdots & a_{n-1} & a_{0}
\end{array}\right)
$$

When we view A as the payoff matrix for a symmetric normal form game, we refer to A as a circulant game. Such games always include the central state $x^{*}=\frac{1}{n} \mathbf{1}$ among their Nash equilibria. Note that Rock-Paper-Scissors games are circulant games with $n=3, a_{0}=0$, $a_{1}=-l$, and $a_{2}=w$. Most of the specific games considered below will also have diagonal payoffs equal to 0 .

Their symmetric structure make circulant games simple to analyze. In doing so, we will find it convenient to refer to strategies modulo n.

Exercise 9.2.1. Verify that the eigenvalue/eigenvector pairs of the circulant matrix A are

$$
\begin{equation*}
\left(\lambda_{k}, v_{k}\right)=\left(\sum_{j=0}^{n-1} a_{j} l_{n}^{j k},\left(1, \iota_{n}^{k}, \ldots, l_{n}^{(n-1) k}\right)^{\prime}\right), k=0, \ldots, n-1, \tag{9.6}
\end{equation*}
$$

where $l_{n}=\exp \left(\frac{2 \pi \mathrm{i}}{n}\right)=\cos \left(\frac{2 \pi}{n}\right)+\mathrm{i} \sin \left(\frac{2 \pi}{n}\right)$ is the nth root of unity.
Exercise 9.2.2. Let $F(x)=A x$ be generated by random matching in the circulant game A, and let $\dot{x}=R(x)=\operatorname{diag}(x)\left(A x-1 x^{\prime} A x\right)$ be the replicator dynamic for F. Show that the derivative matrix of R at the Nash equilibrium $x^{*}=\frac{1}{n} 1$ is the circulant matrix

$$
D R\left(x^{*}\right)=\frac{1}{n}\left(A-2 \mathbf{1 1}^{\prime} \bar{a}\right),
$$

where $\bar{a}=\frac{1}{n} \mathbf{1}^{\prime} a$ is the average of the components of the vector $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)^{\prime}$. It then follows from the previous exercise that the eigenvalue/eigenvector pairs $\left(\lambda_{k}, v_{k}\right)$ of $D R\left(x^{*}\right)$ are given by

$$
\begin{equation*}
\left(\lambda_{k}, v_{k}\right)=\left(\frac{1}{n} \sum_{j=0}^{n-1}\left(a_{j}-2 \bar{a}\right) \iota_{n}^{j k},\left(1, l_{n}^{k}, \ldots, \iota_{n}^{(n-1) k}\right)^{\prime}\right), k=0, \ldots, n-1 . \tag{9.7}
\end{equation*}
$$

Example 9.2.3. The hypercycle system. Suppose that $a_{0}=\ldots=a_{n-2}=0$ and that $a_{n-1}=1$, so that each strategy yields a positive payoff only against the strategy that precedes it

Figure 9.2.1: Eigenvalues of the hypercycle system.
(modulo n). In this case, $x^{*}=\frac{1}{n} \mathbf{1}$ is the unique Nash equilibrium of F, and the replicator dynamic for A is known as the hypercycle system.

We determine the local stability of the rest point x^{*} by considering the eigenvalues of $D R\left(x^{*}\right)$. Substituting into equations (9.6) and (9.7) shows that the eigenvector/eigenvalue pairs are of the form

$$
\left(\lambda_{k}, v_{k}\right)=\left(\frac{1}{n} l_{n}^{(n-1) k}-\frac{2}{n^{2}} \sum_{j=0}^{n-1} \iota_{n}^{j k},\left(1, l_{n}^{k}, \ldots, l_{n}^{(n-1) k}\right)^{\prime}\right), k=0, \ldots, n-1 .
$$

Eigenvalue $\lambda_{0}=\frac{1}{n}-\frac{2}{n}=-\frac{1}{n}$ corresponds to eigenvector $v_{0}=\mathbf{1}$ and so has no bearing on the stability analysis. For $k \geq 1$, the sum in the formula for λ_{k} vanishes (why?), leaving us with $\lambda_{k}=\frac{1}{n} \iota_{n}^{(n-1) k}=\frac{1}{n} \iota_{n}^{k}$. The stability of x^{*} therefore depends on whether any λ_{k} with $k>0$ has positive real part. As Figure 9.2.1 illustrates, this largest real part is negative when $n \leq 3$, zero when $n=4$, and positive when $n \geq 5$. It follows that x^{*} is asymptotically stable when $n \leq 3$, but unstable when $n \geq 5$. Exercise 9.2 .4 shows that the local stability results can be extended to global stability results, and that global stability can also be proved when $n=4$. When $n \geq 5$, it is possible to show that the boundary of X is repelling, as it is in the lower dimensional cases, and that the dynamic admits a stable periodic orbit (see the Notes). §

Exercise 9.2.4. Consider the function $\mathcal{H}: \operatorname{int}(X) \rightarrow \mathbf{R}$ defined by $\mathcal{H}(x)=-\sum_{i \in S} \log x_{i}(\mathrm{cf}$ Example 9.1.1.)
(i) Show that under the hypercycle equation with $n=2$ or $3, \mathcal{H}$ is a strict Lyapunov function on $\operatorname{int}(X)$, and hence that x^{*} is globally asymptotically stable with respect to $\operatorname{int}(X)$.
(ii) Show that under the hypercycle equation with $n=4$ we have $\dot{\mathcal{H}}(x) \leq 0$ on $\operatorname{int}(X)$, with equality if and only if x lies in $Y=\left\{y \in \operatorname{int}(X): y_{1}+y_{3}=y_{2}+y_{4}\right\}$. Show that the sole invariant subset of Y is $\left\{x^{*}\right\}$. Then use Theorems 7.B.2 and 7.B.4 and Proposition 7.A.1(iii) to conclude that x^{*} is globally asymptotically stable with respect to int (X).

Example 9.2.5. Monocyclic games. A circulant game A is monocyclic if $a_{0}=0, a_{1}, \ldots, a_{n-2} \leq 0$, and $a_{n-1}>0$. Let $\bar{a}=\frac{1}{n} \sum_{i} a_{i}$. If we assume that $\bar{a}<0$, then the Nash equilibrium $x^{*}=\frac{1}{n} \mathbf{1}$, which yields a payoff of \bar{a} for each strategy, is the unique interior Nash equilibrium of $F(x)=A x$. More importantly, there is an open, dense, full measure set of initial conditions from which the best response dynamic for $F(x)=A x$ converges to a limit cycle; this limit cycle is contained in the set where $M(x)=\max _{i \in S} F_{i}(x)$ equals 0 .

Here is a sketch of the proof. Consider a solution trajectory $\left\{x_{t}\right\}$ of the best response dynamic that lies in set $B_{1}=\left\{x \in X: \operatorname{argmax}_{i \in S} F_{i}(x)=\{1\}\right\}$ during time interval $[0, T)$. For any $t \in[0, T)$, we have that

$$
x_{t}=\mathrm{e}^{-t} x_{0}+\left(1-\mathrm{e}^{-t}\right) e_{1} .
$$

Since the diagonal elements of A all equal zero, it follows that

$$
\begin{equation*}
M\left(x_{t}\right)=F_{1}\left(x_{t}\right)=\mathrm{e}^{-t} F_{1}\left(x_{0}\right)=\mathrm{e}^{-t} M\left(x_{0}\right) \tag{9.8}
\end{equation*}
$$

For $j \notin\{1,2\}$ we have that

$$
\begin{equation*}
F_{j}\left(x_{t}\right)=\mathrm{e}^{-t} F_{j}\left(x_{0}\right)+\left(1-\mathrm{e}^{-t}\right) A_{j 1} \leq \mathrm{e}^{-t} F_{j}\left(x_{0}\right)<\mathrm{e}^{-t} F_{1}\left(x_{0}\right)=F_{1}\left(x_{t}\right) . \tag{9.9}
\end{equation*}
$$

Equations (9.8) and (9.9) and the fact that

$$
F_{1}\left(e_{1}\right)=0<a_{n-1}=F_{2}\left(e_{1}\right)
$$

imply that a solution starting in region B_{1} must hit the set $B_{12}=\left\{x \in X: \operatorname{argmax}_{i \in S} F_{i}(x)=\right.$ $\{1,2\}\}$, and then immediately enter region $B_{2}=\left\{x \in X: \operatorname{argmax}_{i \in S} F_{i}(x)=\{2\}\right\}$.

Repeating the foregoing argument shows that the trajectory next enters best response regions $B_{3}, B_{4}, \ldots, B_{0}$ in succession before returning to region B_{1}. Therefore, if we denote by B the set of states at which there are at most two best responses, then B is forward invariant under the best response dynamic. Moreover, equation (9.8) implies that the maximal payoff $M\left(x_{t}\right)$ approaches 0 along all solution trajectories in B.

In light of this discussion, we can define the return map $r: B_{12} \rightarrow B_{12}$, where $r(x)$ is the position at which a solution starting at $x \in B_{12}$ first returns to B_{12}. All fixed points of r lie in
$M^{-1}(0)$. In fact, it can be shown that r is a contraction on $M^{-1}(0)$ for an appropriate choice of metric, and so that r has a unique fixed point (see the Notes). We therefore conclude that any solution trajectory starting in the open, dense, full measure set B converges to the closed orbit that passes through the unique fixed point of the return map r. §

9.2.2 Continuation of Attractors for Parameterized Games

The games we construct in the examples to come will generate nonconvergent behavior for large classes of evolutionary dynamics. Recall our general formulation of evolutionary dynamics from Chapter 4: each revision protocol ρ defined a map from population games F to differential equations $\dot{x}=V_{F}(x)$ via

$$
\begin{equation*}
\dot{x}_{i}^{p}=\left(V_{F}\right)_{i}^{p}(x)=\sum_{j \in S^{p}} x_{j}^{p} \rho_{j i}^{p}\left(F^{p}(x), x^{p}\right)-x_{i}^{p} \sum_{j \in S^{p}} \rho_{i j}^{p}\left(F^{p}(x), x^{p}\right) . \tag{9.10}
\end{equation*}
$$

In Chapter 5, we introduced the following three desiderata for ρ and V.
(C) Continuity: $\quad \rho^{p}$ is Lipschitz continuous.
(NS) Nash stationarity: $\quad V_{F}(x)=\mathbf{0}$ if and only if $x \in N E(F)$.
(PC) Positive correlation: $V_{F}^{p}(x) \neq 0$ implies that $V_{F}^{p}(x)^{\prime} F^{p}(x)>0$.
We have seen that under continuity condition (C), any Lipschitz continuous population game F will generate a Lipschitz continuous differential equation (9.10), an equation that admits unique solutions from every initial condition in X. But a distinct consequence of condition (C)—one involving comparisons of dynamics across games-is equally important for the analyses to come.

Suppose we have a collection of population games $\left\{F^{\varepsilon}\right\}_{\varepsilon \in(-\bar{\varepsilon}, \bar{\varepsilon})}$ that have identical strategy sets and whose payoffs vary continuously in ε. Then under condition (C), the law of motion $\dot{x}=V_{F^{\varepsilon}}(x)$ varies continuously in ε. Moreover, if we let $\phi^{\varepsilon}: \mathbf{R}_{+} \times X \rightarrow X$ denote the semiflow under $V_{F^{\varepsilon}}$, then the map $(\varepsilon, t, x) \mapsto \phi_{t}^{\varepsilon}(x)$ is continuous as well. This fact is important for understanding how evolution under $V_{(\cdot)}$ changes as we vary the underlying game. To capture the effects on long run behavior under $V_{(\cdot)}$, we must introduce the notion of an attractor. We keep the introduction here brief; additional details can be found in Appendix 9.B.

A set $\mathcal{A} \subseteq X$ is an attractor of the flow ϕ if it is nonempty, compact, and invariant under ϕ, and if there is a neighborhood U of \mathcal{A} such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup _{x \in U} \operatorname{dist}\left(\phi_{t}(x), \mathcal{A}\right)=0 . \tag{9.11}
\end{equation*}
$$

The set $B(\mathcal{A})=\{x \in X: \omega(x) \subseteq \mathcal{A}\}$ is called the basin of \mathcal{A}. Put differently, attractors are asymptotically stable sets that are also invariant under the flow.

A key property of attractors for the current context is known as continuation. Fix an attractor $\mathcal{A}=\mathcal{A}^{0}$ of the flow ϕ^{0}. Then as ε varies continuously from 0 , there exist attractors $\mathscr{A}^{\varepsilon}$ of the flows ϕ^{ε} that vary upper hemicontinuously from \mathcal{A}; their basins $B\left(\mathscr{A}^{\varepsilon}\right)$ vary lower hemicontinuously from $B(\mathcal{A})$. Thus, if we slightly change the parameter ε, the attractors that exist under ϕ^{0} continue to exist, and they do not explode.

Exercise 9.2.6. In defining an attractor via equation (9.11), we require that it attract solutions from all nearby states uniformly in time. To understand the role of uniformity in this definition, let ϕ be a flow on the unit circle that moves clockwise except at the topmost point x^{*} (cf Example 7.A.3). Explain why $\left\{x^{*}\right\}$ is not an attractor under this flow.

As a first application of these ideas, consider the 4×4 circulant game

$$
F^{\varepsilon}(x)=A^{\varepsilon} x=\left(\begin{array}{cccc}
0 & 0 & -1 & \varepsilon \tag{9.12}\\
\varepsilon & 0 & 0 & -1 \\
-1 & \varepsilon & 0 & 0 \\
0 & -1 & \varepsilon & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) .
$$

When $\varepsilon=0$, the payoff matrix $A^{\varepsilon}=A^{0}$ is symmetric, so F^{0} is a potential game with potential function $f(x)=\frac{1}{2} x^{\prime} A^{0} x=-x_{1} x_{3}-x_{2} x_{4}$. The function f attains its minimum of $-\frac{1}{4}$ at states $v=\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right)$ and $w=\left(0, \frac{1}{2}, 0, \frac{1}{2}\right)$, has a saddle point with value $-\frac{1}{8}$ at the Nash equilibrium $x^{*}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$, and attains its maximum of 0 along the closed path of Nash equilibria γ consisting of edges $\overline{e_{1} e_{2}}, \overline{e_{2} e_{3}}, \overline{e_{3} e_{4}}$, and $\overline{e_{4} e_{1}}$. It follows from results in Section 7.1 that if $\dot{x}=V_{F^{0}}(x)$ satisfies (NS) and (PC), then all solutions whose initial conditions ξ satisfy $f(\xi)>-\frac{1}{8}$ converge to γ. (In fact, if x^{*} is a hyperbolic rest point of $V_{F^{\varepsilon}}$, then the Stable Manifold Theorem (see Appendix 8.C) tells us that the set of initial conditions from which solutions converge to x^{*} is a manifold of dimension no greater than 2 , and hence has measure zero.) The phase diagram for the Smith dynamic game F^{0} is presented in Figure 9.2.2(i).

Now suppose that $\varepsilon>0$. If our revision protocol satisfies continuity (C), then the attractor γ of $V_{F^{0}}$ continues to an attractor γ^{ε} of $V_{F^{\varepsilon}} ; \gamma^{\varepsilon}$ is contained in a neighborhood of γ, and its basin approximates that of γ (see Figure 9.2.2(ii)). At the same time, the unique Nash equilibrium of F^{ε} is the central state x^{*}. We have therefore proved

Proposition 9.2.7. Let $V_{(\cdot)}$ be an evolutionary dynamic that satisfies (C), (PC), and (NS), let F^{ε} be given by (9.12), and let $\delta>0$. Then for $\varepsilon>0$ suffficiently small, solutions to $\dot{x}=V_{F^{\varepsilon}}(x)$ from

Figure 9.2.2: The Smith dynamic in game F^{ε}.

Figure 9.2.3: The replicator dynamic in Mismatching Pennies.
all initial conditions x with $f(x)>-\frac{1}{8}+\delta$ converge to an attractor γ^{ε} on which f exceeds $-\delta$; in particular, γ^{ε} contains neither Nash equilibria nor rest points.

9.2.3 Mismatching Pennies

Mismatching Pennies is a three-player normal form game in which each player has two strategies, Heads and Tails. Player p receives a payoff of 1 for choosing a different strategy than player $p+1$ and a payoff of 0 otherwise, where players are indexed modulo 3 .

If we let F be the population game generated by random matching in Mismatching Pennies, then for each population $p \in \mathscr{P}=\{1,2,3\}$ we have that

$$
F^{p}(x)=\binom{F_{H}^{p}(x)}{F_{T}^{p}(x)}=\binom{x_{T}^{p+1}}{x_{H}^{p+1}} .
$$

The unique Nash equilibrium of F is the central state $x^{*}=\left(\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}\right)\right)$. Since there are two strategies per player, it will simplify our analysis to let $y^{p}=x_{H}^{p}$ be the proportion of population p players choosing Heads, and to focus on the new state variable $y=\left(y^{1}, y^{2}, y^{3}\right) \in Y=[0,1]^{3}$ (see Exercise 9.2.12 for details).

Example 9.2.8. The replicator dynamic for Mismatching Pennies. After our change of variable,
the replicator dynamic $\dot{y}=\hat{V}_{F}(y)$ for Mismatching Pennies takes the form

$$
\dot{y}=\left(\begin{array}{l}
\dot{y}^{1} \\
\dot{y}^{2} \\
\dot{y}^{3}
\end{array}\right)=\left(\begin{array}{l}
y^{1}\left(1-y^{1}\right)\left(1-2 y^{2}\right) \\
y^{2}\left(1-y^{2}\right)\left(1-2 y^{3}\right) \\
y^{3}\left(1-y^{3}\right)\left(1-2 y^{1}\right)
\end{array}\right) .
$$

The derivative matrix for an arbitrary state y and the equilibrium state $y^{*}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ are

$$
D \hat{V}(y)=\left(\begin{array}{ccc}
\left(1-2 y^{1}\right)\left(1-2 y^{2}\right) & -2 y^{1}\left(1-y^{1}\right) & 0 \\
0 & \left(1-2 y^{2}\right)\left(1-2 y^{3}\right) & -2 y^{2}\left(1-y^{2}\right) \\
-2 y^{3}\left(1-y^{3}\right) & 0 & \left(1-2 y^{3}\right)\left(1-2 y^{1}\right)
\end{array}\right) \quad \text { and } \quad D \hat{V}\left(y^{*}\right)=\left(\begin{array}{ccc}
0 & -\frac{1}{2} & 0 \\
0 & 0 & -\frac{1}{2} \\
-\frac{1}{2} & 0 & 0
\end{array}\right) .
$$

$D \hat{V}\left(y^{*}\right)$ is a circulant matrix with an eigenvalue of $-\frac{1}{2}$ corresponding to eigenvector $\mathbf{1}$, and eigenvalues of $\frac{1}{4} \pm \frac{\sqrt{3}}{4} \mathrm{i}$ corresponding to eigenvectors $(-1,-1,2)^{\prime} \pm(-\sqrt{3}, \sqrt{3}, 0)^{\prime}$; note that $\mathbf{1},(-1,-1,2)^{\prime}$, and $(-\sqrt{3}, \sqrt{3}, 0)^{\prime}$ are mutually orthogonal. The phase diagram for the replicator dynamic is a spiral saddle: interior solutions on the diagonal where $y^{1}=$ $y^{2}=y^{3}$ head directly toward y^{*}, while all other orbits are attracted to a two-dimensional manifold containing an unstable spiral. This is depicted in Figure 9.2.3, where behavior in populations 1,2 , and 3 is measured on the left-right, front-back, and top-bottom axes, respectively. Solutions on the manifold containing the unstable spiral converge to a sixsegment heteroclinic cycle; this cycle agrees with the best response cycle of the underlying normal form game. §

Example 9.2.9. The best response dynamic in Mismatching Pennies. The analysis of the best response dynamic in Mismatching Pennies is very similar to the corresponding analysis in monocyclic games (Example 9.2.5). Divide the state space $Y=[0,1]^{3}$ into eight octants in the natural way. Then the two octants corresponding to vertices HHH and TTT are backward invariant, while solutions starting in any of the remaining six octants proceed through those octants according to the best response cycle of the underlying game (see Exercise 9.2.10). As Figure 9.2.4 illustrates, almost all solutions to the best response dynamic converge to a six-sided closed orbit in the interior of $Y . \S$

Exercise 9.2.10. (i) Give an explicit formula for the best response dynamic for Mismatching Pennies in terms of the state variable $y \in Y=[0,1]^{3}$.
(ii) Prove that octants HHH and TTT described in the previous example are backward invariant.
(iii) Prove that solutions starting in any of the remaining octants proceed through those octants according to the best response cycle of the underlying game.

The following proposition shows that the previous two examples are not exceptional.

Figure 9.2.4: The best response dynamic in Mismatching Pennies (two viewpoints).

Proposition 9.2.11. Let $V_{(\cdot)}$ be an evolutionary dynamic that is generated by a C^{1} revision protocol ρ and that satisfies Nash stationarity (NS). Let F be Mismatching Pennies, and suppose that the unique Nash equilibrium x^{*} of F is a hyperbolic rest point of $\dot{x}=V_{F}(x)$. Then x^{*} is unstable under V_{F}, and there is an open, dense, full measure set of initial conditions from which solutions to V_{F} do not converge.

Proposition 9.2.11 is remarkable in that it does not require the dynamic to satisfy a payoff monotonicity condition. Instead, it takes advantage of the fact that by definition, the revision protocol for population p does not condition on the payoffs of other populations. In fact, the specific payoffs of Mismatching Pennies are not important to obtain the instability result; any three-player game whose unique Nash equilibrium is interior works equally well. The proof of the theorem makes these points clear.

Proof. For ε close to 0 , let F^{ε} be generated by a perturbed version of Mismatching Pennies in which player 3's payoff for playing H when player 1 plays T is not 1 , but $\frac{1+2 \varepsilon}{1-2 \varepsilon}$. Then like Mismatching Pennies itself, F^{ε} has a unique Nash equilibrium, here given by $\left(\left(\frac{1}{2}+\varepsilon, \frac{1}{2}-\varepsilon\right),\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{2}\right)\right)$.

For convenience, let us argue in terms of the state variable $y=\left(x_{H}^{1}, x_{H}^{2}, x_{H}^{3}\right) \in Y=[0,1]^{3}$ (see Exercise 9.2.12). If $\dot{y}=\hat{V}_{F^{\varepsilon}}(y)$ is the dynamic $\dot{x}=V_{F^{\varepsilon}}(x)$ expressed in terms of y, then Nash stationarity (NS) tells us that

$$
\begin{equation*}
\hat{V}_{F^{\varepsilon}}\left(\frac{1}{2}+\varepsilon, \frac{1}{2}, \frac{1}{2}\right)=\mathbf{0} \tag{9.13}
\end{equation*}
$$

whenever $|\varepsilon|$ is small. Now by definition, the law of motion for population 1 does not depend directly on payoffs in the other populations, regardless of the game at hand (cf equation (9.10)). Therefore, since changing the game from F^{ε} to F^{0} does not alter population 1 's payoff function, equation (9.13) implies that

$$
\hat{V}_{F^{0}}^{1}\left(\frac{1}{2}+\varepsilon, \frac{1}{2}, \frac{1}{2}\right)=0
$$

whenever $|\varepsilon|$ is small. This observation and the fact that the dynamic is differentiable at $y^{*}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ imply that

$$
\frac{\partial \hat{V}_{F^{0}}^{1}}{\partial y^{1}}\left(y^{*}\right)=0 .
$$

Repeating this argument for the other populations shows that the trace of $D \hat{V}_{F^{0}}\left(y^{*}\right)$, and hence the sum of the eigenvalues of $D \hat{V}_{F^{0}}\left(y^{*}\right)$, is 0 . Since y^{*} is a hyperbolic rest point of $\hat{V}_{F^{0}}$, it follows that some eigenvalue of $D \hat{V}_{F^{0}}\left(y^{*}\right)$ has positive real part, and thus that y^{*}
is unstable under $\hat{V}_{F^{0}}$. Thus, the Stable Manifold Theorem (see Appendix 8.C) tells us that the set of initial conditions from which solutions converge to y^{*} is of dimension at most 2 , and that its complement is open, dense, and of full measure in Y.

Exercise 9.2.12. Let X be the state space for a p population game with two strategies per population, and let $Y=[0,1]^{p}$, so that $T Y=\mathbf{R}^{p}$.
(i) Show that the change of variable $h: X \rightarrow Y$ has inverse $h^{-1}: Y \rightarrow X$, where

$$
h(x)=\left(\begin{array}{c}
x_{1}^{1} \\
\vdots \\
x_{1}^{p}
\end{array}\right) \text { and } h^{-1}(y)=\left(\begin{array}{c}
y^{1} \\
1-y^{1} \\
\vdots \\
y^{p} \\
1-y^{p}
\end{array}\right) .
$$

(ii) Show that the derivative of h at $x, D h(x): T X \rightarrow T Y$, and the derivative of h^{-1} at y, $D h^{-1}(y): T Y \rightarrow T X$, can be written as $D h(x) z=M z$ and $D h^{-1}(y) \zeta=\tilde{M} \zeta$ for some matrices $M \in \mathbf{R}^{p \times 2 p}$ and $\tilde{M} \in \mathbf{R}^{2 p \times p}$. Show that if M is viewed as a linear map from $T X$ to $T Y$, then its inverse is \tilde{M}.
(iii) Fix a C^{1} vector field $V: X \rightarrow T X$, and define the new vector field $\hat{V}: Y \rightarrow T Y$ by $\hat{V}(y)=h\left(V\left(h^{-1}(y)\right)\right)$. Show that the dynamics $\dot{x}=V(x)$ and $\dot{y}=\hat{V}(y)$ are linearly conjugate under H : that is, that $\left\{x_{t}\right\}$ solves the former equation if and only if $\left\{h\left(x_{t}\right)\right\}$ solves the latter.
(iv) Let x^{*} be a rest point of V, and let $y^{*}=h\left(x^{*}\right)$ be the corresponding rest point of \hat{V}. Show that the eigenvalues of $D V\left(x^{*}\right)$ with respect to $T X$ are identical to the eigenvalues of $D \hat{V}\left(y^{*}\right)$ with respect to $T Y$. What is the relationship between the corresponding pairs of eigenvectors?

9.2.4 The Hypnodisk Game

The virtue of Proposition 9.2.11 is that apart from hyperbolicity of equilibrium, virtually no assumptions about the evolutionary dynamic $V_{(\cdot)}$ were needed to establish nonconvergence. We now show that if one is willing to introduce a payoff monotonicity condition-namely, positive correlation (PC)—then one can obtain a nonconvergence without smoothness conditions, and using a two-dimensional state variable, rather than a three-dimensional one as in Mismatching Pennies. This low dimensionality will turn out to be crucial when we study survival of dominated strategies in Section 9.4.

Our construction will be based on potential games. In Figure 9.2.5, we present the

Figure 9.2.5: A coordination game.
potential function and projected payoff vector field of the coordination game

$$
F^{C}(x)=C x=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) .
$$

By our analysis in Chapter 3, solutions to any evolutionary dynamic $\dot{x}=V_{F^{C}}(x)$ satisfying conditions (NS) and (PC) ascend the potential function $f^{C}(x)=\frac{1}{2} x^{\prime} C x=\frac{1}{2}\left(\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\left(x_{3}\right)^{2}\right)$ drawn in diagram (i), or, equivalently, travel at acute angles to the projected payoff vectors in diagram (ii). It follows that solutions to $V_{F^{c}}$ from most initial conditions converge to the strict Nash equilibria at the vertices of X.

As a second example, suppose that agents are randomly matched to play the anticoordination game $-C$. In Figure 9.2.6, we draw the resulting population game $F^{-C}(x)=$ $-C x=-x$ and its concave potential function $f^{-C}(x)=-\frac{1}{2} x^{\prime} C x=-\frac{1}{2}\left(\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\left(x_{3}\right)^{2}\right)$. Both pictures reveal that under any evolutionary dynamic satisfying conditions (NS) and (PC), all solution trajectories converge to the unique Nash equilibrium $x^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.

The construction of the hypnodisk game $H: X \rightarrow \mathbf{R}^{3}$ is easiest to describe in geometric terms. Begin with the coordination game $F^{C}(x)=C x$ pictured in Figure 9.2.5(ii). Then draw two circles centered at state $x^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ with radii $0<r<R<\frac{1}{\sqrt{6}}$, as shown in Figure 9.2.7(i); the second inequality ensures that both circles are contained in the simplex. Twist the portion of the vector field lying outside of the inner circle in a clockwise direction,

Figure 9.2.6: An anticoordination game.
excluding larger and larger circles as the twisting proceeds, so that the outer circle is reached when the total twist is 180° (Figure 9.2.7(ii)).

Exercise 9.2.13. Provide an explicit formula for the resulting population game $H(x)$.
What does this construction accomplish? Examining Figure 9.2.7(ii), we see that inside the inner circle, H is identical to the coordination game F^{C}. Thus, solutions to dynamics satisfying (NS) and (PC) starting at states other than x^{*} in the inner circle must leave the inner circle. At states outside the outer circle, H is identical to the anticoordination game F^{-C}, so solutions to dynamics satisfying (NS) and (PC) starting at states outside the outer circle must enter the outer circle. Finally, at each state x in the annulus bounded by the two circles, $H(x)$ is not a componentwise constant vector. Therefore, states in the annulus are not Nash equilibria, and so are not rest points of dynamics satisfying (NS). We assemble these observations in the following proposition.

Proposition 9.2.14. Let $V_{(\cdot)}$ be an evolutionary dynamic that satisfies (C), (NS), and (PC), and let H be the hypnodisk game. Then every solution to $\dot{x}=V_{H}(x)$ other than the stationary solution at x^{*} enters the annulus with radii r and R and never leaves, ultimately converging to a cycle therein.

The claim of convergence to limit cycles in the final sentence of the proposition follows from the Poincaré-Bendixson Theorem (Theorem 9.A.5).

(i) Projected payoff vector field for the coordination game

3
(ii) Projected payoff vector field for the hypnodisk game

Figure 9.2.7: Construction of the hypnodisk game.

9.3 Chaotic Evolutionary Dynamics

In all of the phase diagrams we have seen so far, ω-limit sets have taken a fairly simple form: solution trajectories have converged to rest points, closed orbits, or chains of rest points and connecting orbits. When we consider games with just two or three strategies, this is unavoidable: clearly, all solution trajectories of continuous time dynamics in one dimension converge to equilibrium, while in two-dimensional systems, the PoincareBendixson Theorem (Theorem 9.A.5) tells us that the three types of ω-limit sets described above exhaust all possibilities.

Once we move to flows in three or more dimensions, ω-limit sets can be much more complicated sets often referred to as chaotic (or strange) attractors. Central to most definitions of chaos is sensitive dependence on initial conditions: solution trajectories starting from close together points on the attractor move apart at an exponential rate. Chaotic attractors can also be recognized in phase diagrams by their rather intricate appearance. Rather than delving deeply into these ideas, we content ourselves by presenting a few examples.

Example 9.3.1. Consider the single population game F generated by random matching in the normal form game A below:

$$
F(x)=A x=\left(\begin{array}{cccc}
0 & -12 & 0 & 22 \\
20 & 0 & 0 & -10 \\
-21 & -4 & 0 & 35 \\
10 & -2 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) .
$$

The lone interior Nash equilibrium of this game is the central state $X^{*}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$.
Let $\dot{x}=V_{F}(x)$ be the replicator dynamic for game F. One can calculate that the eigenvalues of $D V_{F}\left(x^{*}\right)$ are approximately -3.18 and $.34 \pm 1.98 \mathrm{i}$, so like the Nash equilibrium of Mismatching Pennies (Example 9.2.8), the interior equilibrium x^{*} here is a sprial saddle with an unstable spiral.

Figure 9.3.1 presents the initial portion of the solution of $\dot{x}=V_{F}(x)$ from initial condition $x_{0}=(.24, .26, .25, .25)$. This solution spirals clockwise about x^{*}. Near the rightmost point of each circuit, where the value of x_{3} gets close to zero, solutions sometimes proceed along an "outside" path on which the value of x_{3} surpasses .6. But they sometimes follow an "inside" path on which x_{3} remains below .4 , and at other times do something in between. Which of these alternatives occurs is difficult to predict from approximate information about the previous behavior of the system.

Sensitive dependence on initial conditions is illustrated directly in Figure 9.3.2, which tracks the solutions from two nearby initial conditions, (.47, .31,.11,.11) and (.46999, .31,

Figure 9.3.1: A chaotic attractor under the replicator dynamic.

Figure 9.3.2: Sensitive dependence on initial conditions under the replicator dynamic.
.11, .11001). Apparently, the two solutions stay close together through time $t=50$ but diverge thereafter; after time $t=60$, the current position of one of the solutions provides little hint about the current position of the other. §

The scattered payoff entries in the previous example may seem to suggest that chaos only occurs in "artificial" examples. To dispute this view, we now show that chaotic behavior can occur in very simple games.

Example 9.3.2. Asymmetric Rock-Paper-Scissors. Suppose that two populations of agents are randomly matched to play the two-player zero-sum game $U=\left(U^{1}, U^{2}\right)$:

	II		
	r	p	s
R	$\frac{1}{2},-\frac{1}{2}$	-1,1	1,-1
I P	1,-1	$\frac{1}{2},-\frac{1}{2}$	-1,1
S	-1,1	1,-1	$\frac{1}{2},-\frac{1}{2}$

U is an asymmetric version of Rock-Paper-Scissors in which a "draw" results in a halfcredit win for player 1.

Figures 9.3.3 and 9.3.4 each present a single solution trajectory of the replicator dynamic for F_{U}. Since the social state $x=\left(x^{1}, x^{2}\right)$ is four-dimensional, we draw it in two pieces,
with x^{1} represented on the left hand side of each figure and x^{2} represented on the right. Because U is a zero-sum game with Nash equilibrium $\left(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\right)$, each solution of the replicator dynamic lives within a level set of $\mathcal{H}(x)=-\sum_{p \in \mathcal{P}} \sum_{i \in S^{p}} \log x_{i}^{p}$. In Figure 9.3.3, whose initial condition is $((.5, .25, .25),(.5, .25, .25))$, the solution trajectory appears to follow a periodic orbit, much like those in our examples from Section 9.1.1. But in Figure 9.3.4, whose initial condition ($.5, .01, .49),(.5, .25, .25)$) is closer to the boundary of X, the solution trajectory travels around the level set of \mathcal{H} in a seemingly haphazard way. Thus, despite the regularity provided by the constant of motion, the evolution of behavior in this simple game is complicated indeed. §

9.4 Survival of Dominated Strategies

By now we have thoroughly considered whether the prediction of Nash equilibiurm play can be justified using evolutionary arguments. On the positive side, Chapters 5 and 6 show that there are many dynamics whose rest points are always identical to the Nash equilibria of the underlying game, and Chapter 7 shows that convergence to Nash equilibrium can be assured under many of these dynamics in particular classes of games. But the final word on this question appears in Section 9.2, which demonstrates that no evolutionary dynamic can converge to Nash equilibrium in all games.

This negative result leads us to consider a more modest question. Rather than seek evolutionary support for equilibrium play, we instead turn our attention to a more basic rationality requirement: namely, the avoidance of strategies that are strictly dominated.

Theorem 7.4 .4 seems to bear out the intuition that evolutionary dynamics select against dominated strategies. But upon further reflection, one finds that there is no a priori reason to expect dominated strategies to be eliminated. Evolutionary dynamics are built upon the notion that agents switch to strategies whose current payoffs are reasonably good. But even if a strategy is dominated, it can have reasonably good payoffs at many population states. Put differently, domination is a "global" property, depending on payoffs at all states, while decision making in evolutionary models is "local", depending only on the payoffs available at present. By this logic, there is no reason to expect evolutionary dynamics to eliminate dominated strategies as a general rule.

To turn this intuition into a formal result, we introduce one further condition on evolutionary dynamics.

$$
\text { (IN) Innovation } \quad \text { If } x \notin N E(F), x_{i}=0, \text { and } i \in \underset{j \in S}{\operatorname{argmax}} F_{j}(x) \text {, then }\left(V_{F}\right)_{i}(x)>0 .
$$

Figure 9.3.3: Cycling in asymmetric Rock-Paper-Scissors.

Figure 9.3.4: Chaos in asymmetric Rock-Paper-Scissors.

Innovation (IN) requires that when a non-Nash population state includes an unused optimal strategy, this strategy's growth rate must be strictly positive. In other words, if an unplayed strategy is sufficiently rewarding, some members of the population will discover it and select it.

We are now in a position to state our survival theorem.
Theorem 9.4.1. Suppose the evolutionary dynamic $V_{(\cdot)}$ satisfies (C), (NS), (PC), and (IN). Then there is a game F such that under $\dot{x}=V_{F}(x)$, along solutions from most initial conditions, there is a strictly dominated strategy played by a fraction of the population bounded away from 0 .

Proof. Let H be the hypnodisk game introduced in Section 9.2.4. Let F be the fourstrategy game obtained from H by adding a twin to strategy 3 :

$$
\begin{aligned}
& F_{i}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=H_{i}\left(x_{1}, x_{2}, x_{3}+x_{4}\right) \text { for } i \in\{1,2,3\} \\
& F_{4}(x)=F_{3}(x)
\end{aligned}
$$

Strategies 3 and 4 are identical, in that they always yield the same payoff and always have the same payoff consequences for other strategies. The set of Nash equilibria of F is the line segment

$$
N E=\left\{x^{*} \in X: x_{1}^{*}=x_{2}^{*}=x_{3}^{*}+x_{4}^{*}=\frac{1}{3}\right\} .
$$

Let

$$
\begin{aligned}
& I=\left\{x \in X:\left(x_{1}-\frac{1}{3}\right)^{2}+\left(x_{2}-\frac{1}{3}\right)^{2}+\left(x_{3}+x_{4}-\frac{1}{3}\right)^{2} \leq r^{2}\right\} \text { and } \\
& O=\left\{x \in X:\left(x_{1}-\frac{1}{3}\right)^{2}+\left(x_{2}-\frac{1}{3}\right)^{2}+\left(x_{3}+x_{4}-\frac{1}{3}\right)^{2} \leq R^{2}\right\}
\end{aligned}
$$

be concentric cylindrical regions in X surrounding $N E$, as pictured in Figure 9.4.1. By construction, we have that

$$
F(x)=\tilde{C} x=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) .
$$

at all $x \in I$, so under any dynamic satisfying (PC) and (NS), solutions starting in $I-N E$ ascend the potential function $f^{\tilde{C}}(x)=\frac{1}{2}\left(\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}+\left(x_{3}+x_{4}\right)^{2}\right)$ until leaving the set I. At states outside the set O, we have that $F(x)=-\tilde{C} x$, so solutions starting in $X-O$ ascend $f^{-\tilde{C}}(x)=-f^{\tilde{C}}(x)$ until entering O. In summary:

Figure 9.4.1: Regions O, I, and $D=O-I$.

Lemma 9.4.2. Suppose that $V_{(\cdot)}$ is an evolutionary dynamic that satisfies conditions (C), (NC) and (PC), and let F be the "hypnodisk with a twin" game. Then every solution to $\dot{x}=V_{F}(x)$ other than the stationary solutions in NE enter region $D=O-I$ and never leave.

Define the flow from the set $U \subseteq X$ under the dynamic V_{F} by

$$
\phi_{t}(U)=\left\{\xi \in X: \text { there is a solution }\left\{x_{s}\right\} \text { to } \dot{x}=V_{F}(x) \text { with } x_{0} \in U \text { and } x_{t}=\xi .\right\}
$$

In words, $\phi_{t}(U)$ contains the time t positions of solutions to V_{F} whose initial conditions are in U.

Since solutions to V_{F} starting in $I-N E$ ascend the function f^{C} cuntil leaving the set I, the reverse time flow is well-defined from all such states, and $N E$ is a repellor under V_{F}. This means that all backward-time solutions to V_{F} that begin in some neighborhood U of $N E$ converge to $N E$ uniformly over time, or, equivalently, that $N E$ is an attractor of the time-reversed equation $\dot{y}=-V_{F}(y)$ (see Appendix 9.B). The dual attractor \mathcal{A} of the repellor $N E$ is the forward-time limit of the flow of V_{F} starting from the complement of $\mathrm{cl}(U)$:

$$
\mathcal{A}=\bigcap_{t \geq 0} \phi_{t}(X-\operatorname{cl}(U)) .
$$

\mathcal{A} is nonempty, compact, and (both forward and backward) invariant under V_{F}, and Lemma 9.4.2 tells us that $\mathcal{A} \subset D$.

We now show that the twin strategy is used by a positive mass of agents throughout the attractor \mathcal{A}. Let $Z=\left\{x \in X: x_{4}=0\right\}$ be the face of X on which the twin strategy is unused; we prove

Lemma 9.4.3. The attractor \mathcal{A} and the face Z are disjoint.
Proof. Since V_{F} is Lipschitz continuous and satisfies $\left(V_{F}\right)_{i}(x) \geq 0$ whenever $x_{i}=0$, solutions to V_{F} that start in $X-Z$ cannot approach Z more than exponentially quickly, and in particular cannot reach Z in finite time (see Exercise 9.4.4). Equivalently, backward solutions to V_{F} starting from states in Z cannot enter int (X).

Now suppose by way of contradiction that there exists a state ξ in $\mathcal{A} \cap Z$. Then by our previous arguments, the entire backward orbit from ξ is also contained in $\mathcal{A} \cap Z$, and hence in $D \cap Z$. Since the latter set contains no rest points by condition (PC), the PoincaréBendixson Theorem (Theorem 9.A.5) implies that the backward orbit from ξ converges to a closed orbit γ in $D \cap Z$ that circumnavigates $I \cap Z$.

By construction, the annulus $D \cap Z$ can be split into three regions: one in which strategy 1 is the best response, one in which strategy 2 is the best response, and one in which strategy 3 (and hence strategy 4) is a best response (Figure 9.4.2). Each of these regions is bounded by a simple closed curve that intersects the inner and outer boundaries of the annulus. Therefore, the closed orbit γ, on which strategy 4 is unused, passes through the region in which strategy 4 is optimal. This contradicts innovation (IN).

Exercise 9.4.4. Use Grönwall's Inequality (Lemma 4.A.7) to check the initial claim in the proof of the lemma.

To complete the proof, we now make the twin strategy "feeble": we uniformly reduce its payoff by ε, creating the new game

$$
F^{\varepsilon}(x)=F(x)-\varepsilon e_{4} .
$$

Observe that strategy 4 is strictly dominated by strategy 3 in game F^{ε}.
As increasing ε from 0 continuously changes the game from F to F^{ε}, doing so also continuously changes the dynamic from V_{F} to $V_{F^{\varepsilon}}$. Thus, by Theorem 9.B. 5 on continuation of attractors, we have that for small ε, the attractor \mathcal{A} of V_{F} continues to an attractor $\mathcal{A}^{\varepsilon}$ of $V_{F^{\varepsilon}}$ on which $x_{4}>0$: thus, the dominated strategy survives throughout $\mathscr{A}^{\varepsilon}$. The basin of the attractor $\mathcal{A}^{\varepsilon}$ contains all points outside of a thin tube around the set $N E$ of Nash equilibria of F. This completes the proof of Theorem 9.4.1.

Figure 9.4.2: The best response correspondence of the hypnodisk game.

We conclude this chapter with some examples that illustrate and extend the analysis above.

Example 9.4.5. We use the hypnodisk game as the basis for the proof of Theorem 9.4.1 because it generates cycling under any dynamic that satisfies (NS) and (PC). But the use of this game is not essential: once we fix the dynamic under consideration, we can find a simpler game that leads to cycling; then the argument based on the introduction of twin strategies can proceed as above.

We illustrate this point by constructing an example of survival under the Smith dynamic. Figure 9.4.3 contains the phase diagram for the Smith dynamic in the bad Rock-Paper-Scissors game

$$
G(x)=A x=\left(\begin{array}{ccc}
0 & -l & w \\
w & 0 & -l \\
-l & w & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right),
$$

where $w=1$ and $l=2$. Evidently, the unique Nash equilibrium $X^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is unstable, and most solution trajectories converge to a cycle located in $\operatorname{int}(X)$.

Figure 9.4.3: The Smith dynamic in bad RPS.

Figure 9.4.4: The Smith dynamic in two games.

Figure 9.4.4(i) presents the Smith dynamic in "bad RPS with a twin",

$$
F(x)=\tilde{A} x=\left(\begin{array}{cccc}
0 & -l & w & w \tag{9.14}\\
w & 0 & -l & -l \\
-l & w & 0 & 0 \\
-l & w & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)
$$

The Nash equilibria of F are the states on line segment $N E=\left\{x^{*} \in X: x^{*}=\left(\frac{1}{3}, \frac{1}{3}, c, \frac{1}{3}-c\right)\right\}$, which is a repellor under the Smith dynamic. Furthermore, since Scissors and Twin always earn the same payoffs $\left(F_{3}(x) \equiv F_{4}(x)\right)$, we can derive a simple expression for the rate of change of the difference between their utilization levels:

$$
\begin{align*}
\dot{x}_{3}-\dot{x}_{4}= & \left(\sum_{j \in S} x_{j}\left[F_{3}(x)-F_{j}(x)\right]_{+}-x_{3} \sum_{j \in S}\left[F_{j}(x)-F_{3}(x)\right]_{+}\right) \tag{9.15}\\
& \quad-\left(\sum_{j \in S} x_{j}\left[F_{4}(x)-F_{j}(x)\right]_{+}-x_{4} \sum_{j \in S}\left[F_{j}(x)-F_{4}(x)\right]_{+}\right) \\
= & -\left(x_{3}-x_{4}\right) \sum_{j \in S}\left[F_{j}(x)-F_{4}(x)\right]_{+} .
\end{align*}
$$

Intuitively, strategies lose agents at rates proportional to their current levels of use, but gain strategies at rates that depend on their payoffs; thus, when the dynamics are not at rest, the weights x_{3} and x_{4} move closer together. It follows that except at Nash equilibrium states, the dynamic moves toward the plane $P=\left\{x \in X: x_{3}=x_{4}\right\}$ on which the identical twins receive equal weight (see Exercise 9.4.6).

Figure 9.4.4(ii) presents the Smith dynamic in "bad RPS with a feeble twin",

$$
F_{\varepsilon}(x)=\tilde{A}_{\varepsilon} x=\left(\begin{array}{cccc}
0 & -l & w & w \tag{9.16}\\
w & 0 & -l & -l \\
-l & w & 0 & 0 \\
-l-\varepsilon & w-\varepsilon & -\varepsilon & -\varepsilon
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right),
$$

where $\varepsilon=\frac{1}{10}$. Evidently, the attractor from the previous figure moves slightly to the left, and the strictly dominated strategy Twin survives. Indeed, since the Nash equilibrium of "RPS with a twin" on plane P puts mass $\frac{1}{6}$ on Twin, when ε is small solutions to the Smith dynamic in "RPS with a feeble twin" place mass greater than $\frac{1}{6}$ on the strictly dominated strategy Twin infinitely often. This lower bound is driven by the fact that in the game with an exact twin, solutions converge to plane P; thus, the bound will obtain under any

Figure 9.4.5: The replicator dynamic in two games.
dynamic that treats different strategies symmetrically. §
Exercise 9.4.6. Show that under the Smith dynamic in "RPS with a twin", solutions from states not on the line of Nash equilibria NE converge to the plane P where the weights on Scissors and Twin are equalized. (Hint: Use equation (9.15) and the Poincare-Bendixson Theorem. You may take as given that the set $N E$ is a repellor.)

Example 9.4.7. Theorem 7.4 .4 showed that dominated strategies are eliminated along interior solutions of imitative dynamics. But Theorem 9.4.1 shows that this result is not robust to small changes in these dynamics.

To understand why, consider evolution under the replicator dynamic in "(standard) RPS with a twin". In standard Rock-Paper-Scissors, interior solutions of the replicator dynamic are closed orbits (see, e.g., Section 9.1.1). When we introduce an exact twin, equation (7.39) tells us that the ratio $\frac{x_{S}}{x_{T}}$ is constant along every solution trajectory. This is evident in Figure 9.4.5(i), which shows that the planes on which the ratio $\frac{x_{S}}{x_{T}}$ is constant are all invariant sets. If we make the twin feeble by lowering its payoff uniformly by ε, we obtain the dynamics pictured in Figure 9.4.5(ii): now the ratio $\frac{x_{s}}{x_{T}}$ increases monotonically, and the dominated strategy is eliminated.

The existence of a continuum of invariant hyperplanes under imitative dynamics in games with identical twins is crucial to this argument. At the same time, dynamics with a continuum of invariant hyperplanes are structurally unstable. If we fix the game but slightly alter the agents' revision protocol, these invariant sets can collapse, overturning the elimination result.

Figure 9.4.6: The $\frac{9}{10}$ replicator $+\frac{1}{10}$ Smith dynamic in two games.

To make this argument concrete, suppose that instead of always following an imitative protocol, agents occasionally use a protocol that requires direct evaluation of payoffs. Such a situation is illustrated in Figure 9.4.6(i), which contains the phase diagram for "bad RPS with a twin" (with $w=1$ and $l=\frac{11}{10}$) under a ($\frac{9}{10}, \frac{1}{10}$) convex combination of the replicator and Smith dynamics. While Figure 9.4.5(i) displayed a continuum of invariant hyperplanes, Figure 9.4.6(i) shows almost all solution trajectories converging to a limit cycle on the plane where $x_{S}=x_{T}$. If we make the twin feeble, the limit cycle moves slightly to the left, as in Figure 9.4.6(ii), and the dominated strategy survives. §

Exercise 9.4.8. Show that an analogue of equation (7.39) holds for the projection dynamic on $\operatorname{int}(X)$. Explain why this does not imply that dominated strategies are eliminated along all solutions to the projection dynamic starting from interior initial conditions.

Appendix

9.A Three Classical Theorems on Nonconvergent Dynamics

9.A. 1 Liouville's Theorem

Let $V: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a C^{1} vector field, and consider the differential equation $\dot{x}=V(x)$ with flow $\phi: \mathbf{R} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$. Let the set $A \subset \mathbf{R}^{n}$ be measurable with respect to Lebesgue
measure μ on \mathbf{R}^{n}. Liouville's Theorem concerns the time evolution of $\mu\left(\phi_{t}(A)\right)$, the measure (or volume) of the time t image of A under ϕ.

Theorem 9.A. 1 (Liouville's Theorem). $\frac{\mathrm{d}}{\mathrm{d} t} \mu\left(\phi_{t}(A)\right)=\int_{\phi_{t}(A)} \operatorname{tr}(D V(x)) \mathrm{d} \mu(x)$.
The quantity $\operatorname{tr}(D V(x))=\sum_{i} \frac{\partial V_{i}}{\partial x_{i}}(x) \equiv \operatorname{div} V(x)$ is known as the divergence of V at x. According to Liouville's Theorem, $\operatorname{div} V$ governs the local rates of change in volume under the flow ϕ of $\dot{x}=V(x)$. In particular, if $\operatorname{div} V=0$ on an open set $O \subseteq \mathbf{R}^{n}$-that is, if V is divergence-free on this set-then the flow ϕ conserves volume on O.

Before proceeding with the proof of Liouville's Theorem, let us note that it extends immediately to cases in which the law of motion $V: X \rightarrow T X$ defined on an affine set $X \subset \mathbf{R}^{n}$ with tangent space $T X$. In this case, μ represents Lebesgue measure on (the affine hull of) X. The only cautionary note is that the derivative of V at state $x \in X$ must be represented using the derivative matrix $D V(x) \in \mathbf{R}^{n \times n}$, which by definition has rows in $T X$. We showed how to compute this matrix in Appendix 3.B.3: if $\hat{V}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a C^{1} extension of V, then $D V(x)=D \hat{V}(x) P_{T X}$, where $P_{T X} \in \mathbf{R}^{n \times n}$ is the orthogonal projection of \mathbf{R}^{n} onto the subspace TX.

Proof. Using the standard multivariate change of variable, we express the measure of the set $\phi_{t}(A)$ as

$$
\begin{equation*}
\mu\left(\phi_{t}(A)\right)=\int_{\phi_{t}(A)} 1 \mathrm{~d} \mu\left(x_{t}\right)=\int_{A}\left|\operatorname{det}\left(D \phi_{t}\left(x_{0}\right)\right)\right| \mathrm{d} \mu\left(x_{0}\right) . \tag{9.17}
\end{equation*}
$$

The derivative matrix $D \phi_{t}\left(x_{0}\right)$ in equation (9.17) captures changes in $\phi_{t}\left(x_{0}\right)$, the time t position of the solution to $\dot{x}=V(x)$ from initial condition x_{0}, as this initial condition is varied. It follows from arguments below that $\operatorname{det}\left(D \phi_{t}\left(x_{0}\right)\right)>0$, so that the absolute value taken in equation (9.17) is unnecessary. Taking the time derivative of this equation and then differentiating under the integral sign thus yields

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu\left(\phi_{t}(A)\right)=\int_{A} \frac{\mathrm{~d}}{\mathrm{~d} t} \operatorname{det}\left(D \phi_{t}\left(x_{0}\right)\right) \mathrm{d} \mu\left(x_{0}\right) . \tag{9.18}
\end{equation*}
$$

Evaluating the right hand side of equation (9.18) requires two lemmas. The first of these is stated in terms of the time inhomogeneous linear equation

$$
\begin{equation*}
\dot{y}_{t}=D V\left(x_{t}\right) y_{t}, \tag{9.19}
\end{equation*}
$$

where $\left\{x_{t}\right\}$ is the solution to $\dot{x}=V(x)$ from initial condition x_{0}. Equation (9.19) is known as the (first) variation equation associated with $\dot{x}=V(x)$.

Lemma 9.A.2. The matrix trajectory $\left\{D \phi_{t}\left(x_{0}\right)\right\}_{t \geq 0}$ is the matrix solution to the first variation equation from initial condition $D \phi_{0}\left(x_{0}\right)=I \in \mathbf{R}^{n \times n}$. More explicitly,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} D \phi_{t}\left(x_{0}\right)=D V\left(\phi_{t}\left(x_{0}\right)\right) D \phi_{t}\left(x_{0}\right) \tag{9.20}
\end{equation*}
$$

In words, Lemma 9.A. 2 tells us that the column trajectories of $\left\{D \phi_{t}\left(x_{0}\right)\right\}_{t \geq 0}$ are the solutions to the first variation equation whose initial conditions are the standard basis vectors $e_{1}, \ldots, e_{n} \in \mathbf{R}^{n}$.

Proof. By definition, the time derivative of the flow from x_{0} satisfies $\frac{\mathrm{d}}{\mathrm{d} t} \phi_{t}\left(x_{0}\right)=V\left(\phi_{t}\left(x_{0}\right)\right)$. Differentiating with respect to x_{0} and then reversing the order of differentiation yields (9.20).

Lemma 9.A. 3 provides two basic matrix identities, the first of which is sometimes called Liouville's formula.

Lemma 9.A.3. Let $M \in \mathbf{R}^{n \times n}$. Then
(i) $\operatorname{det}(\exp (M))=\exp (\operatorname{tr}(M))$.
(ii) $\left.\frac{\mathrm{d}}{\mathrm{d} t} \operatorname{det}(\exp (M t))\right|_{t=0}=\operatorname{tr}(M)$.

Proving part (i) of the lemma is not difficult, but the intuition is clearest when M is a diagonal matrix:

$$
\operatorname{det}\left(\exp \left(\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right)\right)=\operatorname{det}\left(\begin{array}{ccc}
\mathrm{e}^{\lambda_{1}} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \mathrm{e}^{\lambda_{n}}
\end{array}\right)=\prod_{i} \mathrm{e}^{\lambda_{i}}=\exp \left(\sum_{i} \lambda_{i}\right)=\exp \left(\operatorname{tr}\left(\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right)\right) .
$$

Part (ii) follows from part (i) by replacing M with $M t$ and differentiating.
Lemmas 9.A. 2 and 9.A.3(ii) enable us to evaluate equation (9.18). First, note that Lemma 9.A. 2 and the linearity of the first variation equation imply that

$$
D \phi_{t}\left(x_{0}\right) \approx \exp \left(D V\left(x_{0}\right) t\right)
$$

when t is close to 0 . Combining this observation with Lemma 9.A.3(ii) shows that

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{det}\left(D \phi_{t}\left(x_{0}\right)\right)\right)\left.\right|_{t=0} \approx \frac{\mathrm{~d}}{\mathrm{~d} t} \operatorname{det}\left(\exp \left(D V\left(x_{0}\right) t\right)\right)=\operatorname{tr}\left(D V\left(x_{0}\right)\right) .
$$

By substituting this equality into of equation (9.18) and noting that our focus on time $t=0$ has been arbitrary, we obtain Liouville's Theorem.

Liouville's Theorem can be used to prove the nonexistence of asymptotically stable sets. Since solutions in a neighborhood of such a set all approach the set, volume must
be contracted in this neighborhood. It follows that a region in which divergence is nonnegative cannot contain an asymptotically stable set.

Theorem 9.A.4. Suppose $\operatorname{div} V \geq 0$ on the open set $O \subseteq \mathbf{R}^{n}$, and let $A \subset O$ be compact. Then A is not asymptotically stable under $\dot{x}=V(x)$.

Theorem 9.A. 4 does not rule out the existence of Lyapunov stable sets. In fact, the example of the replicator dynamic in standard Rock-Paper-Scissors shows that such sets are not unusual when V is divergence-free.

9.A. 2 The Poincaré-Bendixson and Bendixson-Dulac Theorems

We now present two classical results concerning differential equations on the plane.
The celebrated Poincaré-Bendixson Theorem characterizes the possible long run behaviors of such dynamics, and provides a simple way of establishing the existence of periodic orbits. Recall that a periodic (or closed) orbit of a differential equation is a nonconstant solution $\left\{x_{t}\right\}_{t \geq 0}$ such that $x_{T}=x_{0}$ for some $T>0$.

Theorem 9.A. 5 (The Poincaré-Bendixson Theorem). Let $V: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be Lipschitz continuous, and consider the differential equation $\dot{x}=V(x)$.
(i) Let $x \in \mathbf{R}^{2}$. If $\omega(x)$ is compact, nonempty, and contains no rest points, then it is a periodic orbit.
(ii) Let $Y \subset \mathbf{R}^{2}$. If Y is nonempty, compact, forward invariant, and contains no rest points, then it contains a periodic orbit.

Theorem 9.A. 5 tells us that in planar systems, the only possible ω-limit sets are rest points, sequences of trajectories leading from one rest point to another (called heteroclinic orbits where there are multiple rest points in the sequence and homoclinic orbits when there is just one), and periodic orbits. In part (i) of the theorem, the requirement that $\omega(x)$ be compact and nonempty are automatically satisfied when the dynamic is forward invariant on a compact set-see Proposition 7.A.1.

The next result, the Bendixson-Dulac Theorem, provides a method of ruling out the existence of closed orbits in planar systems. To state this theorem, we recall that a set $Y \subset \mathbf{R}^{2}$ is simply connected if it contains no holes: more precisely, if every closed curve in Y can be continuously contracted within Y to a single point.

Theorem 9.A. 6 (The Bendixson-Dulac Theorem). Let $V: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be C^{1}, and consider the differential equation $\dot{x}=V(x)$. If $\operatorname{div} V \neq 0$ throughout the simply connected set Y, then Y does not contain a closed orbit.

Proof. If γ is a closed orbit in Y, then the region R bounded by γ is invariant under ϕ. Thus

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mu\left(\phi_{t}(R)\right)=\int_{\phi_{t}(R)} \operatorname{div} V(x) \mathrm{d} \mu(x)
$$

by Liouville's Theorem. Since $\operatorname{div} V$ is continuous and nonzero throughout Y, its sign must be constant throughout Y. If this sign is negative, then the volume of R contracts under ϕ; if it is positive, then the volume of R expands under ϕ. Either conclusion contradicts the invariance of R under ϕ.

Both of the results above extend to dynamics defined on two-dimensional affine spaces in the obvious way.

9.B Attractors and Continuation

9.B. 1 Attractors and Repellors

Let ϕ be a semiflow on the compact set $X \subset \mathbf{R}^{n}$: that is, $\phi:[0, \infty) \times X \rightarrow X$ is a continuous map with $\phi_{0}(x)=x$ that satisfies the group property $\phi_{t}\left(\phi_{s}(x)\right)=\phi_{t+s}(x)$ for all $s, t \geq 0$ and $x \in X$. We call the set $\mathcal{A} \subseteq X$ forward invariant under ϕ if $\phi_{t}(\mathcal{A})=\mathcal{A}$ for all $t \geq 0$. Note that in this case, the sets $\left\{\phi_{t}(\mathcal{A})\right\}_{t \geq 0}$ are nested. We call \mathcal{A} invariant under ϕ if $\phi_{t}(\mathcal{A})=\mathcal{A}$ for all $t \in \mathbf{R}$. It is implicit in this definition that on the set \mathcal{A} we have not only a semiflow, but also a flow: on \mathcal{A}, we can extend the map ϕ to be well-defined and satisfy the group property not just for times in $[0, \infty)$, but also for times in $(-\infty, \infty)$.

A set $\mathcal{A} \subseteq X$ is an attractor of ϕ if it is nonempty, compact, and invariant under ϕ, and if there is a neighborhood U of \mathcal{A} such that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \sup _{x \in U} \operatorname{dist}\left(\phi_{t}(x), \mathcal{A}\right)=0 \tag{9.21}
\end{equation*}
$$

The set $B(\mathcal{A})=\{x \in X: \omega(x) \subseteq \mathcal{A}\}$ is called the basin of \mathcal{A}.
The supremum operation in condition (9.21) ensures that states in the neighborhood U are attracted to \mathcal{A} uniformly in time. This uniformity is important: without it, the rest point in the flow on the circle from Example 7.A. 3 would be an attractor. Because of the uniformity requirement, attractors differ from asymptotically stable sets (defined in Appendix 7.A.2) only in that the latter need not be invariant.

Attractors can be defined in a number of equivalent ways. In the following proposition,
the ω-limit of the set $U \subseteq X$ is defined as

$$
\omega(U)=\bigcap_{t \geq 0} \mathrm{cl}\left(\bigcup_{s \geq t} \phi_{s}(U)\right)
$$

Proposition 9.B.1. The following statements are equivalent:
(i) \mathcal{A} is an attractor of ϕ.
(ii) $\mathcal{A}=\omega(U)$ for some neighborhood U of \mathcal{A}.
(iii) $\mathcal{A}=\bigcap_{t \geq 0} \phi_{t}(O)$ for some open set O that satisfies $\phi_{T}(\mathrm{cl}(O)) \subset O$ for some $T>0$.
(iv) $\mathcal{A}=\bigcap_{t \geq 0} \phi_{t}(O)$ for some open, forward invariant set O that satisfies $\phi_{T}(\mathrm{cl}(O)) \subset O$ for some $T>0$.
(v) $\mathcal{A}=\bigcap_{t \geq 0} \phi_{t}(O)$ for some open, forward invariant set O that satisfies $\phi_{t}(\mathrm{cl}(O)) \subset O$ for all $t>0$.

In parts (iii), (iv), and (v), the set O is known as a weak trapping region, a trapping region, and a strongly forward invariant trapping region, respectively.

Now suppose that $\phi:(-\infty, \infty) \times X \rightarrow X$ is a flow on X with attractor \mathcal{A}, and let U be a trapping region for \mathcal{A}. The set $\mathcal{A}^{*}=\bigcap_{t \leq 0} \phi_{t}(X-U)$ is known as the dual repellor of \mathcal{A}. \mathcal{A}^{*} is the α-limit of of a neighborhood of itself (i.e., it is the ω-limit of a neighborhood of itself under the time-reversed version of ϕ); it is also nonempty, compact, and invariant under ϕ.

The set $\mathcal{C}\left(\mathcal{A}, \mathcal{A}^{*}\right)=X-\left(\mathcal{A} \cup \mathcal{A}^{*}\right)$ is called the set of connecting orbits of the attractorrepellor pair $\left(\mathcal{A}, \mathcal{A}^{*}\right)$. Theorem 9.B. 2 shows that the behavior of the flow on this set is very simple: it admits a strict Lyapunov function.

Theorem 9.B.2. $\operatorname{Let}\left(\mathcal{A}, \mathcal{A}^{*}\right)$ be an attractor-repellor pair of the flow ϕ on the compact set X. Then there exists a continuous function $L: X \rightarrow[0,1]$ with $L^{-1}(0)=\mathcal{A}^{*}$ and $L^{-1}(1)=\mathcal{A}$ such that L is strictly decreasing on $\mathcal{C}\left(\mathcal{A}, \mathcal{A}^{*}\right)$ under ϕ.

If ϕ is only a semiflow, one can still find a continuous Lyapunov function $L: X \rightarrow[0,1]$ with $L^{-1}(1)=\mathcal{A}$ that is strictly decreasing on $\mathcal{C}\left(\mathcal{A}, \mathcal{A}^{*}\right)$.

Interestingly, the notion of chain recurrence introduced in Appendix 7.A.1 can be characterized in terms of attractor-repellor pairs. In particular, the set $\mathcal{C R}$ of chain recurrent states of the flow ϕ consists of those states found in every attractor-repellor pair of ϕ :

Theorem 9.B.3. $\mathcal{C R}=\bigcap_{\left(\mathcal{A}, \mathscr{A}^{*}\right)}\left(\mathcal{A} \cup \mathcal{A}^{*}\right)$.
By combining Theorems 9.B. 2 and 9.B. 3 with the fact that the number of attractor-repellor pairs of ϕ is countable, one can establish the Fundamental Theorem of Dynamical Systems:

Theorem 9.B.4. Let ϕ be a flow on a compact metric space X. Then ϕ admits a Lyapunov function $L: X \rightarrow \mathbf{R}$ that is strictly decreasing off $C \mathcal{R}$ and such that $L(C \mathcal{R})$ is a nowhere dense subset of \mathbf{R}.

9.B. 2 Continuation of Attractors

Consider now a one-parameter family of differential equations $\dot{x}=V^{\varepsilon}(x)$ in \mathbf{R}^{n} with unique solutions $x_{t}=\phi_{t}^{\varepsilon}\left(x_{0}\right)$ such that $(\varepsilon, x) \mapsto V^{\varepsilon}(x)$ is continuous. Then $(\varepsilon, t, x) \mapsto \phi_{t}^{\varepsilon}(x)$ is continuous as well. Suppose that $X \subset \mathbf{R}^{n}$ is compact and forward invariant under the semi-flows ϕ^{ε}. For $\varepsilon=0$ we omit the superscript in ϕ.

The following continuation theorem for attractors is part of the folklore of dynamical systems.

Theorem 9.B.5. Let \mathcal{A} be an attractor for ϕ with basin $B(\mathcal{A})$. Then for each small enough $\varepsilon>0$ there exists an attractor $\mathscr{A}^{\varepsilon}$ of ϕ^{ε} with basin $B\left(\mathcal{A}^{\varepsilon}\right)$, such that the map $\varepsilon \mapsto \mathcal{A}^{\varepsilon}$ is upper hemicontinuous and the map $\varepsilon \mapsto B\left(\mathcal{A}^{\varepsilon}\right)$ is lower hemicontinuous.

Upper hemicontinuity cannot be replaced by continuity in this result. Consider the family of differential equations $\dot{x}=\left(\varepsilon+x^{2}\right)(1-x)$ on the real line. The semi-flow ϕ corresponding to $\varepsilon=0$ admits $\mathcal{A}=[0,1]$ as an attractor, but when $\varepsilon>0$ the unique attractor of ϕ^{ε} is $\mathcal{A}^{\varepsilon}=\{1\}$. This example shows that perturbations can cause attractors to implode; the theorem shows that perturbations cannot cause attractors to explode.

Theorem 9.B.5 is a direct consequence of the following lemma.
Lemma 9.B.6. Let \mathcal{A} be an attractor for ϕ with basin $B(\mathcal{A})$, and let U_{1} and U_{2} be open sets satisfying $\mathcal{A} \subset U_{1} \subseteq U_{2} \subseteq \operatorname{cl}\left(U_{2}\right) \subseteq B(\mathcal{A})$. Then for each small enough $\varepsilon>0$ there exists an attractor $\mathcal{A}^{\varepsilon}$ of ϕ_{ε} with basin $B\left(\mathscr{A}^{\varepsilon}\right)$, such that $\mathcal{A}^{\varepsilon} \subset U_{1}$ and $U_{2} \subset B\left(\mathcal{A}^{\varepsilon}\right)$.

In this lemma, one can always set $U_{1}=\{x: \operatorname{dist}(x, \mathcal{A})<\delta\}$ and $U_{2}=\{x \in B(\mathcal{A})$: $\operatorname{dist}(x, X-B(\mathcal{A}))>\delta\}$ for some small enough $\delta>0$.

Proof of Lemma 9.B.6. Since \mathcal{A} is an attractor and $\omega\left(\operatorname{cl}\left(U_{2}\right)\right)=\mathcal{A}$, there is a $T>0$ such that $\phi_{t}\left(\mathrm{cl}\left(U_{2}\right)\right) \subset U_{1}$ for $t \geq T$. By the continuous dependence of the flow on the parameter ε and the compactness of $\phi_{T}\left(\operatorname{cl}\left(U_{2}\right)\right)$, we have that $\phi_{T}^{\varepsilon}\left(\mathrm{cl}\left(U_{2}\right)\right) \subset U_{1} \subseteq U_{2}$ for all small enough ε. Thus, U_{2} is a weak trapping region for the semi-flow ϕ^{ε}, and so $\mathcal{A}^{\varepsilon} \equiv \omega\left(U_{2}\right)$ is an attractor for ϕ^{ε}. In addition, $\mathcal{A}^{\varepsilon} \subset U_{1}\left(\right.$ since $\left.\mathcal{A}^{\varepsilon}=\phi_{T}^{\varepsilon}\left(\mathcal{A}^{\varepsilon}\right) \subseteq \phi_{T}^{\varepsilon}\left(\operatorname{cl}\left(U_{2}\right)\right) \subset U_{1}\right)$ and $U_{2} \subset B\left(\mathcal{A}^{\varepsilon}\right)$.

9.N Notes

Section 9.1. The conservative properties of dynamics studied in this chapter-the existence of a constant of motion and the preservation of volume-are basic properties of Hamiltonian systems. For more on this connection, see Akin and Losert (1984) and Hofbauer (1995a, 1996); for a general introduction to Hamiltonian systems, see Marsden and Ratiu (2002). Exercises 9.1.4 and 9.1.5 are due to Schuster et al. (1981b,c). Theorem 9.1.7 is due to Akin and Losert (1984) and Hofbauer (1995a), while Theorem 9.1.8 is due to Hofbauer and Sigmund (1988) and Ritzberger and Weibull (1995) (also see Weibull (1995)).

Section 9.2. Circulant games were introduced by Hofbauer and Sigmund (1988), who call them "cyclically symmetric games"; also see Schuster et al. (1981c). The hypercycle system was proposed by Eigen and Schuster (1979) to model of cyclical catalysis in a collection of polynucleotides during prebiotic evolution. That the boundary of the simplex is repelling under the hypercycle system when $n \geq 5$, a property known as permanence, was established by Hofbauer et al. (1981); the existence of stable limit cycles in this context was proved by Hofbauer et al. (1991).

Monocyclic games are studied in the context of the replicator dynamic by Hofbauer and Sigmund (1988), who call them "essentially hypercyclic" games. The uniqueness of the interior Nash equilibrium in Example 9.2.5 follows from the fact that the replicator dynamic is permanent in this game: see Theorems 19.5.1 and 20.5 of Hofbauer and Sigmund (1988) (or Theorems 13.5.1 and 14.5.1 of Hofbauer and Sigmund (1998)). The analysis of the best response dynamic in this example is due to Hofbauer (1995b), Gaunersdorfer and Hofbauer (1995), and Benaïm et al. (2006a). Lahkar (2007), building on work of Hopkins and Seymour (2002), employs these results to establish the dynamic instability of dispersed price equilibria in Burdett and Judd's (1983) model of equilibrium price dispersion. Proposition 9.2.7 is due to Hofbauer and Swinkels (1996); also see Hofbauer and Sigmund (1998, Section 8.6).

The Mismatching Pennies game was introduced by Jordan (1993), and was inspired by a 3×3 example due to Shapley (1964); see Sparrow et al. (2008) for a recent analysis of Shapley's (1964) example. The analyses of the replicator and best response dynamics in Mismatching Pennies are due to Gaunersdorfer and Hofbauer (1995). Proposition 9.2.11 is due to Hart and Mas-Colell (2003). The hypnodisk game is introduced in Hofbauer and Sandholm (2006).

Section 9.3. For introductions to chaotic differential equations, see Hirsch et al. (2004) at the undergraduate level or Guckenheimer and Holmes (1983) at the graduate level. Example 9.3.1 is due to Arneodo et al. (1980), who introduce it in the context of the LotkaVolterra equations; also see Skyrms (1992). The attractor in this example is known as a

Shilnikov attractor; see Hirsch et al. (2004, Chapter 16). Example 9.3.2 is due to Sato et al. (2002).

Section 9.4. This section follows Hofbauer and Sandholm (2006). That paper builds on the work of Berger and Hofbauer (2006), who establish that strictly dominated strategies can survive under the BNN dynamic. For a survival result for the projection dynamic, see Sandholm et al. (2008).

Section 9.A. For further details on Liouville's Theorem, see Sections 4.1 and 5.3 of Hartman (1964). Theorem 9.A. 4 in the text is Proposition 6.6 of Weibull (1995). For treatments of the Poincaré-Bendixson Theorem, see Hirsch and Smale (1974) and Robinson (1995).

Section 9.B. The definition of attractor we use is from Benaïm (1999). Definition (ii) in Proposition 9.B.1 is from Conley (1978), and definitions (iii), (iv), and (v) are from Robinson (1995). Theorems 9.B.2, 9.B.3, and 9.B. 4 are due to Conley (1978).

Theorem 9.B.5 is part of the folklore of dynamical systems theory; compare Proposition 8.1 of Smale (1967). The analysis presented here is from Hofbauer and Sandholm (2006).

Part IV

Stochastic Evolutionary Models

Stochastic Evolution and Deterministic Approximation

10.0 Introduction

In Parts II and III of this book, we investigated the evolution of aggregate behavior under deterministic dynamics. We provided foundations for these dynamics in Chapter 4: there we showed that given any revision protocol ρ and population game F, we can derive a mean dynamic $\dot{x}=V_{F}(x)$. This differential equation describes expected motion under the stochastic process that ρ and F implicitly define. We justified our focus on this deterministic equation through an informal appeal to a law of large numbers: since all of the randomness in our evolutionary model is idiosyncratic, it should be averaged away in the aggregate so long as the population size is sufficiently large.

Our goal in this chapter is to make this argument rigorous. To do so, we explicitly derive a stochastic evolutionary process-a Markov process-from a given population game F, revision protocol ρ, and finite population size N. Our main result in this chapter, Theorem 10.2.3, is a finite horizon deterministic approximation theorem. Building on our earlier intuition, the theorem shows that over any finite time span, the behavior of the stochastic evolutionary process is indeed nearly deterministic: if the population size is large enough, the stochastic process closely follows a solution trajectory of the mean dynamic with probability close to one.

The Markov process we introduce in this chapter provides a precise description of the stochastic evolution of aggregate behavior. Theorem 10.2.3 tells us that over time horizons of moderate length, we can do without studying this Markov process directly, as the deterministic approximation is adequate to address most questions of interest. But if we want to understand behavior in a society over very long time spans, then the
deterministic approximation theorem no longer applies, and we must study the Markov process directly. This infinite horizon analysis is the subject of our final chapter.

The remaining three chapters employ a variety of techniques from the theory of probability and stochastic processes. These techniques are reviewed in Appendices 10.A and $10 . B$ and in the appendices to Chapters 11 and ??. In all of these chapters, we will only consider single-population models in order to reduce the amount of notation. All of the results we present can be extended to multipopulation models with little difficulty.

10.1 The Stochastic Evolutionary Process

We begin by developing the model of stochastic evolution introduced in Section 4.1. We consider a population of agents who recurrently play a population game $F: X \rightarrow \mathbf{R}^{n}$ with pure strategy set $S=\{1, \ldots, n\}$. The agents' choice procedure is described by a revision protocol $\rho: \mathbf{R}^{n} \times X \rightarrow \mathbf{R}_{+}^{n \times n}$ that takes current payoffs and population states as inputs and returns collections of conditional switch rate $\rho_{i j}(F(x), x)$ as outputs.

To set the stage for our limiting analysis, we suppose now that the population size is large but finite, with N members. The feasible social states therefore lie in the discrete $\operatorname{grid} X^{N}=X \cap \frac{1}{N} \mathbf{Z}^{n}=\left\{x \in X: N x \in \mathbf{Z}^{n}\right\}$.

The stochastic process $\left\{X_{t}^{N}\right\}$ generated by F, ρ, N is described as follows. Each agent in the society is equipped with a rate R Poisson alarm clock, where $R<\infty$ is an upper bound on the row sums of ρ :

$$
\begin{equation*}
R \geq \max _{x, i} \sum_{j \in S} \rho_{i j}(F(x), x) . \tag{10.1}
\end{equation*}
$$

We will see that subject to satisfying this constraint, the choice of R is irrelevant to our approximation results.

The ringing of a clock signals the arrival of a revision opportunity for the clock's owner: if the owner is currently playing strategy $i \in S$, he switches to strategy $j \neq i$ with probability $\rho_{i j} / R$. (Remember that the diagonal elements of ρ, though sometimes useful as placeholders (see equation (4.1)), play no formal role in the model.) Finally, the model respects independence assumptions that ensure that "the future is independent of the past except through the present": different agents' clocks ring independently of one another, strategy choices are made independently of the timing of the clocks' rings, and as evolution proceeds, the clocks and the agents are only influenced by the history of the process by way of the current value of the social state.

In Chapter 4, we argued informally that the stochastic process described above is well
approximated by solutions to the mean dynamic

$$
\begin{equation*}
\dot{x}_{i}=\sum_{j \in S} x_{j} \rho_{j i}(F(x), x)-x_{i} \sum_{j \in S} \rho_{i j}(F(x), x) . \tag{M}
\end{equation*}
$$

The rest of this chapter provides a formal defense of this approximation result.
We begin by giving a more formal account of the stochastic evolutionary process $\left\{X_{t}^{N}\right\}$. The independence assumptions above ensure that $\left\{X_{t}^{N}\right\}$ is a continuous-time Markov process on the finite state space X^{N}. To describe this process explicitly, it is enough to specify its jump rates $\left\{\lambda_{x}^{N}\right\}_{x \in X^{N}}$ and transition probabilities $\left\{P_{x y}^{N}\right\}_{x, y \in X^{N}}$ (see Appendix 10.B).

If the current social state is $x \in X^{N}$, then $N x_{i}$ of the N agents are playing strategy $i \in S$. Since agents receive revision opportunities independently at exponential rate R, the basic properties of the exponential distribution (see Proposition 10.A.1) imply that revision opportunities arrive in the society as a whole at exponential rate $N R$.

When an agent playing strategy $i \in S$ receives a revision opportunity, he switches to strategy $j \neq i$ with probability $\rho_{i j} / R$. Since this choice is independent of the arrivals of revision opportunities, the probability that the next revision opportunity goes to an agent playing strategy i who then switches to strategy j is

$$
\frac{N x_{i}}{N} \times \frac{\rho_{i j}}{R}=\frac{x_{i} \rho_{i j}}{R}
$$

This switch decreases the number of agents playing strategy i by one and increases the number playing j by one, shifting the state by $\frac{1}{N}\left(e_{j}-e_{i}\right)$.

Summarizing this analysis yields the following observation, which specifies the parameters of the Markov process $\left\{X_{t}^{N}\right\}$.

Observation 10.1.1. A population game F, a revision protocol ρ, and a population size N define a Markov process $\left\{X_{t}^{N}\right\}$ on the state space X^{N}. This process is described by some initial state $X_{0}^{N}=x_{0}^{N}$, the jump rates $\lambda_{x}^{N}=N R$, and the transition probabilities

$$
P_{x, x+z}^{N}= \begin{cases}\frac{x_{i} \rho_{i j}(F(x), x)}{R} & \text { if } z=\frac{1}{N}\left(e_{j}-e_{i}\right), i, j \in S, i \neq j, \\ 1-\sum_{i \in S} \sum_{j \neq i} \frac{x_{i} \rho_{i j}(F(x), x)}{R} & \text { if } z=\mathbf{0}, \\ 0 & \text { otherwise. }\end{cases}
$$

10.2 Finite Horizon Deterministic Approximation

In the previous section, we formally defined the Markov process $\left\{X_{t}^{N}\right\}$ generated by a population game F, a revision protocol ρ, and a population size N. Earlier, we introduced the mean dynamic (M), an ordinary differential equation that captures the expected motion of this process; solutions $\left\{x_{t}\right\}$ of (M) are continuous paths through the set of social states. Can we say more precisely how the stochastic and deterministic processes are linked?

The main result in this chapter, Theorem 10.2.3, shows that when the population size N is sufficiently large, the Markov process $\left\{X_{t}^{N}\right\}$ is well approximated over finite time spans by the deterministic trajectory $\left\{x_{t}\right\}$.

10.2.1 Kurtz's Theorem

To begin, we state a general result on the convergence of a sequence $\left\{\left\{X_{t}^{N}\right\}\right\}_{N=N_{0}}^{\infty}$ of Markov processes with decreasing step sizes. We suppose that the process indexed by N takes values in the state space $X^{N}=\left\{x \in X: N x \in \mathbf{Z}^{n}\right\}$, and we let $\lambda^{N} \in \mathbf{R}_{+}^{X^{N}}$ and $P^{N} \in \mathbf{R}_{+}^{X^{N} \times \chi^{N}}$ denote the jump rate vector and transition matrix of this process.

To simplify the definitions to follow, we let ζ_{x}^{N} be a random variable (defined on an arbitrary probability space) whose distribution describes the stochastic increment of $\left\{X_{t}^{N}\right\}$ from state x :

$$
\begin{equation*}
\mathbb{P}\left(\zeta_{x}^{N}=z\right)=\mathbb{P}\left(X_{\tau_{k+1}}^{N}=x+z \mid X_{\tau_{k}}^{N}=x\right) \tag{10.2}
\end{equation*}
$$

where τ_{k} is the time of the process's k th jump. We then define the functions $V^{N}: X^{N} \rightarrow T X$, $A^{N}: X^{N} \rightarrow \mathbf{R}$, and $A_{\delta}^{N}: X^{N} \rightarrow \mathbf{R}$ by

$$
\begin{aligned}
V^{N}(x) & =\lambda_{x}^{N} \mathbb{E} \zeta_{x}^{N} \\
A^{N}(x) & =\lambda_{x}^{N} \mathbb{E}\left|\zeta_{x}^{N}\right| \\
A_{\delta}^{N}(x) & =\lambda_{x}^{N} \mathbb{E}\left|\zeta_{x}^{N} 1_{\left\{\left|\zeta_{x}^{N}\right|>\delta\right\}}\right|
\end{aligned}
$$

$V^{N}(x)$, the product of the jump rate at state x and the expected increment per jump at x, represents the expected increment per time unit from x under $\left\{X_{t}^{N}\right\} . V^{N}$ is thus an alternate definition of the mean dynamic of $\left\{X_{t}^{N}\right\}$. In a similar vein, $A^{N}(x)$ is the expected absolute displacement per time unit, while $A_{\delta}^{N}(x)$ is the expected absolute displacement per time unit due to jumps traveling further than δ.

With these definitions in hand, we can state the basic approximation result.

Theorem 10.2.1 (Kurtz's Theorem). Let $V: X \rightarrow$ TX be a Lipschitz continuous vector field. Suppose that for some sequence $\left\{\delta^{N}\right\}_{N=N_{0}}^{\infty}$ converging to 0 , we have

$$
\begin{align*}
& \lim _{N \rightarrow \infty} \sup _{x \in X^{N}}\left|V^{N}(x)-V(x)\right|=0, \tag{10.3}\\
& \sup _{N} \sup _{x \in X^{N}} A^{N}(x)<\infty, \text { and } \tag{10.4}\\
& \lim _{N \rightarrow \infty} \sup _{x \in X^{N}} A_{\delta^{N}}^{N}(x)=0, \tag{10.5}
\end{align*}
$$

and that the initial conditions $X_{0}^{N}=x_{0}^{N}$ converge to $x_{0} \in X$. Let $\left\{x_{t}\right\}_{t \geq 0}$ be the solution to the mean dynamic
(M) $\quad \dot{x}=V(x)$
starting from x_{0}. Then for each $T<\infty$ and $\varepsilon>0$, we have that

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\sup _{t \in[0, T]}\left|X_{t}^{N}-x_{t}\right|<\varepsilon\right)=1
$$

Fix a finite time horizon $T<\infty$ and an error bound $\varepsilon>0$. Kurtz's Theorem tells us that when the index N is large, nearly all sample paths of the Markov process $\left\{X_{t}^{N}\right\}$ stay within ε of a solution of the mean dynamic (M) through time T. By making N large enough, we can ensure that with probability close to one, X_{t}^{N} and x_{t} differ by no more than ε for all t between 0 and T (Figure 10.2.1).

What conditions do we need to reach this conclusion? Condition (10.3) demands that as N grows large, the expected displacements per time unit V^{N} converge uniformly to a Lipschitz continuous vector field V. Lipschitz continuity of V ensures the existence and uniqueness of solutions of the mean dynamic $\dot{x}=V(x)$. Condition (10.4) requires that the expected absolute displacement per time unit is bounded. Finally, condition (10.5) demands that jumps larger than δ^{N} make vanishing contributions to the motion of the processes, where $\left\{\delta^{N}\right\}_{N=N_{0}}^{\infty}$ is a sequence of constants that approaches zero.

The intuition behind Kurtz's Theorem can be explained as follows. At each revision opportunity, the increment in the process $\left\{X_{t}^{N}\right\}$ is stochastic. However, the expected number of revision opportunities that arrive during the brief time interval $I=[t, t+d t]$ is of order $\lambda_{x}^{N} d t$. Whenever it does not vanish, this quantity grows without bound as the population size N becomes large. Conditions (10.4) and (10.5) ensure that when N is large, each increment in the state is likely to be small. This ensures that the total change in the state during time interval I is small, so that jump rates and transition probabilities

Figure 10.2.1: Kurtz's Theorem.
vary little during this interval. Since during I there are a very large number of revision opportunities, each generating nearly the same expected increment, intuition from the law of large numbers suggests that the change in $\left\{X_{t}^{N}\right\}$ during the interval should be almost completely determined by the expected motion of $\left\{X_{t}^{N}\right\}$. This expected motion is captured by the limiting mean dynamic V, whose solutions approximate the stochastic process $\left\{X_{t}^{N}\right\}$ over finite time spans with probability close to one.

Exercise 10.2.2. Suppose that $\left\{X_{t}^{N}\right\}$ is a Markov process on $X^{N}=\left\{0, \frac{1}{N}, \frac{2}{N}, \ldots, 1\right\}$ with $\lambda_{x}^{N} \equiv N$. To ensure that $\frac{1}{2}$ is always a state, restrict attention to even N. Give examples of sequences of transition probabilities from state $\frac{1}{2}$ that
(i) satisfy condition (10.3) of Kurtz's Theorem, but not conditions (10.4) or (10.5);
(ii) satisfy conditions (10.3) and (10.5), but not condition (10.4);
(iii) satisfy conditions (10.3) and (10.4), but not condition (10.5).
(Hint: it is enough to consider transition probabilities under which $V^{N}\left(\frac{1}{2}\right)=0$.) Guided by your answers to parts (ii) and (iii), explain intuitively what conditions (10.4) and (10.5) require.

10.2.2 Deterministic Approximation of the Stochastic Evolutionary Process

Returning to our model of evolution, we now use Kurtz's Theorem to show that the Markov processes $\left\{\left\{X_{t}^{N}\right\}\right\}_{N=N_{0}}^{\infty}$ defined in Section 10.1 can be approximated by solutions to
the mean dynamic (M) derived in Section 4.1.2.
To begin, we compute the expected increment per time unit $V^{N}(x)$ of the process $\left\{X_{t}^{N}\right\}$. Defining the random variable ζ_{x}^{N} as in equation (10.2) above, we find that

$$
\begin{aligned}
V^{N}(x) & =\lambda_{x}^{N} \mathbb{E} \zeta_{x}^{N} \\
& =N R \sum_{i \in S} \sum_{j \neq i} \frac{1}{N}\left(e_{j}-e_{i}\right) \mathbb{P}\left(\zeta_{x}^{N}=\frac{1}{N}\left(e_{j}-e_{i}\right)\right) \\
& =N R \sum_{i \in S} \sum_{j \neq i} \frac{1}{N}\left(e_{j}-e_{i}\right) \frac{x_{i} \rho_{i j}}{R} \\
& =\sum_{i \in S} \sum_{j \in S}\left(e_{j}-e_{i}\right) x_{i} \rho_{i j} \\
& =\sum_{j \in S} e_{j} \sum_{i \in S} x_{i} \rho_{i j}-\sum_{i \in S} e_{i} x_{i} \sum_{j \in S} \rho_{i j} \\
& =\sum_{i \in S} e_{i}\left(\sum_{j \in S} x_{j} \rho_{j i}-x_{i} \sum_{j \in S} \rho_{j i}\right) .
\end{aligned}
$$

Thus, the vector field $V^{N}=V$ is independent of N, and is expressed more concisely as

$$
\begin{equation*}
V_{i}(x)=\sum_{j \in S} x_{j} \rho_{j i}-x_{i} \sum_{j \in S} \rho_{i j} \tag{M}
\end{equation*}
$$

as we established using a different calculation in Section 4.1.2.
Conditions (10.4) and (10.5) of Kurtz' Theorem require that the motions of the processes $\left\{X_{t}^{N}\right\}$ not be too abrupt. To verify these conditions, observe that since $\left|e_{j}-e_{i}\right|=\sqrt{2}$ for any distinct $i, j \in S^{p}$, the increments of $\left\{X_{t}^{N}\right\}$ are always either of length $\frac{\sqrt{2}}{N}$ or of length zero. If we choose $\delta^{N}=\frac{\sqrt{2}}{N}$, this observation immediately implies condition (10.5):

$$
A_{\frac{\sqrt{2}}{N}}^{N}(x)=\lambda_{x}^{N} \mathbb{E}\left|\zeta_{x}^{N} 1_{\left\{\left|\zeta_{x}^{N}\right|>\frac{\sqrt{2}}{N}\right\}}\right|=0 .
$$

The observation also helps us verify condition (10.4):

$$
A^{N}(x)=\lambda_{x}^{N} \mathbb{E}\left|\zeta_{x}^{N}\right| \leq R N \times \frac{\sqrt{2}}{N}=\sqrt{2} R
$$

With these calculations in hand, we can present the deterministic approximation theorem.
Theorem 10.2.3 (Deterministic Approximation of $\left.\left\{X_{t}^{N}\right\}\right)$. Let $\left\{\left\{X_{t}^{N}\right\}\right\}_{N=N_{0}}^{\infty}$ be the sequence of stochastic evolutionary processes defined in Observation 10.1.1. Suppose that $V=V^{N}$ is Lipschitz
continuous. Let the initial conditions $X_{0}^{N}=x_{0}^{N}$ converge to state $x_{0} \in X$, and let $\left\{x_{t}\right\}_{t \geq 0}$ be the solution to the mean dynamic (M) starting from x_{0}. Then for all $T<\infty$ and $\varepsilon>0$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left(\sup _{t \in[0, T]}\left|X_{t}^{N}-x_{t}\right|<\varepsilon\right)=1
$$

Choose a finite time span T and two small constants δ and ε. Then for all large enough population sizes N, the probability that the process $\left\{X_{t}^{N}\right\}$ stays within ε of the deterministic trajectory $\left\{x_{t}\right\}$ through time T is at least $1-\delta$.

A key requirement of Theorem 10.2.3 is that V must be Lipschitz continuous, ensuring that the mean dynamic (M) admits a unique solution from every initial condition in X. This requirement is satisfied by members of the families of dynamics (imitative, excess payoff, pairwise comparison) studied in Chapter 5, as well as the perturbed best response dynamics from Chapter 6. The best response and projection dynamics, being discontinuous, are not covered by Theorem 10.2.3, but it seems likely that deterministic approximation results that apply to these dynamics can be proved (see the Notes).

It is well worth emphasizing that Theorem 10.2.3 is a finite horizon approximation result, and that it cannot be extended to an infinite horizon result. To see why not, consider the logit choice protocol (Example 4.2.5). Under this protocol, switches between all pairs of strategies occur with positive probability regardless of the current state. It follows that the induced Markov process $\left\{X_{t}^{N}\right\}$ is irreducible: there is a positive probability path between each ordered pair of states in X^{N}. As we shall see in Chapter 11, irreducibility implies that every state in \mathcal{X}^{N} is visited infinitely often with probability one. This fact clearly precludes an infinite horizon analogue of Theorem 10.2.3. Indeed, infinite horizon analysis of $\left\{X_{t}^{N}\right\}$ requires a different set of tools, which we present in the next two chapters.

Example 10.2.4. Toss and switch. Suppose that agents play a game with strategy set $S=\{L, R\}$ using the constant revision protocol ρ, where $\rho_{L L}=\rho_{L R}=\rho_{R L}=\rho_{R R}=\frac{1}{2}$. Under the simplest interpretation of this protocol, each agent receives revision opportunities at rate 1 ; upon receiving an opportunity, an agent flips a fair coin, switching strategies if the coin comes up Heads.

For each population size N, the protocol generates a Markov process $\left\{X_{t}^{N}\right\}$ with common jump rate $\lambda_{x}^{N} \equiv N$ and transition probabilities

$$
P_{x, x+z}^{N}= \begin{cases}\frac{1}{2} x_{R} & \text { if } z=\frac{1}{N}\left(e_{L}-e_{R}\right) \\ \frac{1}{2} x_{L} & \text { if } z=\frac{1}{N}\left(e_{R}-e_{L}\right), \\ \frac{1}{2} & \text { if } z=\mathbf{0}\end{cases}
$$

We can simplify the notation by replacing the vector state variable $x=\left(x_{L}, x_{R}\right) \in X$ with the scalar state variable $\chi=x_{R} \in[0,1]$. The resulting Markov process has common jump rate $\lambda_{\chi}^{N} \equiv N$ and transition probabilities

$$
P_{\chi, \chi+z}^{N}= \begin{cases}\frac{1}{2} \chi & \text { if } z=-\frac{1}{N} \\ \frac{1}{2}(1-\chi) & \text { if } z=\frac{1}{N} \\ \frac{1}{2} & \text { if } z=0\end{cases}
$$

Its mean dynamic is thus

$$
\begin{aligned}
V^{N}(\chi) & =\lambda_{\chi}^{N} \mathbb{E} \zeta_{\chi}^{N} \\
& =N\left(\left(-\frac{1}{N} \cdot \frac{1}{2} \chi\right)+\left(\frac{1}{N} \cdot \frac{1}{2}(1-\chi)\right)\right) \\
& =\frac{1}{2}-\chi,
\end{aligned}
$$

regardless of the population size N. To solve this differential equation, we move the rest point $y=\frac{1}{2}$ to the origin using change of variable $v=x-\frac{1}{2}$. The equation

$$
\dot{v}=\dot{\chi}=\frac{1}{2}-\chi=\frac{1}{2}-\left(v+\frac{1}{2}\right)=-v
$$

has the general solution $v_{t}=v_{0} \mathrm{e}^{-t}$, implying that

$$
\chi_{t}=\frac{1}{2}+\left(\chi_{0}-\frac{1}{2}\right) \mathrm{e}^{-t} .
$$

Fix a time horizon $T<\infty$. Theorem 10.2 .3 tells us that when N is sufficiently large, the evolutionary process is very likely to stay very close to an almost deterministic trajectory; this trajectory converges to state $\chi=\frac{1}{2}$, with convergence occurring at exponential rate 1 .

If we instead fix the population size N and look at behavior over the infinite time horizon $(T=\infty)$, the process eventually splits off from the deterministic trajectory, visiting all states in $\left\{0, \frac{1}{N}, \ldots, 1\right\}$ infinitely often. We will consider the infinite horizon behavior of this process in more detail in Example 11.2.1. §

Exercise 10.2.5. Consider a population playing game F using revision protocol ρ.
(i) Show that the resulting mean dynamic can be expressed as

$$
\dot{x}=R(x)^{\prime} x,
$$

where $R(x) \in \mathbf{R}^{n \times n}$ is given by

$$
R_{i j}(x)= \begin{cases}\rho_{i j}(x, F(x)) & \text { if } i \neq j \\ -\sum_{k \neq i} \rho_{i k}(x, F(x)) & \text { if } i=j\end{cases}
$$

Note that when ρ is independent of $F(x)$ and x as in the previous example, the matrix R is independent of x as well. In this case we obtain the linear dynamic $\dot{x}=R^{\prime} x$, whose solutions can be expressed in closed form (see Appendix 8.B).
(ii) Suppose that $\rho_{i j}=1$ for all i and j. Describe the parameters of the resulting Markov process $\left\{X_{t}^{N}\right\}$, and write down the corresponding mean dynamic. Show that solutions to the mean dynamic take the form $x_{t}=x^{*}+\left(x_{0}-x^{*}\right) e^{-n t}$, where $x^{*}=\frac{1}{n} \mathbf{1}$.

10.3 Extensions

10.3.1 Finite-Population Adjustments

In our model of individual choice, the revision protocol ρ was defined independently of the population size. In some cases, it is more appropriate to allow the revision protocol to depend on N in some vanishing way-for example, to account for the effects of sampling from a finite population, or for the fact that an agent whose choices are based on imitation will not imitate himself. If we include these effects, then ρ varies with N, so the normalized expected increments V^{N} vary with N as well. Fortunately, Kurtz's Theorem allows for these sorts of effects so long as they are vanishing in size: examining condition (10.3), we see that as long as the functions V^{N} converge uniformly to a limiting mean dynamic V, the finite horizon approximation continues to hold.

Finite population adjustments will play a more important role when we consider infinite horizon behavior, where these adjustments can greatly simplify our calculations; see especially Sections 11.3 and 11.4.

10.3.2 Discrete Time Models

It is also possible to prove deterministic approximation results for discrete time models of stochastic evolution. To do so, we assume that the number of discrete periods that pass per unit of clock time grows with the population size N. In this situation, one can employ a discrete time version of Kurtz's Theorem (Theorem 10.B. 5 in Appendix 10.B.7), the
requirements of which are direct analogues of those from Theorem 10.2.1 above.
So, let us suppose that when the population size is N, each discrete time period is of duration $d^{N}=\frac{1}{N R}$, so that periods begin at times in the set $T^{N}=\left\{0, d^{N}, 2 d^{N}, \ldots\right\}$. We consider two specifications of the discrete time evolutionary process $\left\{X_{t}^{N}\right\}_{t \in T^{N}}$.

Exercise 10.3.1. Discrete time model I: One revision opportunity per period. Suppose that during each period, exactly one agent is selected at random and granted a revision opportunity, with each agent being equally likely to be chosen. The chosen agent's choices are then governed by the conditional switch probabilities $\rho_{i j} / R$. Using Theorem 10.B.5, show that Theorem 10.2.3 extends to this discrete time model.

Discrete time models can allow a possibility that our continuous time model cannot: they permit many agents to switch strategies simultaneously. The next exercise shows that deterministic approximation is still possible even when simultaneous revisions by many agents are possible, so long as they are sufficiently unlikely.

Exercise 10.3.2. Discrete time model II: Random numbers of revision opportunities in each period. Suppose that during each period, each agent tosses a coin that comes up heads with probability $\frac{1}{N}$. Every agent who tosses a head receives a revision opportunity; choices for such agents are again governed by the conditional switch probabilities $\rho_{i j} / R$. Use the Poisson Limit Theorem (Propositions 10.A.4(ii) and 10.A.5) and Theorem 10.B. 5 to show that Theorem 10.2.3 extends to this model. (Hint: In any given period, the number of agents whose tosses come up heads is binomially distributed with parameters N and $\frac{1}{N}$.)

Appendix

10.A The Exponential and Poisson Distributions

10.A. 1 Basic Properties

The random variable T with support $[0, \infty)$ has an exponential distribution with rate λ, denoted $T \sim$ exponential (λ), if its decumulative distribution is $\mathbb{P}(T \geq t)=\mathrm{e}^{-\lambda t}$, so that its density function is $f(t)=\lambda \mathrm{e}^{-\lambda t}$. A Taylor approximation shows that for small $d t>0$,

$$
\begin{equation*}
\mathbb{P}(T \leq d t)=1-\mathrm{e}^{-\lambda d t}=0+\lambda \mathrm{e}^{-\lambda \cdot 0} d t+O\left((d t)^{2}\right) \approx \lambda d t \tag{10.6}
\end{equation*}
$$

Exponential random variables are often used to model the random amount of time that passes before a certain occurrence: the arrival of a customer at a queue, the decay of
a particle, and so on. We often describe the behavior of exponential random variables using the rhetorical device of a "stochastic alarm clock" that rings after an exponentially distributed amount of time has passed.

Some basic properties of the exponential distribution are listed next.
Proposition 10.A.1. Let T_{1}, \ldots, T_{n} be independent with $T_{i} \sim \operatorname{exponential}\left(\lambda_{i}\right)$. Then
(i) $\mathbb{E} T_{i}=\lambda_{i}^{-1}$;
(ii) $\mathbb{P}\left(T_{i} \geq u+t \mid T_{i} \geq u\right)=\mathbb{P}\left(T_{i} \geq t\right)=e^{-\lambda_{i} t}$;
(iii) If $M_{n}=\min \left\{T_{1}, \ldots, T_{n}\right\}$ and $I_{n}=\operatorname{argmin}_{j} T_{j}$, then $M_{n} \sim \operatorname{exponential}\left(\sum_{i=1}^{n} \lambda_{i}\right)$, $\mathbb{P}\left(I_{n}=i\right)=\lambda_{i} / \sum_{j=1}^{n} \lambda_{j}$, and M_{n} and I_{n} are independent.

Property (ii), memorylessness, says that if the time before one's alarm clock rings is exponentially distributed, then one's beliefs about how long from now the clock will ring do not depend on how long one has already been waiting. Together, this property and equation (10.6) above tell us that until the time when the clock rings, the conditional probability that it rings during the next $d t$ times units is proportional to $d t$:

$$
\mathbb{P}\left(T_{i} \leq t+d t \mid T_{i} \geq t\right)=\mathbb{P}\left(T_{i} \leq d t\right) \approx \lambda_{i} d t
$$

The exponential distributions are the only continuous distributions with these properties.
Property (iii) says that given a collection of independent exponential alarm clocks, then the time until the first clock rings is itself exponentially distributed, the probability that a particular clock rings first is proportional to its rate, and the time until the first ring and the ringing clock's identity are independent random variables. These facts are essential to the workings of our stochastic evolutionary model.

Proof. Parts (i) and (ii) are easily verified. To establish part (iii), set $\lambda=\sum_{i=1}^{n} \lambda_{i}$, and compute the distribution of M_{n} as follows:

$$
\mathbb{P}\left(M_{n} \geq t\right)=\mathbb{P}\left(\bigcap_{i=1}^{n}\left\{T_{i} \geq t\right\}\right)=\prod_{i=1}^{n} \mathbb{P}\left(T_{i} \geq t\right)=\prod_{i=1}^{n} \mathrm{e}^{-\lambda_{i} t}=\mathrm{e}^{-\lambda t}
$$

To prove the remaining claims from part (iii), observe that

$$
\begin{align*}
\mathbb{P}\left(\bigcap_{j \neq i}\left\{T_{i} \leq T_{j}\right\} \cap\left\{T_{i} \geq t\right\}\right) & =\int_{t}^{\infty}\left(\prod_{j \neq i} \int_{t_{i}}^{\infty} \lambda_{j} \mathrm{e}^{-\lambda_{j} t_{j}} \mathrm{~d} t_{j}\right) \lambda_{i} \mathrm{e}^{-\lambda_{i} t_{i}} \mathrm{~d} t_{i} \tag{10.7}\\
& =\int_{t}^{\infty}\left(\prod_{j \neq i} e^{-\lambda_{j} t_{i}}\right) \lambda_{i} \mathrm{e}^{-\lambda_{i} t_{i}} \mathrm{~d} t_{i} \\
& =\int_{t}^{\infty} \lambda_{i} \mathrm{e}^{-\lambda t_{i}} \mathrm{~d} t_{i}
\end{align*}
$$

$$
=\left(\lambda_{i} / \lambda\right) \mathrm{e}^{-\lambda t}
$$

Setting $t=0$ in equation (10.7) yields $\mathbb{P}\left(I_{n}=i\right)=\lambda_{i} / \lambda$, and an arbitrary choice of t shows that $\mathbb{P}\left(M_{n} \geq t, I_{n}=i\right)=\mathbb{P}\left(M_{n} \geq t\right) \mathbb{P}\left(I_{n}=i\right)$.

A random variable R has a Poisson distribution with rate λ, denoted $R \sim \operatorname{Poisson}(\lambda)$, if $\mathbb{P}(R=r)=\mathrm{e}^{-\lambda} \lambda^{r} / r$! for all $r \in\{0,1,2, \ldots\}$. Poisson random variables are used to model the number of occurrences of rare events (see Propositions 10.A. 3 and 10.A.4). Two of their basic properties are listed below.

Proposition 10.A.2. If R_{1}, \ldots, R_{n} are independent with $R_{i} \sim \operatorname{Poisson}\left(\lambda_{i}\right)$, then
(i) $\mathbb{E}\left(R_{i}\right)=\lambda_{i}$;
(ii) $\sum_{j=1}^{n} R_{j} \sim \operatorname{Poisson}\left(\sum_{j=1}^{n} \lambda_{j}\right)$.

Proof. (i) $\mathbb{E}\left(R_{i}\right)=\sum_{r=1}^{\infty} r \mathrm{e}^{-\lambda_{i}} \frac{\left(\lambda_{i}\right)^{r}}{r!}=\sum_{r=1}^{\infty} \lambda_{i} \mathrm{e}^{-\lambda_{i}} \frac{\left(\lambda_{i}\right)^{r-1}}{(r-1)!}=\lambda_{i} \sum_{s=0}^{\infty} \mathrm{e}^{-\lambda_{i}} \frac{\left(\lambda_{i}\right)^{s}}{s!}=\lambda_{i}$.
(ii) When $n=2$, we can compute that

$$
\begin{aligned}
& \mathbb{P}\left(R_{1}+R_{2}=r\right)=\sum_{r_{1}=0}^{r} \mathbb{P}\left(R_{1}=r_{1}\right) \mathbb{P}\left(R_{2}=r-r_{1}\right)=\sum_{r_{1}=0}^{r} e^{-\lambda_{1}} \frac{\left(\lambda_{1}\right)^{r_{1}}}{r_{1}!} e^{-\lambda_{2}} \frac{\left(\lambda_{2}\right)^{r-r_{1}}}{\left(r-r_{1}\right)!} \\
&=e^{-\left(\lambda_{1}+\lambda_{2}\right)} \sum_{r_{1}=0}^{r} \frac{\left(\lambda_{1}\right)^{r_{1}}\left(\lambda_{2}\right)^{r-r_{1}}}{r_{1}!\left(r-r_{1}\right)!}=e^{-\left(\lambda_{1}+\lambda_{2}\right)} \frac{\left(\lambda_{1}+\lambda_{2}\right)^{r}}{r!},
\end{aligned}
$$

where the final equality follows from the binomial expansion

$$
\left(\lambda_{1}+\lambda_{2}\right)^{r}=\sum_{r_{1}=0}^{r} \frac{r!}{r_{1}!\left(r-r_{1}\right)!}\left(\lambda_{1}\right)^{r_{1}}\left(\lambda_{2}\right)^{r-r_{1}} .
$$

Iterating yields the general result.
The exponential and Poisson distributions are fundamentally linked. Let $\left\{T_{i}\right\}_{i=1}^{\infty}$ be a sequence of i.i.d. exponential (λ) random variables. We can interpret T_{1} as the first time that an exponential alarm clock rings, T_{2} as the interval between the first and second rings, and T_{k} as the interval between the $(k-1)$ st and k th rings. In this interpretation, the sum $S_{n}=\sum_{k=1}^{n} T_{k}$ represents the time of the nth ring, while $R_{t}=\max \left\{n: S_{n} \leq t\right\}$ represents the number of rings through time t. Figure 10.A. 1 presents a single realization of the ring time sequence $\left\{S_{n}\right\}_{n=1}^{\infty}$ and the number-of-rings process $\left\{R_{t}\right\}_{t \geq 0}$.

Proposition 10.A. 3 derives the distribution of R_{t}, establishing a key connection between the exponential and Poisson distributions.

Figure 10.A.1: Ring times S_{n} and numbers of rings R_{t} of an exponential alarm clock.

Proposition 10.A.3. $R_{t} \sim \operatorname{Poisson}(\lambda t)$.
Proof. To begin, we prove that S_{n} has density

$$
\begin{equation*}
f_{n}(t)=\lambda \mathrm{e}^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} . \tag{10.8}
\end{equation*}
$$

This formula is obviously correct when $n=1$. Suppose it is true for some arbitrary n. Then using the convolution formula $f_{X+Y}(z)=\int_{-\infty}^{\infty} f_{Y}(z-x) f_{X}(x) \mathrm{d} x$, we find that

$$
f_{n+1}(t)=\int_{0}^{t} f_{n}(t-s) f_{1}(s) \mathrm{d} s=\int_{0}^{t} \lambda \frac{(\lambda(t-s))^{n-1}}{(n-1)!} \mathrm{e}^{-\lambda(t-s)} \times \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s=\lambda \mathrm{e}^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

Next, we show that this equation implies that S_{n} has cumulative distribution

$$
\mathbb{P}\left(S_{n} \leq t\right)=\sum_{m=n}^{\infty} \mathrm{e}^{-\lambda t} \frac{(\lambda t)^{m}}{m!}
$$

Since $\sum_{m=0}^{\infty} \frac{(\lambda t)^{m}}{m!}=\mathrm{e}^{\lambda t}$, this statement is equivalent to

$$
\mathbb{P}\left(S_{n} \leq t\right)=1-\sum_{m=0}^{n-1} \mathrm{e}^{-\lambda t} \frac{(\lambda t)^{m}}{m!}
$$

Differentiating shows that this expression is in turn equivalent to the density of S_{n} taking form (10.8), as established above.

To complete the proof, we express the event that at least n rings have occurred by time t in two equivalent ways: $\left\{R_{t} \geq n\right\}=\left\{S_{n} \leq t\right\}$. This observation and the expression for
$\mathbb{P}\left(S_{n} \leq t\right)$ above imply that

$$
\mathbb{P}\left(R_{t}=n\right)=\mathbb{P}\left(R_{t} \geq n\right)-\mathbb{P}\left(R_{t} \geq n+1\right)=\mathbb{P}\left(S_{n} \leq t\right)-\mathbb{P}\left(S_{n+1} \leq t\right)=\mathrm{e}^{-\lambda t} \frac{(\lambda t)^{n}}{n!} .
$$

10.A. 2 The Poisson Limit Theorem

Proposition 10.A. 3 shows that the Poisson distribution describes the number of rings of an exponential alarm clock during a fixed time span. We now establish a discrete analogue of this result.

The random variable X^{p} has a Bernoulli distribution with parameter $p \in[0,1]$, denoted $X^{p} \sim \operatorname{Bernoulli}(p)$, if $\mathbb{P}\left(X^{p}=1\right)=p$ and $\mathbb{P}\left(X^{p}=0\right)=1-p$. Let $\left\{X_{i}^{p}\right\}_{i=1}^{n}$ be a sequence of i.i.d. Bernoulli(p) random variables (e.g. coin tosses), and let $S_{n}^{p}=\sum_{i=1}^{n} X_{i}^{p}$ denote their sum (the number of heads in n tosses). Then S_{n}^{p} has a binomial distribution with parameters n and $p\left(S_{n}^{p} \sim \operatorname{binomial}(n, p)\right)$:

$$
\mathbb{P}\left(S_{n}^{p}=s\right)=\binom{n}{s} p^{s}(1-p)^{n-s} \text { for all } s \in\{0,1, \ldots, n\} .
$$

Finally, the random variable Z has a standard normal distribution $(Z \sim N(0,1))$ if its density function is $f(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right)$.

Proposition 10.A. 4 considers the behavior of the binomial random variables S_{n}^{p} when the number of tosses n becomes large. Recall that the sequence of random variables $\left\{Y_{n}\right\}_{n=1}^{\infty}$ with distribution functions $\left\{F_{n}\right\}_{n=1}^{\infty}$ converges in distribution (or converges weakly) to the random variable Y with distribution function F (denoted $Y_{n} \Rightarrow Y$, or $F_{n} \Rightarrow F$) if $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$ at all points $x \in \mathbf{R}$ at which F is continuous.

Proposition 10.A.4. Let $S_{n}^{p} \sim \operatorname{binomial}(n, p)$. Then as $n \rightarrow \infty$,
(i) $\frac{S_{n}^{p}-n p}{\sqrt{n p(1-p)}} \Rightarrow Z$, where $Z \sim N(0,1)$.
(ii) $S_{n}^{\lambda / n} \Rightarrow R^{\lambda}$ where $R^{\lambda} \sim \operatorname{Poisson}(\lambda)$.

If we increase the number of tosses n of a coin whose bias p is fixed, the Central Limit Theorem tells us that the distribution of the number of heads S_{n}^{p} approaches a normal distribution. (In statement (i), we subtract the mean $\mathbb{E} S_{n}^{p}=n p$ off of S_{n}^{p} and then divide by the standard deviation $S D\left(S_{n}^{p}\right)=\sqrt{n p(1-p)}$ to obtain convergence to a fixed distribution.)

Suppose instead that as we increase the number of tosses n, we decrease the probability of heads p in such a way that the expected number of heads $n p=\lambda$ remains fixed. Then statement (ii), the Poisson Limit Theorem, tells us that the distribution of S_{n}^{p} approaches a

Poisson distribution. The basic calculation needed to prove this is as follows:

$$
\begin{aligned}
\mathbb{P}\left(S_{n}^{\lambda / n}\right. & =s)=\frac{n!}{s!(n-s)!}\left(\frac{\lambda}{n}\right)^{s}\left(1-\frac{\lambda}{n}\right)^{n-s}=\left(1-\frac{\lambda}{n}\right)^{n} \frac{\lambda^{s}}{s!} \times\left(1-\frac{\lambda}{n}\right)^{-s} \frac{n!}{(n-s)!n^{s}} \\
& =P\left(R^{\lambda}=s\right) \times \frac{\left(1-\frac{\lambda}{n}\right)^{n}}{e^{-\lambda}} \times \prod_{r=0}^{s-1} \frac{n-r}{n-\lambda} \rightarrow \mathbb{P}\left(R^{\lambda}=s\right) .
\end{aligned}
$$

The second term of the penultimate expression above is independent of s and is less than 1 (because $\left(1-\frac{\lambda}{n}\right)^{n}$ increases to $\mathrm{e}^{-\lambda}$), while the final term attains its maximum over s when $s=\lfloor\lambda+1\rfloor$ and decreases to 1 as n grows large. Together, these observations yield the following upper bound, which is needed in Exercise 10.3.2.

Proposition 10.A.5. $\mathbb{P}\left(S_{n}^{\lambda / n}=s\right) \leq C^{\lambda} \mathbb{P}\left(R^{\lambda}=s\right)$ for some $C^{\lambda} \in \mathbf{R}$ independent of n and s.

10.B Countable State Markov Processes

10.B. 1 Countable Probability Models

We begin our review of probability theory by discussing probability models with a countable sample space. A countable probability model is a pair (Ω, \mathbb{P}), where the sample space Ω is a finite or countable set, 2^{Ω} is the set of all subsets of Ω, and $\mathbb{P}: 2^{\Omega} \rightarrow[0,1]$ is a probability measure: that is, a function satisfying $\mathbb{P}(\varnothing)=0, \mathbb{P}(\Omega)=1$, and countable additivity: if $\left\{A_{k}\right\}$ is a finite or countable collection of disjoint events (i.e., subsets of Ω), then $\mathbb{P}\left(\bigcup_{k} A_{k}\right)=\sum_{k} \mathbb{P}\left(A_{k}\right)$.

A random variable X is a function whose domain is Ω. The distribution of X is defined by $\mathbb{P}(X \in A)=\mathbb{P}(\omega \in \Omega: X(\omega) \in A)$ for all subsets A of the range of X. To define a finite collection of discrete random variables $\left\{X_{k}\right\}_{k=1}^{n}$, we specify a probability model (Ω, \mathbb{P}) and then define the random variables as functions on Ω. To interpret this construction, imagine picking an ω at random from the sample space Ω according to the probability distribution \mathbb{P}. The value of ω so selected determines the realizations $X_{1}(\omega), X_{2}(\omega), \ldots, X_{n}(\omega)$ of the entire sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$.

Example 10.B.1. Repeated rolls of a fair die. Suppose we would like to construct a sequence of random variables $\left\{X_{k}\right\}_{k=1}^{n}$, where X_{k} is to represent the k th roll of a fair die. To accomplish this, we let $R=\{1,2,3,4,5,6\}$ be the set of possible results of an individual roll, and let the sample space be the set of n-vectors $\Omega=R^{n}$, with typical element $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right)$. To define the probability measure \mathbb{P}, it is enough to let $\mathbb{P}(\{\omega\})=\left(\frac{1}{6}\right)^{n}$ for all $\omega \in \Omega$; additivity then determines the probabilities of all other events in 2^{Ω}.

The random variables X_{k} can then be defined as coordinate functions: $X_{k}(\omega)=\omega_{k}$ for all $\omega \in \Omega$ and $k \in\{1, \ldots, n\}$. Observe once again that by randomly selecting an $\omega \in \Omega$, we determine the realizations of all n random variables. Since

$$
\mathbb{P}\left(X_{k}=x_{k}\right)=\mathbb{P}\left(\omega \in \Omega: X_{k}(\omega)=x_{k}\right)=\mathbb{P}\left(\omega \in \Omega: \omega_{k}=x_{k}\right)=\frac{1}{6}
$$

for all $x_{k} \in R$, the random variables X_{k} have the correct marginal distributions. Moreover, if $A_{k} \subseteq R$ for $k \in\{1, \ldots, n\}$, it is easy to confirm that

$$
\mathbb{P}\left(\bigcap_{k=1}^{n}\left\{X_{k} \in A_{k}\right\}\right)=\prod_{k=1}^{n} \mathbb{P}\left(X_{k} \in A_{k}\right),
$$

so the X_{k} are independent, as desired. \S
The expected value of a random variable is its integral with respect to the probability measure \mathbb{P}. In the case of the k th die roll,

$$
\mathbb{E} X_{k}=\int_{\Omega} X_{k}(\omega) \mathrm{d} \mathbb{P}(\omega)=\sum_{\omega \in \Omega} \omega_{k} \mathbb{P}(\omega)=\sum_{\omega_{k} \in R} \omega_{k}\left(\sum_{\omega_{-k}} \mathbb{P}\left(\omega_{k}, \omega_{-k}\right)\right)=\sum_{i=1}^{6} i \times \frac{1}{6}=3 \frac{1}{2} .
$$

We can create new random variables out of old ones using functional operations. For instance, the total of the results of the n die rolls is a new random variable S_{n} defined by $S_{n}=\sum_{k=1}^{n} X_{k}$, or, more explicitly, by $S_{n}(\omega)=\sum_{k=1}^{n} X_{k}(\omega)$ for all $\omega \in \Omega$.

10.B. 2 Uncountable Probability Models and Measure Theory

While the constructions above are sufficient for finite collections of discrete random variables, they do not suffice when individual random variables take an uncountable number of values, or when we are interested in infinite numbers of random variables. To handle these situations, we need the sample space Ω to be uncountable: that is, not expressible as a sequence of elements.

Unfortunately, uncountable sample spaces introduce a serious new technical difficulty. As an illustration, suppose we want to construct a random variable representing a uniform draw from the unit interval. It is natural to choose $\Omega=[0,1]$ as our sample space and to define our random variable as the identity function on Ω : that is, $X(\omega)=\omega$. But then we encounter a major difficulty: it is impossible to define a countably additive probability measure \mathbb{P} that specifies the probability of every subset of Ω.

To resolve this problem, one chooses a set of subsets $\mathcal{F} \subseteq 2^{\Omega}$ whose probabilities will be specified, and then introduces corresponding restrictions on the definition of a random
variable. A random variable satisfying these restrictions is said to be measurable, and this general approach to studying functions defined on uncountable domains is known as measure theory.

To summarize some of the foregoing discussion: an uncountable probability model consists of a triple $(\Omega, \mathcal{F}, \mathbb{P})$, where Ω is a sample space, $\mathcal{F} \subseteq 2^{\Omega}$ is a collection (more specifically, a σ-algebra) of subsets of Ω, and $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ is a countably additive probability measure.

Suppose we would like to study a collection of random variables described by some prespecified joint distributions. How do we know whether it is possible to construct these random variables on some well-chosen probability space? Happily, as long as the marginal and joint distributions satisfy certain obviously necessary consistency conditions, existence of the probability space and the random variables is ensured by the Carathéodory Extension Theorem and the Kolmogorov Extension Theorem.

10.B.3 Distributional Properties and Sample Path Properties

The reader may wonder why we bother with the explicit construction of random variables. After all, once we specify the joint distributions of the basic random variables of interest, we also determine the joint distributions of any random variables that can be derived from our original collection. Why not work entirely in terms of these distributions and avoid the explicit construction of the random variables altogether?

If we are only interested in distributional properties of our random variables, explicit construction of the random variables is not essential. However, many key results in probability theory concern not the distributional properties of random variables, but rather their sample path properties. These are properties of realization sequences: i.e., the sequences of values $X_{1}(\omega), X_{2}(\omega), X_{3}(\omega), \ldots$ that arise for each choice of $\omega \in \Omega$. The differences between the two sorts of properties can be illustrated through a simple example.

Example 10.B.2. Consider the probability model (Ω, \mathbb{P}) with sample space $\Omega=\{-1,1\}$ and probability measure $\mathbb{P}(\{-1\})=\mathbb{P}(\{1\})=\frac{1}{2}$. Define the sequences of random variables $\left\{X_{i}\right\}_{i=1}^{\infty}$ and $\left\{\hat{X}_{i}\right\}_{i=1}^{\infty}$ as follows:

$$
\begin{aligned}
& X_{i}(\omega)=\omega \\
& \hat{X}_{i}(\omega)= \begin{cases}-\omega & \text { if } i \text { is odd } \\
\omega & \text { if } i \text { is even. }\end{cases}
\end{aligned}
$$

If we look only at marginal distributions, $\left\{X_{i}\right\}_{i=1}^{\infty}$ and $\left\{\hat{X}_{i}\right\}_{i=1}^{\infty}$ are identical, as both sequences

Figure 10.B.1: Distributional properties of X and \hat{X}.

Figure 10.B.2: Sample path properties of X and \hat{X}.
consist of random variables equally likely to have realizations -1 and 1 . But from the sample path point of view, the two sequences are different: for either choice of ω, the sequence $\left\{X_{i}(\omega)\right\}_{i=1}^{\infty}$ is constant, while the sequence $\left\{\hat{X}_{i}(\omega)\right\}_{i=1}^{\infty}$ alternates between 1 and -1 forever.

We illustrate these ideas in Figures 10.B. 1 and 10.B.2, which provide graphical representations of our two sequences of random variables. In these pictures, the vertical axis represents the sample space Ω, the horizontal axis represents indices (or "times") of the trials, and the interiors of the figures contain the realizations $X_{i}(\omega)$ and $\hat{X}_{i}(\omega)$. To focus on distributional properties of a sequence of random variables, we focus on the collection of outcomes in each vertical section of the picture (Figure 10.B.1). In this respect, each X_{i} is identical to its partner \hat{X}_{i}, and in fact all of the random variables in both sequences share the same distribution. To focus on sample path properties, we look instead at the sequences of outcomes in each horizontal slice of each picture (Figure 10.B.2). By doing so, we see that for each ω, the sample path $\left\{X_{i}(\omega)\right\}_{i=1}^{\infty}$ is quite different from the sample path $\left\{\hat{X}_{i}(\omega)\right\}_{i=1}^{\infty} . \S$

Example 10.B.3. Properties of i.i.d. random variables. The distinction between distributional properties and sample path properties can be used to classify the fundamental theorems about sequences of i.i.d. random variables. Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a sequence of i.i.d. random
variables, each of which is a function on the (uncountable) probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For simplicity, assume that each X_{i} has mean zero and variance one. Then the sum $S_{n}=\sum_{i=1}^{n} X_{i}$ has mean zero and variance n, while the sample average $\bar{X}_{n}=S_{n} / n$ has mean zero and variance $\frac{1}{n}$.

The laws of large numbers concern the convergence of the sample averages \bar{X}_{n} as the number of trials n grows large. The Weak Law of Large Numbers is a distributional result: as n goes to infinity, the distributions of the random variables \bar{X}_{n} approach a point mass at 0 .

The Weak Law of Large Numbers : For all $\varepsilon>0, \lim _{n \rightarrow \infty} \mathbb{P}\left(\bar{X}_{n} \in[-\varepsilon, \varepsilon]\right)=1$.
In contrast, the Strong Law of Large Numbers is a sample path result: for almost every choice of $\omega \in \Omega$, the sequence of realizations $\left\{\bar{X}_{n}(\omega)\right\}_{n=1}^{\infty}$ converges to zero.

The Strong Law of Large Numbers: $\mathbb{P}\left(\omega \in \Omega: \lim _{n \rightarrow \infty} \bar{X}_{n}(\omega)=0\right)=1$.
Note that while the WLLN can be stated directly in terms of distributions, the SLLN only makes sense if our random variables are defined as functions on a probability space.

A second pair of results focuses on variation. The Central Limit Theorem concerns distributions: as n goes to infinity, the distributions of the normalized sums S_{n} / \sqrt{n} converge to the standard normal distribution.

The Central Limit Theorem: $\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{S_{n}}{\sqrt{n}} \in[a, b]\right)=\int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \mathrm{~d} x$.
The Law of the Iterated Logarithm looks at variation within individual sample paths: for almost every choice of $\omega \in \Omega$, the sequence of realizations $\left\{S_{n}(\omega)\right\}_{n=1}^{\infty}$ exceeds ($1-$ ع) $\sqrt{2 n \log \log n}$ infinitely often, but exceeds $(1+\varepsilon) \sqrt{2 n \log \log n}$ only finitely often.

The Law of the Iterated Logarithm: $\mathbb{P}\left(\omega \in \Omega: \limsup _{n \rightarrow \infty} \frac{S_{n}(\omega)}{\sqrt{2 n \log \log n}}=1\right)=1 . \S$
In Chapter 11, we present distributional and sample path convergence theorems for Markov processes; these results are the key to describing the evolution of behavior over infinite time horizons.

10.B. 4 Countable State Markov Chains

Markov chains and Markov processes are collections of random variables $\left\{X_{t}\right\}_{t \in T}$ with the property that "the future only depends on the past through the present". We focus on
settings where these random variables take values in some finite or countable state space \mathcal{X}. (Of course, even if the state space \mathcal{X} is countable, the random variables $X_{t}: \Omega \rightarrow X$ must be defined on a probability model with an uncountable sample space Ω if the set of times T is infinite.) We use the terms "Markov chain" and "Markov process" to distinguish between the discrete time $(T=\{0,1, \ldots\})$ and continuous time $(T=[0, \infty))$ frameworks. (Some authors use these terms to distinguish between discrete and continuous state spaces.)

The sequence of random variables $\left\{X_{t}\right\}=\left\{X_{t}\right\}_{t=0}^{\infty}$ is a Markov chain if it satisfies the Markov property:

$$
\mathbb{P}\left(X_{t+1}=x_{t+1} \mid X_{0}=x_{0}, \ldots, X_{t}=x_{t}\right)=\mathbb{P}\left(X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right)
$$

for all times $t \in\{0,1, \ldots\}$ and all collections of states $x_{0}, \ldots, x_{t+1} \in X$ for which the conditional expectations are well defined. We only consider temporally homogeneous Markov chains, which are Markov chains whose one-step transition probabilities are independent of time:

$$
\mathbb{P}\left(X_{t+1}=y \mid X_{t}=x\right)=P_{x y} .
$$

We call the matrix $P \in \mathbf{R}_{+}^{X \times X}$ the transition matrix for the Markov chain $\left\{X_{t}\right\}$. The vector $\pi \in \mathbf{R}_{+}^{X}$ defined by $\mathbb{P}\left(X_{0}=x\right)=\pi_{x}$ is the initial distribution of $\left\{X_{t}\right\}$; when π puts all of its mass on a single state x_{0}, we call x_{0} the initial condition or the initial state. The vector π and the matrix P fully determine the joint distributions of $\left\{X_{t}\right\}$ via

$$
\mathbb{P}\left(X_{0}=x_{0}, \ldots, X_{t}=x_{t}\right)=\pi_{x_{0}} \prod_{s=1}^{t} P_{x_{s-1} x_{s}} .
$$

Since certain properties of Markov chains do not depend on the initial distribution π, it is sometimes left unspecified.

Finally, it is easy to verify by induction that the the t step transition probabilities of $\left\{X_{t}\right\}$ are given by the entries of the t th power of the transition matrix:

$$
\mathbb{P}\left(X_{t}=y \mid X_{0}=x\right)=\left(P^{t}\right)_{x y} .
$$

10.B. 5 Countable State Markov Processes: Definition and Construction

A (temporally homogeneous) Markov process on the countable state space X is a collection of random variables $\left\{X_{t}\right\}=\left\{X_{t}\right\}_{t \geq 0}$ with continuous time index t. This collection must satisfy the following three properties:
(MP) The (continuous time) Markov property:

$$
\begin{aligned}
& \mathbb{P}\left(X_{t_{k+1}}=x_{t_{k+1}} \mid X_{t_{0}}=x_{t_{0}}, \ldots, X_{t_{k}}=x_{t_{k}}\right)=\mathbb{P}\left(X_{t_{k+1}}=x_{t_{k+1}} \mid X_{t_{k}}=x_{t_{k}}\right) \text { for all } \\
& \quad 0 \leq t_{0}<\ldots<t_{k+1} \text { and } x_{t_{0}}, \ldots, x_{t_{k+1}} \in X \text { with } \mathbb{P}\left(X_{t_{0}}=x_{t_{0}}, \ldots, X_{t_{k}}=x_{t_{k}}\right)>0 .
\end{aligned}
$$

(TH) Temporal homogeneity: $\mathbb{P}\left(X_{t+u}=y \mid X_{t}=x\right)=P_{x y}(u)$ for all $t, u \geq 0$.

(RCLL) Right continuity and left limits:

For every $\omega \in \Omega$, the sample path $\left\{X_{t}(\omega)\right\}_{t \geq 0}$ is continuous from the right and has left limits. That is, $\lim _{s \downarrow t} X_{s}(\omega)=X_{t}(\omega)$ for all $t \in[0, \infty)$, and $\lim _{s \uparrow t} X_{s}(\omega)$ exists for all $t \in(0, \infty)$.

While conditions (MP) and (TH) are restrictions on the (joint) distributions of $\left\{X_{t}\right\}$, condition (RCLL) is a restriction on the sample paths of $\left\{X_{t}\right\}$.

Processes satisfying the distributional requirements (MP) and (TH) must take this form: there must be an initial distribution $\pi \in \mathbf{R}_{+}^{X}$, a jump rate vector $\lambda \in \mathbf{R}_{+}^{X}$, and a transition matrix $P \in \mathbf{R}_{+}^{X \times X}$ such that
(i) The initial distribution of the process is given by $\mathbb{P}\left(X_{0}=x\right)=\pi_{x}$.
(ii) When the process is in state x, the random time before the next jump is exponentially distributed with rate λ_{x}.
(iii) The state at which a jump from x lands follows the distribution $\left\{P_{x y}\right\}_{y \in X}$. (Note that the landing state can be x itself if $P_{x x}>0$.)
(iv) Times between and landing states of jumps are independent of each other, and are also independent of the past conditional on the current state.
The objects π, λ, and P implicitly define the joint distributions of the random variables $\left\{X_{t}\right\}$, so the Kolmogorov Extension Theorem (Section 10.B.2) tells us that a collection of random variables with these joint distributions exists (i.e., can be defined as functions on some well chosen probability space). However, Kolmogorov's Theorem does not ensure that the random variables so constructed satisfy the sample path continuity property (RCLL).

Fortunately, it is not too difficult to construct the process $\left\{X_{t}\right\}$ explicitly. Let $\left\{Y_{k}\right\}_{k=0}^{\infty}$ be a discrete time Markov chain with initial distribution π and transition matrix P, and let $\left\{T_{k}\right\}_{k=1}^{\infty}$ be a sequence of i.i.d. exponential(1) random variables that are independent of the Markov chain $\left\{Y_{k}\right\}$. (Since both of these collections are countable, questions of sample path continuity do not arise; the existence of these random variables as functions defined on a common probability space is ensured by Kolmogorov's Theorem.)

Define the random jump times $\left\{\tau_{n}\right\}_{n=0}^{\infty}$ by $\tau_{0}=0$ and

$$
\tau_{n}=\sum_{k=1}^{n} \frac{T_{k}}{\lambda_{Y_{k-1}}} \text {, so that } \tau_{n}-\tau_{n-1}=\frac{T_{n}}{\lambda_{Y_{n-1}}} .
$$

Finally, define the process $\left\{X_{t}\right\}_{t \geq 0}$ by

$$
X_{t}=Y_{n} \text { when } t \in\left[\tau_{n}, \tau_{n+1}\right)
$$

The process $\left\{X_{t}\right\}$ begins at some initial state $X_{0}=Y_{0}=y_{0}$. It remains there for the random duration $\tau_{1} \sim \operatorname{exponential}\left(\lambda_{y_{0}}\right)$, at which point a transition to some new state $X_{\tau_{1}}=Y_{1}=y_{1}$ occurs; the process then remains at y_{1} for the random duration $\tau_{2}-\tau_{1} \sim \operatorname{exponential}\left(\lambda_{y_{1}}\right)$, at which point a transition to $X_{\tau_{2}}=Y_{2}=y_{2}$ occurs; and so on. By construction, the sample paths of $\left\{X_{t}\right\}$ are right continuous with left limits, and it is easy to check that the joint distributions of $\left\{X_{t}\right\}$ are the ones we desire.

Example 10.B.4. The Poisson Process. Consider a Markov process $\left\{X_{t}\right\}$ with state space $X=\mathbf{Z}_{+}$, initial condition $X_{0}=0$, jump rates $\lambda_{x}=\lambda>0$ for all $x \in \mathcal{X}$, and transition matrix $P_{x y}=1_{\{y=x+1\}}$ for all $x, y \in \mathcal{X}$. Under this process, jumps arrive randomly at the fixed rate λ, and every jump increases the state by exactly one unit. A Markov process fitting this description is called a Poisson process.

By the definition of this process,
(P1) The waiting times $\tau_{n}-\tau_{n-1}$ are i.i.d. with $\tau_{n}-\tau_{n-1} \sim \operatorname{exponential}(\lambda)$

$$
(n \in\{1,2, \ldots\}) .
$$

In fact, it can be shown that under the sample path continuity condition (RCLL), condition (P1) is equivalent to
(P2) The increments $X_{t_{n}}-X_{t_{n-1}}$ are independent random variables, and $\left(X_{t_{n}}-X_{t_{n-1}}\right) \sim \operatorname{Poisson}\left(\lambda\left(t_{n}-t_{n-1}\right)\right)\left(0<t_{1}<\ldots<t_{n}\right)$.

Proposition 10.A. 3 established part of this result: it showed that if condition (P1) holds, then $X_{t} \sim \operatorname{Poisson}(\lambda t)$ for all $t>0$. But the present result says much more: a "pure birth process" whose waiting times are i.i.d. exponentials is not only Poisson distributed at each time t; in fact, all increments of the process are Poisson distributed, and nonoverlapping increments are stochastically independent. Conversely, if one begins with the assumption that the increments of the process are independent and Poisson, then the waits between jumps must be i.i.d. and exponential. §

10.B. 6 Countable State Markov Processes: Transition Probabilities

The time t transition probabilities of a countable state Markov process can be expressed in an appealingly simple form. To avoid the use of infinite-dimensional matrices, we focus here on the case of a finite state space X; however, versions of the results below also hold when X is countably infinite.

Let $\left\{X_{t}\right\}$ be a Markov process with jump rates $\lambda \in \mathbf{R}_{+}^{X}$ and transition matrix $P \in \mathbf{R}_{+}^{X \times X}$, and define

$$
P_{x y}(t)=\mathbb{P}\left(X_{t}=y \mid X_{0}=x\right),
$$

to be the time t transition probability from state x to state y. (The prevent the notations for the transition matrix P and the time t transition probabilities $P(t)$ from overlapping, we always refer the collection of all of the latter as $\{P(t)\}_{t \geq 0}$.) It is clear that $P(0)=I$, the identity matrix. Note as well that since $\left\{X_{t}\right\}$ is a Markov process, we have that

$$
\begin{aligned}
P_{x y}(s+t) & =\mathbb{P}\left(X_{s+t}=y \mid X_{0}=x\right) \\
& =\sum_{z \in X} \mathbb{P}\left(X_{s}=z \mid X_{0}=x\right) \mathbb{P}\left(X_{s+t}=y \mid X_{s}=z\right) \\
& =\sum_{z \in X} \mathbb{P}\left(X_{s}=z \mid X_{0}=x\right) \mathbb{P}\left(X_{t}=y \mid X_{0}=z\right) .
\end{aligned}
$$

Expressing this result in matrix form, we conclude that the matrix trajectory $\{P(t)\}_{t \geq 0}$ is a semigroup:

$$
\begin{equation*}
P(s+t)=P(s) P(t) \text { for all } s, t \geq 0 \tag{10.9}
\end{equation*}
$$

The key tool for studying the transition probabilities of a Markov process is its generator,

$$
Q=\operatorname{diag}(\lambda)(P-I) \in \mathbf{R}^{X \times X}
$$

Using the fact that the row sums of P are 1, we can express the entries of Q as

$$
Q_{x y}= \begin{cases}\lambda_{x} P_{x y} & \text { if } x \neq y \\ -\lambda_{x} \sum_{y \neq x} P_{x y} & \text { if } x=y\end{cases}
$$

Thus, for $x \neq y, Q_{x y}$ represents the rate of transitions from x to y, while $-Q_{x x}$ represents the total rate of transitions away from x.

To put the generator to work, notice that when $\tau>0$ is small, we have that

$$
P_{x y}(\tau)=\mathbb{P}\left(X_{\tau}=y \mid X_{0}=x\right) \approx \begin{cases}\tau \lambda_{x} P_{x y} & \text { if } x \neq y \\ 1-\tau \lambda_{x} \sum_{z \neq x} P_{x, z} & \text { if } x=y\end{cases}
$$

Expressing this in matrix notation, we obtain

$$
\begin{equation*}
P(\tau) \approx I+\tau Q \tag{10.10}
\end{equation*}
$$

This equation explains why Q is sometimes referred to as the infinitesimal generator of $\left\{X_{t}\right\}$.
Using the semigroup property (10.9) and expression (10.10), we can informally derive an exact expression for the transition probabilities of $\left\{X_{t}\right\}$. If we divide the time interval $[0, t]$ into n subintervals of length $\frac{t}{n}$, then applying (10.9) and (10.10) in turn yields

$$
\begin{equation*}
P(t)=P\left(\frac{t}{n} t\right)^{n} \approx\left(I+\frac{t}{n} Q\right)^{n} . \tag{10.11}
\end{equation*}
$$

Taking n to infinity, the analogy with the scalar formula $\lim _{n \rightarrow \infty}\left(1+\frac{q}{n}\right)^{n}=\mathrm{e}^{q}$ suggests that the right hand side of equation (10.11) should converge to the matrix exponential e^{Qt} (see Appendix 8.B.2). And indeed, one can establish rigorously that the transition probabilities can be expressed as

$$
\begin{equation*}
P(t)=\mathrm{e}^{Q t} \equiv \sum_{k=0}^{\infty} \frac{(Q t)^{k}}{k!} \tag{10.12}
\end{equation*}
$$

There are two ways of expressing (10.12) in differential form. Theorem 8.B. 4 tells us that (10.12) is a solution of the backward equation, which is the matrix differential equation $\dot{P}(t)=Q P(t)$. At the same time, since the matrices Q and $P(t)=\mathrm{e}^{Q t}$ commute, we can rewrite the previous equation as $\dot{P}(t)=P(t) Q$. This is known as the forward equation. The trajectory $P(t)=\mathrm{e}^{Q t}$ is the unique solution to each of these linear differential equations from initial condition $P(0)=I$.

10.B. 7 Kurtz's Theorem in Discrete Time

To obtain a deterministic approximation theorem for discrete time Markov chains, we must assume that the length of a period with respect to clock time becomes vanishingly small as the population size N increases. Let d^{N} be the duration of a period under the Markov chain $\left\{X_{t}^{N}\right\}$, so that this chain is initialized at time 0 and has transitions at times $d^{N}, 2 d^{N}, \ldots$. We can define $\left\{X_{t}^{N}\right\}$ at all times in $[0, \infty)$ by letting $X_{t}^{N}=X_{k d^{N}}^{N}$ when
$t \in\left[k d^{N},(k+1) d^{N}\right)$, making each sample path $\left\{X_{t}^{N}(\omega)\right\}=\left\{X_{t}^{N}(\omega)\right\}_{t \geq 0}$ a step function whose jumps occur at multiples of d^{N}.

Theorem 10.B. 5 (Kurtz's Theorem in Discrete Time). Suppose that $\lim _{N \rightarrow \infty} d^{N}=0$. Define the distributions of the random variables ζ_{x}^{N} by

$$
\mathbb{P}\left(\zeta_{x}^{N}=z\right)=\mathbb{P}\left(X_{(k+1) d^{N}}^{N}=x+z \mid X_{k d^{N}}^{N}=x\right),
$$

and define the functions V^{N}, A^{N}, and A_{δ}^{N} by

$$
V^{N}(x)=\frac{1}{d^{N}} \mathbb{E} \zeta_{x}^{N}, \quad A^{N}(x)=\frac{1}{d^{N}} \mathbb{E}\left|\zeta_{x}^{N}\right|, \text { and } A_{\delta}^{N}(x)=\frac{1}{d^{N}} \mathbb{E}\left|\zeta_{x}^{N} 1_{\left\{\left|\zeta_{x}^{N}\right|>\delta\right\}}\right| \text {. }
$$

Then the conclusions of Theorem 10.2.1 hold for the sequence of Markov chains $\left\{\left\{X_{t}^{N}\right\}\right\}_{N=N_{0}}^{\infty}$.

10.N Notes

Section 10.2. Kurtz's Theorem first appeared in Kurtz (1970). For an advanced textbook treatment and further references, see Ethier and Kurtz (1986, Chapter 11).

The first formal results in the game theory literature akin to Theorem 10.2.3 focus on specific revision protocols. Boylan (1995) shows how evolutionary processes based on random matching schemes converge to deterministic trajectories when the population size grows large. Binmore et al. (1995), Börgers and Sarin (1997), and Schlag (1998) consider particular models of evolution that converge to the replicator dynamic. Binmore and Samuelson (1999) prove a general deterministic approximation result for discrete time models of evolution under a somewhat restrictive timing assumption. Sandholm (2003) uses Kurtz's Theorem to prove a general finite horizon convergence result. This paper also shows that after spatial normalization, the behavior of $\left\{X_{t}^{N}\right\}$ near rest points of the mean dynamic can be approximated by a diffusion. The strongest deterministic approximation results can be found in Benaïm and Weibull $(2003,2008)$. These authors establish an exponential bound on the probability of deviations of $\left\{X_{t}^{N}\right\}$ from solutions of the mean dynamic. They also establish results relating the infinite horizon behavior of $\left\{X_{t}^{N}\right\}$ to the mean dynamic; we introduce these results in Chapter 11.

While the results described above rely on the assumption that the mean dynamic is Lipschitz continuous, we conjecture that that analogous results can be established in more general settings-in particular, when the mean dynamic is not a differential equation at all, but rather a differential inclusion. For related results in a somewhat different context, see Benaïm et al. (2005).

While we have focused here on the evolution of the distribution of behavior, Tanabe (2006), building on work of Tanaka (1983) and Shiga and Tanaka (1985), proves results about the evolution of the strategy profile: i.e., about the joint distribution of individual agents' choice trajectories. Suppose that at time 0 , the N agents' choices of strategies from S are i.i.d. Then as N grows large, each agent's random choice trajectory converges in distribution to v, the distribution of a certain time-inhomogeneous Markov process-a so-called McKean process-taking values in S. Furthermore, the joint distribution of any k individuals' choice trajectories converges to the k-fold product of the measure v. This means that the independence of the k individuals' choices at time 0 persists over any finite time span, a phenomenon sometimes called propagation of chaos. One can further show that the empirical distribution of the N agents' choice trajectories also converges to the measure v. (Since v is the (limiting) distribution of each individual's stochastic choice trajectory, this result is a generalization of the Glivenko-Cantelli Theorem (see Durrett (2005)).) Now the time t marginal of this empirical distribution is none other than our state variable X_{t}^{N}, so Theorem 10.2.3 tells us that the collection of time t marginals of v is none other than the solution to our mean dynamic (M). For an overview of the mathematical literature relevant to this discussion, see Sznitman (1991).

Appendices 10.A and 10.B. Billingsley (1995) and Durrett (2005) are excellent graduate level probability texts. The former book provides more thorough coverage of the topics considered in this chapter, and contains an especially clear treatment of the Poisson process. Norris (1997), Brémaud (1999), and Stroock (2005) are all excellent books on Markov chains and Markov processes. The first of these is at an undergraduate level, the last at a graduate level, and the middle one somewhere in between. Section 10.B. 7 follows Kurtz (1970).

Stationary Distributions and Infinite Horizon Behavior

11.0 Introduction

The main result of Chapter 10 showed that over finite time spans, when the population size is sufficiently large, the stochastic evolutionary process $\left\{X_{t}^{N}\right\}$ follows a nearly deterministic path, closely shadowing a solution trajectory of the corresponding mean dynamic (M). But if we look at longer time spans-that is, if we fix the population size of interest and consider the position of the process at large values of t-the random nature of the process must assert itself. In particular, if the revision protocol always assigns positive probabilities to transitions to all neighboring states in X^{N} are always possible, then $\left\{X_{t}^{N}\right\}$ will visit all states in X^{N} infinitely often. Clearly, an infinite horizon approximation theorem along the lines of Theorem 10.2.3 cannot hold.

To make predictions about play over very long time spans, we need new techniques for characterizing infinite horizon behavior. While in the finite horizon context the basic object of study is the ordinary differential equation (M), in the infinite horizon context it is the stationary distribution μ^{N} of the Markov process $\left\{X_{t}^{N}\right\}$. The stationary distribution is defined by the property that a process $\left\{X_{t}^{N}\right\}$ run from this distribution will remain in it indefinitely. But if $\left\{X_{t}^{N}\right\}$ is generated by a full support revision protocol, then the stationary distribution describes the infinite horizon behavior of $\left\{X_{t}^{N}\right\}$ regardless of the initial distribution of the process. In principle, this fact allows us to use the stationary distribution to form predictions about very long run behavior that do not require knowledge of initial behavior. This contrasts sharply with predictions based on deterministic dynamics, which typically depend on the initial state.

In Section 11.1, we introduce full support revision protocols-protocols ensuring that all
transition to neighboring states are possible—and the linked notion of irreducibility for the stochastic evolutionary process $\left\{X_{t}^{N}\right\}$. We then define the stationary distribution of this process, and review the results from probability theory linking this distribution to the infinite-horizon behavior of the process. For readers seeking additional probabilistic background, Appendix 11.A offers a detailed presentation on long run behavior of Markov chains and processes.

The remainder of the chapter focuses on settings in which the stationary distribution of $\left\{X_{t}^{N}\right\}$ can be expressed in simple, explicit formulas: two-strategy games (Section 11.2), and potential games with agents following the logit choice rule (Section 11.4). To obtain clean results in the latter case, we must slightly alter our definitions of games and revision protocols to account for finite-population effects; these alterations, which we also rely on in the next chapter, are presented in Section 11.3.

While the stationary distribution offers a history-independent prediction of infinitehorizon behavior, this prediction may be rather diffuse, placing significant weight on many population states. But by considering extreme parameter values-by taking a noise parameter to zero, or the population size to infinity-we can often ensure that the stationary distribution places most of its weight near a single population state. Such states, referred to as stochatically stable, provide us with a prediction behavior is not only unique, but also tight. Moreover, this limiting analysis is often tractable when computations of the stationary distribution for fixed parameter values are not. Since this analysis is based on its own distinct techniques, we defer our presentation of stochastic stability theory until Chapter ??.

Before proceeding, we should raise a broad critique of the analyses employed in this chapter and the next. The unique predictions provided by stationary distributions are only interesting if the time span of interest in the application at hand is long enough for these predictions to be relevant. In settings where deterministic analyses offer multiple predictions, the time spans necessary for infinite-horizon predictions to be of use are quite long. This is all the more true if the noise level in agents' decisions is very small, or if the population size is very large, as assumed in analyses of stochastic stability. As a general rule, deterministic dynamics, and the multiplicity of equilibria they typically entail, should be the starting point for prediction in most applications involving large numbers of agents. To the extent that they offer more refined predictions, stationary distributions and stochastic stability should only be used when modeling interactions of exceptional durability.

11.1 Irreducibile Evolutionary Processes

11.1.1 Full Support Revision Protocols

Let us briefly review the construction of the stochastic evolutionary process $\left\{X_{t}^{N}\right\}$ presented in Section 10.1, again focusing on the single-population setting. A population of N agents recurrently plays the population game $F: X \rightarrow \mathbf{R}^{n}$. The agents are equipped with independent rate R Poisson alarm clocks, and employ the revision protocol ρ : $\mathbf{R}^{n} \times X \rightarrow \mathbf{R}_{+}^{n \times n}$. When an i player's clock rings, he switches to strategy $j \neq i$ with probability $\rho_{i j}(F(x), x) / R$.

This model defines a Markov process $\left\{X_{t}^{N}\right\}$ on the discrete state space $X^{N}=X \cap \frac{1}{N} \mathbf{Z}^{n}=$ $\left\{x \in X: N x \in \mathbf{Z}^{n}\right\}$. The process is characterized by the common jump rate $\lambda_{x}^{N} \equiv N R$ and the transition probabilities

$$
P_{x y}= \begin{cases}\frac{x_{i} \rho_{i j}(F(x), x)}{R} & \text { if } y=x+\frac{1}{N}\left(e_{j}-e_{i}\right), j \neq i, \tag{11.1}\\ 1-\sum_{i \in S} \sum_{j \neq i} \frac{x_{i} p_{i j}(F(x), x)}{R} & \text { if } y=x, \\ 0 & \text { otherwise. }\end{cases}
$$

To ensure that transition probabilities are well-defined, we assume that the clock rate R is an upper bound on the row sums of the revision protocol ρ (see equation (10.1)). To introduce the possibility of unique infinite-horizon predictions, we now assume in addition that the conditional switch rates are bounded away from zero: there is a positive constant \underline{R} such that

$$
\begin{equation*}
\rho_{i j}(F(x), x) \geq \underline{R} \text { for all } i, j \in S \text { and } x \in X . \tag{11.2}
\end{equation*}
$$

We refer to a revision protocol that satisfies condition (11.2) as having full support.
Example 11.1.1. Logit choice. Of the revision protocols underlying the six basic dynamics studied in Chapters 5 and 6, the only one satisfying the full support condition (11.2) is the logit choice protocol with noise level $\eta>0$, defined by

$$
\rho_{i j}(\pi, x)=\frac{\exp \left(\eta^{-1} \pi_{j}\right)}{\sum_{k \in S} \exp \left(\eta^{-1} \pi_{k}\right)} . \S
$$

In Section 6.2, we derived the logit choice protocol from the assumption that agents play optimally in response to perturbed payoffs. As an alternative one can perturb the
choice probabilities directly, using a modeling device is known as mutation.
Example 11.1.2. Best response with mutations. Under best response with mutations at mutation rate $\eta>0$, called $B R M(\eta)$ for short, a revising agent switches to his current best response with probability $1-\eta$, but chooses a strategy uniformly at random (or mutates) with probability $\eta>0$.

To complete the specification of the protocol, one must specify what happens when there are multiple optimal strategies. A common setup has agents stick with their current strategy if it is optimal, and choose at random among the optimal strategies otherwise. §

As the parameter η approaches zero, both the $\operatorname{logit}(\eta)$ and $\operatorname{BRM}(\eta)$ protocols come to resemble the exact best response protocol, the protocol underlying the deterministic best response dynamic (Section 6.1). But this similarity masks a fundamental qualitative difference between the two protocols. Under best response with mutations, the probability of choosing a particular suboptimal strategy is independent of the payoff consequences of doing so: mutations do not favor alternative strategies with higher payoffs over those with lower payoffs. In contrast, since the logit protocol is defined using payoff perturbations that are symmetric across strategies, more costly "mistakes" are less likely to be made.

The probabilities of suboptimal choices under both of these protocols are small when η is small, and one might expect the precise specification of these probabilities to be of little consequence. If our interest is in finite-horizon behavior, so that the mean dynamic (M) forms the basis for our predictions, this impression is largely correct (see, for instance, Theorem 9.B.5). But as we shall see in Section 11.2.3 and throughout Chapter ??, predictions of infinite horizon behavior hinge on the relative probabilities of rare events, so that seemingly insignificant differences in choice probabilities can lead to entirely different predictions of behavior.

While mutations are commonly employed in combination with a best response rule, they are an equally natural complement to imitative rules.

Example 11.1.3. Imitation of success with mutations. The revision protocol

$$
\rho_{i j}(\pi, x)=x_{j}\left(\pi_{j}-K\right)+\frac{1}{n} \eta
$$

supplements imitation of success (Example 4.2.3) with mutations that occur with probability η. When modeling with this protocol, it is convenient to choose K to be strictly smaller than any feasible payoff, so that switch rates to all strategies currently in use are positive even in the absence of mutations-see Section ??. §

Exercise 11.1.4. Compute the mean dynamics corresponding to the protocols from the previous two examples. (For the BRM protocol, focus on states at which the best response is unique.) \ddagger

11.1.2 Stationary Distributions and Infinite Horizon Behavior

The full support assumption (11.2) ensures that at each revision opportunity, every strategy in S has a positive probability of being chosen by the revising agent. Therefore, there is a positive probability that the process $\left\{X_{t}^{N}\right\}$ will transit from any given current state x to any other given state y within a finite number of periods. A Markov process with this property is said to be irreducible.

Below we summarize some basic results on the infinite-horizon behavior of irreducible Markov processes. These results provide the foundation for all of our subsequent analyses. A detailed presentation of the relevant theory is offered in Appendix 11.A.

Suppose that $\left\{X_{t}\right\}_{t \geq 0}$ is an irreducible Markov process on the finite state space X, where the process has equal jump rates $\lambda_{x} \equiv l$ and transition matrix P. Theorem 11.A. 11 shows that there is a unique probability vector $\mu \in \mathbf{R}_{+}^{X}$ satisfying

$$
\begin{equation*}
\sum_{x \in X} \mu_{x} P_{x y}=\mu_{y} \text { for all } y \in \mathcal{X} \tag{11.3}
\end{equation*}
$$

The vector μ is called the stationary distribution of the process $\left\{X_{t}\right\}$. Equation (11.3) tells us that if we run the process $\left\{X_{t}\right\}$ from initial distribution μ, then at the random time of the first jump, the distribution of the process is also μ. Moreover, if we use the notation $\mathbb{P}_{\pi}(\cdot)$ to represent $\left\{X_{t}\right\}$ being run from initial distribution π, then equation (11.25) shows that

$$
\begin{equation*}
\mathbb{P}_{\mu}\left(X_{t}=x\right)=\mu_{x} \text { for all } x \in X \text { and } t \geq 0 \tag{11.4}
\end{equation*}
$$

In other words, if the process starts off in its stationary distribution, it remains in this distribution at all subsequent times t.

While equation (11.4) tells us what happens if $\left\{X_{t}\right\}$ starts off in its stationary distribution, our main interest is in what happens to this process in the very long run if it starts in an arbitrary initial distribution π. Theorem 11.A. 12 shows that as t grows large, the time t distribution of $\left\{X_{t}\right\}$ converges to μ :

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathbb{P}_{\pi}\left(X_{t}=x\right)=\mu_{x} \text { for all } x \in X \tag{11.5}
\end{equation*}
$$

Thus, looking at the process $\left\{X_{t}\right\}$ from the ex ante point of view, the probable locations of
the process at sufficiently distant future times are essentially determined by μ.
To describe long run behavior from an ex post point of view, we need to consider the behavior of the process's sample paths. Here again, the stationary distribution plays the central role. Theorem 11.A. 15 states that along almost every sample path, the proportion of time spent at each state in the long run is described by μ :

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathbb{P}_{\pi}\left(\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} 1_{\left\{X_{s}=x\right\}} \mathrm{d} s\right)=\mu_{x} \text { for all } x \in X \tag{11.6}
\end{equation*}
$$

We can also summarize equation (11.6) by saying that the limiting empirical distribution of $\left\{X_{t}\right\}$ is almost surely equal to μ.

In applying equations (11.5) and (11.6), one should be careful to bear in mind that the information they provide concern the limiting behavior of the stochastic process. As we noted above, evolutionary analyses that select among multiple stable equilibria turn on the relative probabilities of rare transitions between these equilibria. If "mistake" probabilities are small, or if the population size is large (so that many "mistakes" are needed for a transition to occur), then the time required before the stationary distribution becomes a useful for predictions will be extremely large. In these cases, a finite horizon analysis via the mean dynamic (M) is often preferable. See Appendix 11.A. 7 for formal results on rates of convergence for Markov chains, and see the Notes for references to work on waiting times from the literature on stochastic evolution.

11.1.3 Reversibility

In general, computing the stationary distribution of a Markov process means finding an eigenvector of a matrix, a task that is computationally daunting unless the state space, and hence the dimension of the matrix, is small. But there is a special class of Markov processes whose stationary distributions are easy to compute. A constant jump rate Markov process $\left\{X_{t}\right\}$ is said to be reversible if admits a reversible distribution: a probability distribution μ on X that satisfies the detailed balance conditions:

$$
\begin{equation*}
\mu_{x} P_{x y}=\mu_{y} P_{y x} \text { for all } x, y \in \mathcal{X} . \tag{11.7}
\end{equation*}
$$

A process satisfying this condition is called reversible because it "looks the same" whether time is run forward or backward; see Appendix 11.A. 4 for a discussion. Since summing the equality in (11.7) over x yields condition (11.3), a reversible distribution is also a stationary distribution.

While in general reversible Markov processes are rather special, in the present context
there are two classes of examples that fit this description. First, if the agents are playing a two-strategy game, so that the state space X^{N} is linearly ordered, then $\left\{X_{t}^{N}\right\}$ is reversible. Second, if agents play a potential game using the logit choice rule, then $\left\{X_{t}^{N}\right\}$ is again reversible. These two situations are studied in Sections 11.2 and 11.4, respectively. The latter case requires some adjustments to our basic model that account for finite population effects. These adjustments, which will also be useful in the next chapter, are handled in Section 11.3.

11.2 Stationary Distributions for Two-Strategy Games

When the population plays a game with just two strategies, the state space X^{N} is a grid in the simplex in \mathbf{R}^{2}, and so is linearly ordered. In this case, regardless of the (full support) revision protocol the agents employ, we can compute the stationary distribution of the process $\left\{X_{t}^{N}\right\}$ explicitly. After deriving this distribution in Theorem 11.2.3, we apply it to a few examples, providing a preview of the equilibrium selection results that are the focus of Chapter ??.

Let $F: X \rightarrow \mathbf{R}^{2}$ be a two strategy game with strategy set $S=\{0,1\}$, let $\rho: \mathbf{R}^{2} \times X \rightarrow \mathbf{R}^{2 \times 2}$ be a full support revision protocol, and let N be a finite population size. As we saw in Section 11.1, these objects define a Markov process $\left\{X_{t}^{N}\right\}$ on the state space X^{N}.

While population states in this game are elements of $X=\left\{x \in \mathbf{R}_{+}^{2}: x_{0}+x_{1}=1\right\}$, the simplex in \mathbf{R}^{2}, it is convenient to identify state x with the weight $\chi \equiv x_{1}$ that it places on strategy 1. Under this notational device, the state space of the Markov process $\left\{X_{t}^{N}\right\}$ becomes $X^{N}=\left\{0, \frac{1}{N}, \ldots, 1\right\}$, a uniformly-spaced grid in the unit interval. We will also write $F(\chi)$ for $F(x)$ and $\rho(\pi, \chi)$ for $\rho(\pi, x)$ whenever it is convenient to do so.

11.2.1 Birth and Death Processes

Because agents in our model switch strategies sequentially, transitions of the process $\left\{X_{t}^{N}\right\}$ are always between adjacent states. Since in addition states are linearly ordered, $\left\{X_{t}^{N}\right\}$ falls into a class of Markov processes called birth and death processes. These processes are quite amenable to explicit calculations, as we now illustrate by deriving a simple expression for the stationary distribution μ^{N}.

A constant jump rate Markov process $\left\{X_{t}^{N}\right\}$ on the state space $X^{N}=\left\{0, \frac{1}{N}, \ldots, 1\right\}$ is a birth and death process if the only positive probability transitions move one step to the right, move one step to the left, or remain still. This implies that there are vectors $p, q \in \mathbf{R}^{\chi}$ with
$p_{1}=q_{0}=0$ such that the transition matrix of $\left\{X_{t}^{N}\right\}$ takes the form

$$
P_{\chi y} \equiv \begin{cases}p_{\chi} & \text { if } y=x+\frac{1}{N} \\ q_{\chi} & \text { if } y=x-\frac{1}{N} \\ 1-p_{\chi}-q_{\chi} & \text { if } y=\chi \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, the process $\left\{X_{t}^{N}\right\}$ is irreducible if $p_{\chi}>0$ for $\chi<1$ and $q_{\chi}>0$ for $\chi>0$, as we henceforth assume.

Because of their simple transition structure, birth and death chains are reversible. For the transition matrix above, the reversibility conditions (11.7) reduce to

$$
\mu_{\chi}^{N} q_{\chi}=\mu_{\chi-1 / N}^{N} p_{\chi-1 / N} \text { for } x \in\left\{\frac{1}{N}, \ldots, N\right\} .
$$

Applying this formula inductively, we find that the stationary distribution of $\left\{X_{t}^{N}\right\}$ satisfies

$$
\begin{equation*}
\mu_{\chi}^{N}=\left(\prod_{j=1}^{N \chi} \frac{p_{(j-1) / N}}{q_{j / N}}\right) \mu_{0} \text { for } \chi \in\left\{\frac{1}{N}, \ldots, N\right\} . \tag{11.8}
\end{equation*}
$$

Since the weights in μ^{N} must sum to one, we can compute μ_{0} as

$$
\begin{equation*}
\mu_{0}^{N}=\left(1+\sum_{i=1}^{N} \prod_{j=1}^{i} \frac{p_{(j-1) / N}}{q_{j / N}}\right)^{-1} . \tag{11.9}
\end{equation*}
$$

Example 11.2.1. Toss and switch revisited. In Example 10.2.4, we considered a population of size N whose members are equipped with rate 1 Poisson alarm clocks. Each agent responds to the ringing his clock by flipping a fair coin, switching strategies if the coin comes up Heads. The resulting Markov process $\left\{X_{t}^{N}\right\}$ is irreducible, with constant jump rate $\lambda_{\chi} \equiv N$ and positive transition probabilities $p_{\chi}=\frac{1}{2}(1-\chi)$ and $q_{\chi}=\frac{1}{2} \chi$.

In Example 10.2.4, we showed that the mean dynamic of this process is $\dot{\chi}=\frac{1}{2}-\chi$. Solutions of this dynamic are of the form $x_{t}=\frac{1}{2}+\left(\chi_{0}-\frac{1}{2}\right) \mathrm{e}^{-t}$, so the dynamic is an exponential contraction toward the central state $\chi^{*}=\frac{1}{2}$. Now suppose we fix a time horizon $T<\infty$ and an error bound $\varepsilon>0$. Then Theorem 10.2.3 tells us that if the population size N is large enough, the value of the random variable X_{t}^{N} will stay within ε of $\chi_{t}=\frac{1}{2}+\left(\chi_{0}-\frac{1}{2}\right) \mathrm{e}^{-t}$ for all times t in the interval $[0, T]$ with probability at least $1-\varepsilon$ (see Figure 10.2.1).

Figure 11.2.1: Mean dynamics and stationary distributions for Toss and Switch.

Now suppose instead that we fix the population size N and consider the behavior of the process $\left\{X_{t}^{N}\right\}$ over a very long time horizon. As discussed in Section 11.1.2, the limiting distribution and the limiting empirical distribution of $\left\{X_{t}^{N}\right\}$ are given by its stationary distribution μ^{N}. Using formulas (11.8) and (11.9), it is easy to show that this distribution is given by

$$
\mu_{\chi}^{N}=\frac{1}{2^{N}}\binom{N}{N \chi} \text { for all } \chi \in X^{N}=\left\{0, \frac{1}{N}, \ldots, 1\right\}
$$

In words, μ^{N} describes a binomial distribution with parameters N and $\frac{1}{2}$, but with outcomes (in X^{N}) representing the proportion rather than the number of successful trials.

If N is not small, the Central Limit Theorem tells us that μ^{N} is approximately normal with mean $\frac{1}{2}$ and variance $\frac{1}{4 N}$. Figure 11.2 .1 illustrates μ^{N} for population sizes $N=100$ and $N=10,000$. If the population is not too small and if enough time has passed, all states in X^{N} will have been visited many times, but the vast majority of periods will have been spent at states where the two strategies are used in nearly proportions. §

Exercise 11.2.2. (i) Suppose that in the previous example, revising agents flip a coin that comes up Heads with probability $h \in(0,1)$, switching strategies when Heads occurs. What are the mean dynamic of $\left\{X_{t}^{N}\right\}$ and the stationary distribution of $\left\{X_{t}^{N}\right\}$ in this case?
(ii) Now suppose that revising agents flip a coin that comes up Heads with probability $h \in(0,1)$, choosing strategy 1 when Heads occurs and strategy 0 otherwise. What are the mean dynamic of $\left\{X_{t}^{N}\right\}$ and the stationary distribution of $\left\{X_{t}^{N}\right\}$ now? \ddagger

11.2.2 The Stationary Distribution of the Evolutionary Process

Let us now use formulas (11.8) and (11.9) to compute the stationary distribution of our stochastic evolutionary process, maintaining the assumption that the process is generated by a full support revision protocol. Referring back to Section 11.1, we find that the process $\left\{X_{t}^{N}\right\}$ has constant jump rates $\lambda_{\chi}=N R$, and that its upward and downward transition probabilities are given by

$$
\begin{align*}
& p_{\chi}=(1-\chi) \cdot \frac{1}{R} \rho_{01}(F(\chi), \chi) \text { and } \tag{11.10}\\
& q_{\chi}=\chi \cdot \frac{1}{R} \rho_{10}(F(\chi), \chi) . \tag{11.11}
\end{align*}
$$

Substituting formulas (11.10) and (11.11) into equation (11.8), we see that for $\chi \in\left\{\frac{1}{N}, \frac{2}{N}, \ldots, 1\right\}$, we have

$$
\mu_{\chi}^{N}=\left(\prod_{j=1}^{N \chi} \frac{p_{(j-1) / N}}{q_{j / N}}\right) \mu_{0}^{N}=\left(\prod_{j=1}^{N \chi} \frac{\left(1-\frac{j-1}{N}\right)}{\frac{j}{N}} \cdot \frac{\frac{1}{R} \rho_{01}\left(F\left(\frac{j-1}{N}\right), \frac{j-1}{N}\right)}{\frac{1}{R} \rho_{10}\left(F\left(\frac{j}{N}\right), \frac{j}{N}\right)}\right) \mu_{0}^{N} .
$$

Simplifying this expression and introducing equation (11.9) yields the following result.
Theorem 11.2.3. Suppose that a population of N agents plays the two-strategy game F using the full support revision protocol ρ. Then the stationary distribution for the evolutionary process $\left\{X_{t}^{N}\right\}$ on X^{N} is

$$
\begin{align*}
& \mu_{\chi}^{N}=\left(\prod_{j=1}^{N \chi} \frac{(N-j+1)}{j} \cdot \frac{\rho_{01}\left(F\left(\frac{j-1}{N}\right), \frac{j-1}{N}\right)}{\rho_{10}\left(F\left(\frac{j}{N}\right), \frac{j}{N}\right)}\right) \mu_{0}^{N} \text { for } \chi \in\left\{\frac{1}{N}, \frac{2}{N}, \ldots, 1\right\}, \tag{11.12}\\
& \mu_{0}^{N}=\left(1+\sum_{i=1}^{N} \prod_{j=1}^{i} \frac{(N-j+1)}{j} \cdot \frac{\rho_{01}\left(F\left(\frac{j-1}{N}\right), \frac{j-1}{N}\right)}{\rho_{10}\left(F\left(\frac{j}{N}\right), \frac{j}{N}\right)}\right)^{-1} . \tag{11.13}
\end{align*}
$$

11.2.3 Examples

A fundamental idea of stochastic stability analysis is that in a typical coordination game, under most full support revision protocols, at either low noise levels or large population sizes, the stationary distribution of $\left\{X_{t}^{N}\right\}$ will place most of its mass in the vicinity of a single equilibrium, selecting this equilibrium as the unique prediction of infinite horizon behavior. We now illustrate this idea by computing some stationary distributions for two-strategy coordination games under the BRM and logit rules. In all cases, we find that these distributions place most of their weight near a single equilibrium. But we also find that the two rules need not select the same equilibrium.

Example 11.2.4. Stag Hunt. The following symmetric normal form game is known as Stag Hunt:

$$
A=\left(\begin{array}{ll}
h & h \\
0 & s
\end{array}\right)\binom{x_{H}}{x_{S}}
$$

We assume that $s>h>0$, so that both pure strategies constitute symmetric Nash equilibria. By way of interpretation, we imagine that each agent in a match must decide whether to hunt for hare or for stag. Hunting for hare ensures a payoff of h regardless of the match partner's choice; hunting for stag can generate a payoff of s if the opponent does the same, but results in a zero payoff otherwise. Since $s>h$, coordinating on Stag yields higher

(i) best response with mutations $(\eta=.025)$

(ii) $\operatorname{logit}(\eta=.25)$

Figure 11.2.2: Stationary distribution weights μ_{χ} for Stag Hunt $(h=2, s=3, N=100)$.
payoffs than coordinating on Hare. At the same time, the payoff to Hare is certain, while the payoff to Stag depends on the choice of one's partner in the match.

Now suppose that a population of agents is repeatedly randomly matched to play game A. If we let χ denote the proportion of agents playing Stag, then with our usual abuse of notation, the payoffs in the resulting population game are $F_{H}(\chi)=h$ and $F_{S}(\chi)=s \chi$. This population game has three Nash equilibria: the two pure equilibria, and the mixed equilibrium $\chi^{*}=\frac{h}{s}$. We henceforth suppose that $h=2$ and $s=3$, so that the mixed equilibrium places mass $\chi^{*}=\frac{2}{3}$ on Stag.

Suppose that agents follow the best response with mutations protocol, with mutation rate $\eta=.10$. The resulting mean dynamic,

$$
\dot{x}= \begin{cases}\frac{\eta}{2}-\chi & \text { if } x<\frac{2}{3} \\ \left(1-\frac{\eta}{2}\right)-\chi & \text { if } x>\frac{2}{3}\end{cases}
$$

has stable rest points at $\chi=.05$ and $\chi=.95$. The basins of attraction of these rest points meet at the mixed equilibrium $\mathcal{X}^{*}=\frac{2}{3}$. Note that the rest point that approximates the all-Hare equilibrium has the larger basin of attraction.

In Figure 11.2.2(i), we present this mean dynamic underneath the stationary distribution μ^{N} for $N=100$. While the mean dynamic has two stable equilibria, nearly all of the mass in the stationary distribution is concentrated at states where between 88 and 100 agents choose Hare, this despite the fact that all-Hare equilibrium is inefficient.

Suppose instead that agents use the logit rule with noise level $\eta=.25$. The mean dynamic is then the logit dynamic,

$$
\dot{x}=\frac{\exp \left(3 x \eta^{-1}\right)}{\exp \left(2 \eta^{-1}\right)+\exp \left(3 \chi \eta^{-1}\right)}-\chi
$$

which has stable rest points at $\chi=.0003$ and $\chi=.9762$, and an unstable rest point at $\chi=.7650$. In this case, the basin of attraction of the rest point near the all-Hare state is larger still. Examining the stationary distribution in Figure 11.2.2(ii), we see that virtually all of the mass in the stationary distribution is on states where either 99 or 100 agents choose Hare, in rough agreement with the result for the BRM(.10) rule. §

The reason that the mass in the stationary distribution becomes concentrated around just one equilibrium can be explained in the following way. In general, the stochastic evolutionary process tends to move in the direction indicated by the mean dynamic. If the process begins in the basin of attraction of a rest point or other attractor of this dynamic, its initial evolution is typically toward that attractor. Nevertheless, since the process
is irreducible, the process ultimately but visit and then depart from every equilibrium infinitely often. What matters, then, is the relative difficulties of these rare but inevitable transitions between equilibria.

In the examples above, it the transitions from the Stag rest point to the Hare rest point and from the Hare rest point to the Stag rest point are both very unlikely events. But for purposes of determining the stationary distribution, what matters is that in relative terms, the former transitions are much more likely than the latter. This enables us to conclude that over very long time spans, the evolutionary process will spend most periods at states where most agents play Hare.

Example 11.2.5. A nonlinear Stag Hunt. Next we consider a Stag Hunt game with nonlinear payoffs. With our usual abuse of notation, we define payoffs in this game by $F_{H}(\chi)=h$ and $F_{S}(\chi)=s \chi^{2}$, where χ again represents the proportion of agents playing Stag. The population game F has three Nash equilibria: the pure equilibria $\chi=0$ and $\chi=1$, and the mixed equilibrium $\chi^{*}=\sqrt{h / s}$. We focus on the case in which $h=2$ and $s=7$, so that $\chi^{*}=\sqrt{2 / 7} \approx .5345$.

Suppose that agents play this game using the BRM(.10) rule. In Figure 11.2.3(i) we present resulting the mean dynamic, as well as the stationary distribution $\mu^{1} 00$. The mean dynamic has rest points at $\chi=.05, \chi=.95$, and $\chi^{*} \approx .5345$, so the rest point near the inefficient all-Hare state again has the larger basin of attraction. As in the previous example, the stationary distribution under the BRM(.10) rule places nearly all of its mass on states where at least 88 agents choose Hare.

Figure 11.2.3(ii) presents the mean dynamic and the stationary distribution μ^{100} for the $\operatorname{logit}(.25)$ rule. The rest points of the logit (η) dynamic are $\chi=.0003, \chi=1$, and $\chi=.5398$, so the rest point near all-Hare once again has the larger basin of attraction. Nevertheless, the stationary distribution μ^{100} places virtually all of its mass on the state in which all 100 agents choose Stag.

To summarize, our prediction for very long run behavior under the $\operatorname{BRM}(.10)$ rule is inefficient coordination on Hare, while our prediction under the logit(.25) rule is efficient coordination on Stag. §

For the intuition behind this example, recall the basic difference between the logit and BRM protocols discussed in Section 11.1.1: under logit choice, the probability of a "mistake" depends on its payoff consequences, while under BRM, it does not. As we shall see in Chapter ??, the latter observation implies that under BRM, the probabilities of escaping from the basins of attraction of stable equilibria, and hence the identities of the stochastically stable states, depend only on the size and the shapes of the basins.

Figure 11.2.3: Stationary distribution weights μ_{χ} for a nonlinear Stag Hunt $(h=2, s=7, N=100)$.

On the contrary, the probability of escaping a stable equilibrium under logit choice depends not only on the size of its basin, but also on the payoff differences that must be overcome during the journey. In the nonlinear Stag Hunt game, the basin of the (almost) all-Stag equilibrium is smaller than that of the all-Hare equilibrium. But because the payoff advantage of Stag over Hare in the former's basin tends to be much larger than the payoff advantage of Hare over Stag in the latter's, it is more difficult for the population to escape the all-Stag equilibrium than the all-Hare equilibrium.

We can compare the process of escaping from the basin of a stable rest point to an attempt to swim upstream. Under BRM, the stream is steady, so the difficulty of a given excursion is proportional to distance. Under logit choice, the strength of the stream is variable, so the difficulty of an excursion depends on how this strength varies over the distance travelled.

Our conclusions about equilibrium selection in the previous examples were somewhat informal in nature. For instance, our conclusion that the BRM(.05) rule selects the allHare equilibrium in the nonlinear Stag Hunt game was based on Figure 11.2.3(i), which shows most of the mass in the stationary distribution accreting on the left side of the picture. In pursuing stochastic stability analysis in Chapter ??, we obtain crisper results by taking limiting values of parameters-taking the noise level to zero, or the population size to infinity-ensuring that at least in many simple cases, all of the mass in the limiting stationary distribution will approach a single point.

11.3 Model Adjustments for Finite Populations

This chapter is the first to focus directly on behavior in populations of a finite size N, without taking N to infinity. This means that individual agents are no longer negligible: a change in strategy by a single agent alters the population state.

In this section, we modify our earlier definitions of games and revision protocols in order to account for finite population effects. For some purposes, these changes are a matter of convenience: by having each agent account for his own presence in the population, some results that would otherwise require the assumption of a large enough population size instead hold for any population size. In other cases-most notably, that of logit evolution in potential games, the topic of Section 11.4-these modifications are needed for the analysis to be tractable. Still, there is a sense in which this section is less concerned with introducing important new concepts than with accurate bookkeeping, leading us to push many of the details into examples and exercises.

11.3.1 Finite-Population Games

When there are N agents in the population choosing strategies from the set $S=$ $\{1, \ldots, n\}$, the population state is an element of the set $X^{N}=\left\{x \in X: N x \in \mathbf{Z}^{n}\right\}$, a uniform grid in the simplex in \mathbf{R}^{n}. We can therefore identify an N agent finite-population game with its payoff function $F^{N}: X^{N} \rightarrow \mathbf{R}^{n}$, where as usual, $F_{i}^{N}(x) \in \mathbf{R}$ is the payoff to strategy i when the population state is $x \in X^{N}$. Notice that only the values that F_{i}^{N} takes on the set $X_{i}^{N}=\left\{x \in X^{N}: x_{i}>0\right\}$ are of consequence, since at the remaining states strategy i is unplayed.

Example 11.3.1. Random matching without self-matching. In Example 2.2.1, we defined the population game F generated by random matching in the symmetric normal form game $A \in \mathbf{R}^{n \times n}$ by $F_{i}(x)=\sum_{j \in S} A_{i j} x_{j}=(A x)_{i}$, so that $F(x)=A x$. When agents are infinitesimal, this is the only definition that makes sense. But when there are only a finite number of agents, this definition implicitly assumes that agents can be matched against themselves. To specify payoffs without self-matching, observe that when the population state is x, each strategy i player faces $N x_{j}$ opponents playing strategy $j \neq i$, but only $N x_{i}-1$ opponents playing strategy i, making the effective population state $\frac{1}{N-1}\left(N x-e_{i}\right)$. The expected payoff to a strategy i player at population state x is therefore

$$
\begin{equation*}
\left.F_{i}^{N}(x)=\frac{1}{N-1}\left(A\left(N x-e_{i}\right)\right)_{i}=(A x)_{i}+\frac{1}{N-1}\left((A x)_{i}-A_{i i}\right)\right) . \S \tag{11.14}
\end{equation*}
$$

To be able to say that a continuous-population game is close to a large finite-population game, we require a notion of convergence. We say that the sequence of finite-population games $\left\{F^{N}\right\}_{N=N_{0}}^{\infty}$ converges at rate $\frac{1}{N}$ to the population game F if

$$
\begin{equation*}
\max _{x \in X^{N}}\left|F^{N}(x)-F(x)\right| \leq \frac{C}{N} \tag{11.15}
\end{equation*}
$$

for some $C>0$ independent of N. For instance, equation (11.14) implies that the sequence of finite games $\left\{F^{N}\right\}$ generated by random matching without self-matching in A converges at rate $\frac{1}{N}$ to the limit game $F(x)=A x$.

11.3.2 Finite-Population Potential Games

Our definitions and characterizations of continuous-population potential games in Chapter 3 rely on tools from calculus. It is equally fitting for our definitions of potential games for finite-population settings to be discrete in nature. In this section, we introduce definitions of full potential games and potential games for finite populations, and establish
basic connections with the definitions from Chapter 3 by means of convergence results.
In Section 3.1, we introduced the notion of a full potential function, a function whose partial derivatives equal the payoffs of the underlying game. To ensure the existence of these partial derivatives, the full potential function was defined on the positive orthant, a full-dimensional set in \mathbf{R}^{n}.

To define full potential games for finite populations, we introduce a discrete analogue of this device. We define the set of diminished population states by $X_{-}^{N}=\left\{x_{-} \in \mathbf{R}_{+}^{n}: \sum_{i \in S}\left(x_{-}\right)_{i}=\right.$ $\frac{N-1}{N}$ and $\left.N x_{-} \in \mathbf{Z}^{n}\right\}$. Each diminished population state describes the behavior of the opponents of one member of a population of size N. We then call a finite-population game $F^{N}: X^{N} \rightarrow \mathbf{R}^{n}$ a full potential game if admits a full potential function: a function $f^{N}: X^{N} \cup X_{-}^{N} \rightarrow \mathbf{R}$ such that

$$
\begin{equation*}
F_{i}^{N}(x)=f^{N}(x)-f^{N}\left(x-\frac{1}{N} e_{i}\right) \text { for all } x \in X_{i}^{N} \text { and } i \in S . \tag{11.16}
\end{equation*}
$$

One can describe condition (11.16) as requiring the payoff to strategy i to be determined by the i th "discrete partial derivative" of the function $\frac{1}{N} f^{N}$.

Exercise 11.3.2. Verify this last statement.
Exercise 11.3.3. Random matching in common interest games. Let the symmetric normal form game $A \in \mathbf{R}^{n \times n}$ be a common interest game (i.e., $A=A^{\prime}$). In Example 3.1.2, we saw that when an infinite population is randomly matched to play A, the resulting population game $F(x)=A x$ is a full potential game with full potential function $f(x)=\frac{1}{2} x^{\prime} A x$.
(i) Let $F^{N}(x)=A x$ be the finite-population game obtained via random matching with self-matching. Verify that F^{N} is a full potential game with full potential function

$$
f^{N}(x)=\frac{1}{2}\left(N x^{\prime} A x+\sum_{k \in S} A_{k k} x_{k}\right) .
$$

(ii) Now let F^{N} be the finite-population game obtained via random matching without self-matching, as defined in equation (11.14). Verify that this F^{N} is also a full potential game, but with full potential function

$$
f^{N}(x)=\frac{1}{2} \frac{N}{N-1}\left(N x^{\prime} A x-\sum_{k \in S} A_{k k} x_{k}\right) .
$$

Note that in each case, the functions $\frac{1}{N} f^{N}$ converge to f as N grows large. \ddagger
Exercise 11.3.4. Congestion games. In Example 2.2.5, we defined a continuous-population
congestion game $F: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}$ by

$$
F_{i}(x)=-\sum_{\phi \in \Phi_{i}} c_{\phi}\left(u_{\phi}(x)\right) .
$$

where Φ_{i} is the set of facilities (or links) used by strategy (or path) $i, c_{\phi}: \mathbf{R}_{+} \rightarrow \mathbf{R}$ is the cost function of facility ϕ, and $u_{\phi}=\sum_{i \in S: \phi \in \Phi_{i}} x_{i}$ is the utilization level of facility ϕ. Example 3.1.4 showed that this game is a a full potential game with full potential function

$$
f(x)=-\sum_{\phi \in \Phi} \int_{0}^{u_{\phi}(x)} c_{\phi}(z) \mathrm{d} z .
$$

Apart from the change in domain, the definition of the finite-population congestion game $F^{N}: X^{N} \rightarrow \mathbf{R}^{n}$ is identical to that of F. Show that F^{N} is also a full potential game, with full potential function

$$
f^{N}(x)=-\sum_{\phi \in \Phi_{i}} \sum_{k=1}^{N u_{\phi}(x)} c_{\phi}\left(\frac{k}{N}\right) \cdot \ddagger
$$

The continuous-population definition of a potential game from Section 3.2 uses a potential function that is only defined on the original set of population states, and that only determines the game's relative payoffs. Extending this notion to the present setting, we call a finite-population game $F^{N}: X^{N} \rightarrow \mathbf{R}^{n}$ a potential game if it admits a potential function: in this case, a function $f^{N}: X^{N} \rightarrow \mathbf{R}$ such that

$$
\begin{equation*}
F_{j}^{N}\left(x+\frac{1}{N}\left(e_{j}-e_{i}\right)\right)-F_{i}^{N}(x)=f^{N}\left(x-\frac{1}{N}\left(e_{j}-e_{i}\right)\right)-f^{N}(x) \text { for all } x \in X_{i}^{N} \text { and } i \in S . \tag{11.17}
\end{equation*}
$$

Equation (11.17) requires that when an agent switches from strategy i to strategy j, the change in his payoff is equal to the change in potential. This definition closely resembles the definition of normal form potential games from Exercise 3.2.10. We investigate this connection in Exercise 11.4.2(ii) below.

Exercise 11.3.5. Equilibrium and evolutionary dynamics for finite-population potential games.
(i) State an appropriate notion of Nash equilibrium for the finite population game F^{N}.
(ii) Suppose that F^{N} is a potential game with potential function f^{N}. Show that $x \in X^{N}$ is a Nash equilibrium of F^{N} if and only x is a local maximizer of f^{N}. (Be sure to define what it means to be a "local maximizer of $f^{N "}$.
(iii) Argue that if agents in a finite-population potential game F^{N} switch to betterperforming strategies sequentially, the population state will converge to a Nash
equilibrium of F^{N} after a finite number of switches. \ddagger
Theorem 3.2.12 showed that despite first appearances, the continuous-population definitions of full potential games and potential games are essentially equivalent. Theorem 11.3.6 shows that this equivalence persists when populations are finite. Fortunately, the proof in this discrete setting requires much less effort.

Theorem 11.3.6. Let F^{N} be a potential game with potential function $f^{N}: X^{N} \rightarrow \mathbf{R}$. Then there is an extension of f^{N} to $X^{N} \cup X_{-}^{N}$ that is a full potential function for F^{N}. In other words, every potential game is a full potential game.

Proof. For each $x_{-} \in X_{-}^{N}$, define $f^{N}\left(x_{-}\right)$by

$$
\begin{equation*}
f^{N}\left(x_{-}\right)=f^{N}\left(x_{-}+\frac{1}{N} e_{1}\right)-F_{1}^{N}\left(x_{-}+\frac{1}{N} e_{1}\right) . \tag{11.18}
\end{equation*}
$$

Rearranging this expression shows that the condition (11.16) holds when $i=1$. To verify that it holds for an arbitrary strategy i, use equations (11.17) and (11.18) (with $x_{-}=x-\frac{1}{N} e_{i}$) to compute as follows:

$$
\begin{aligned}
F_{i}^{N}(x) & =F_{1}^{N}\left(x+\frac{1}{N}\left(e_{1}-e_{i}\right)\right)-f^{N}\left(x-\frac{1}{N}\left(e_{1}-e_{i}\right)\right)+f^{N}(x) \\
& =\left(f^{N}\left(x+\frac{1}{N}\left(e_{1}-e_{i}\right)\right)-f^{N}\left(x-\frac{1}{N} e_{i}\right)\right)-f^{N}\left(x-\frac{1}{N}\left(e_{1}-e_{i}\right)\right)+f^{N}(x) \\
& =f^{N}(x)-f^{N}\left(x-\frac{1}{N} e_{i}\right) .
\end{aligned}
$$

All of the developments in this section suggest that the finite-population and continuouspopulation definitions of potential games are different expressions of the same idea. The next two exercises formalize this point by showing that the latter definitions are limiting cases of the former ones.

Exercise 11.3.7. Let $\left\{F^{N}\right\}_{N=N_{0}}^{\infty}$ be a sequence of finite-population full potential games with full potential functions $\left\{f^{N}\right\}_{N=N_{0}}^{\infty}$. Let the function $f: \mathbf{R}_{+}^{n} \rightarrow \mathbf{R}$ be C^{1}. For each $N \geq N_{0}$, define the function $d^{N}: X^{N} \cup X_{-}^{N} \rightarrow \mathbf{R}$ by $d^{N}(x)=\frac{1}{N} f^{N}(x)-f(x)$. We say that the sequence of full potential functions $\left\{f^{N}\right\}$ converges merrily to f if there is a constant $C>0$ such that each function d^{N} is Lipschitz continuous with Lipschitz constant $\frac{C}{N}$.
(i) Show that if $\left\{f^{N}\right\}$ converges merrily to f, then there is a sequence of constants c^{N} such that $\frac{1}{N} f^{N}(x)-c^{N}$ converges to f at rate $\frac{1}{N}$:

$$
\max _{x \in X^{N}}\left|\left(\frac{1}{N} f^{N}(x)-c^{N}\right)-f(x)\right| \leq \frac{C^{\prime}}{N}
$$

for some C^{\prime} independent of N. (Hint: Choose $c^{N}=\frac{1}{N} f^{N}\left(e_{1}\right)-f\left(e_{1}\right)$.)
(ii) Show that the converse of part (i) is false. (Hint: Suppose that $f^{N}\left(e_{1}\right)=1$ and that $f^{N}(x)=0$ for $x \in X^{N}-\left\{e_{1}\right\}$.)
(iii) Define $F: X \rightarrow \mathbf{R}^{n}$ by $F(x)=\nabla f(x)$. Show that if $\left\{f^{N}\right\}$ converges merrily to f, then $\left\{F^{N}\right\}$ converges at rate $\frac{1}{N}$ to F, as specified in equation (11.15). (Hint: Use the fact that for each $N, f(x)-f\left(x-\frac{e_{i}}{N}\right)=\frac{1}{N} \frac{\partial f}{\partial x_{i}}\left(y^{N}\right)$ for some y^{N} on the line segment from x to $x-\frac{e_{i}}{N}$. This is a consequence of the Mean Value Theorem.) \ddagger

Exercise 11.3.8. Consider a sequence $\left\{F^{N}\right\}_{N=N_{0}}^{\infty}$ be a sequence of finite-population potential games with potential functions $\left\{f^{N}\right\}_{N=N_{0}}^{\infty}$. Let $f: X \rightarrow \mathbf{R}$ be C^{1}, and define $F: X \rightarrow T X$ by $F(x)=\nabla f(x)$. Show that if $\left\{f^{N}\right\}$ converges merrily to $f: X \rightarrow \mathbf{R}$ (as defined in the previous exercise), and if each F^{N} is Lipschitz continuous with a Lipschitz contant that is independent of N, then the projected payoff functions ΦF^{N} converge at rate $\frac{1}{N}$ to F. \ddagger

11.3.3 Clever Payoff Evaluation

If a population has N members, an agent who switches from strategy i to strategy j when the state is x changes the state to $x+\frac{1}{N}\left(e_{j}-e_{i}\right)$. If this agent wants to compare his current payoff $F_{i}^{N}(x)$ to the payoff he will obtain after switching, the relevant comparison is not to $F_{j}^{N}(x)$, but rather to $F_{j}^{N}\left(x+\frac{1}{N}\left(e_{j}-e_{i}\right)\right)$. Agents who account for this change when deciding whether to switch strategies are said to use clever payoff evaluation, while those who do not are said to use simple payoff evaluation.

To formalize this idea, define the function $\breve{F}_{i}^{N}: X_{i}^{N} \rightarrow \mathbf{R}^{n}$ by

$$
\breve{F}_{j}^{N, i}(x)=F_{j}^{N}\left(x+\frac{1}{N}\left(e_{j}-e_{i}\right)\right) .
$$

Now suppose that agents use revision protocol ρ. Under simple payoff evaluation, the conditional switch rate from strategy i to strategy j is $\rho_{i j}\left(F^{N}(x), x\right)$; under clever payoff evaluation, it is $\rho_{i j}\left(\breve{F}^{N, i}(x), x\right)$

Example 11.3.9. Consider the symmetric normal form game with strategy set $S=\{0,1\}$ and payoff matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Suppose that a population of N agents are randomly matched without self-matching to play A, as in Example 11.3.1. If we follow our convention from Section 11.2 by writing
$\chi \equiv x_{1}=1-x_{0}$, we can express the strategies' expected payoffs as

$$
\begin{aligned}
& F_{0}^{N}(\chi)=\frac{1}{N-1}(N \chi(b-a)+(N-1) a), \\
& F_{1}^{N}(\chi)=\frac{1}{N-1}(N \chi(d-c)+N c-d) .
\end{aligned}
$$

Under simple payoff evaluation, agents should prefer strategy 1 to strategy 0 whenever $F_{1}^{N}(\chi)$ exceeds $F_{0}^{N}(\chi)$, which is true when

$$
N \chi(a-b-c+d)+N(c-a)+(a-d)>0 .
$$

Under clever payoff evaluation, an agent currently playing strategy 0 should switch to strategy 1 whenever $\breve{F}_{1}^{N, 0}(\chi)=F_{1}^{N}\left(\chi+\frac{1}{N}\right)$ exceeds $\breve{F}_{0}^{N, 0}(\chi)=F_{0}^{N}(\chi)$, which is true when

$$
N \chi(a-b-c+d)+(N-1)(c-a)>0 .
$$

Similarly, a clever agent playing strategy 1 should switch to strategy 0 whenever

$$
(N x-1)(a-b-c+d)+(N-1)(c-a)<0 .
$$

Comparing the last two inequalities, we see that the comparison made by a clever player of strategy 0 at state χ is the same one made by a clever player of strategy 1 at state $\chi+\frac{1}{N}$: in each case, the player has $N(1-\chi)-1$ opponents playing strategy 0 and $N \chi$ playing strategy 1. §

For any fixed game A, the difference between simple and clever payoff evaluation becomes inconsequential when the population size N is large enough. But the exercises to follow show that for any given N, there are games in which simple and clever payoff evaluation always lead to opposing conculsions.

Exercise 11.3.10. (i) Let A be a symmetric two-strategy normal form game in which strategy 0 strictly dominates strategy $1(a>c$ and $b>d)$. Show that under random matching without self-matching, clever agents always want to switch from strategy 1 to strategy 0 , and never want to switch from strategy 0 to strategy 1.
(ii) Now suppose that agents are playing the game

$$
A=\left(\begin{array}{cc}
3 N & 1 \\
3 N-2 & 0
\end{array}\right)
$$

How will simple agents behave in this game? Provide intuition for your result. \ddagger

Exercise 11.3.11. Suppose that agents are randomly matched with self-matching in the following Prisoner's Dilemma game

$$
A=\left(\begin{array}{cc}
3 N+2 & 1 \\
3 N & 0
\end{array}\right)
$$

What happens in this game if agents use simple payoff evaluation? What if they use clever payoff evaluation? Provide intuition for your results. \ddagger

These exercises notwithstanding, the distinction between simple and clever payoff evaluation is rarely consequential when N is large, in which case our choice between the two is largely a matter of convenience.

11.4 Logit Choice in Potential Games

We conclude this chapter by providing an exact formula for the stationary distribution of the stochastic evolutionary process when agents play a potential game using the logit choice rule. This is a case in which our finite-population adjustments are essential: to ensure reversibility, we must use the finite-population definition of potential games, and assume that agents employ clever payoff evaluation.

Theorem 11.4.1. Let F^{N} be a finite-population potential game with potential function f^{N}, and suppose that agents employ the logit (η) choice rule with clever payoff evaluation. Then the process $\left\{X_{t}^{N}\right\}$ is reversible with stationary distribution

$$
\begin{equation*}
\mu^{N}(x)=\frac{1}{K^{N}} \frac{N!}{\prod_{k \in S}\left(N x_{i}\right)!} \exp \left(\eta^{-1} f^{N}(x)\right) \text { for } x \in X^{N} \tag{11.19}
\end{equation*}
$$

where $K^{N}=\sum_{x \in X^{N}} \frac{N!}{\Pi_{k \in S}\left(N x_{k}\right)!} \exp \left(\eta^{-1} f^{N}(x)\right)$.
The stationary distribution weight $\mu^{N}(x)$ is proportional to the product of two terms. The first term is a multinomial coefficient, and represents the number of ways of assigning the N agents to strategies in S so that each strategy i is played by precisely x_{i} agents. The second term is an exponential function of the value of potential at state x. Thus, the value of μ_{x}^{N} balances the value of potential at state x with the likelihood that state x would arise were agents assigned to strategies at random.

Proof of Theorem 11.4.1. To verify the reversibility condition (11.7), it is enough to check that the equality $\mu_{x}^{N} P_{x y}=\mu_{y}^{N} P_{y x}$ holds for pairs of states that are adjacent, in the sense that
$y=x+\frac{1}{N}\left(e_{j}-e_{i}\right)$. Note that in this case, if we set $x_{-}=x-\frac{1}{N} e_{i} \in X_{-}^{N}$, then we also have $y=x_{-}+\frac{1}{N} e_{j}$.

By Theorem 11.3.6, we can assume that f^{N} is a full potential function for F in the sense of condition (11.16). Observing that conditional switch rates are given by

$$
\rho_{i j}\left(\breve{F}^{N, i}(x), x\right)=\frac{\exp \left(\eta^{-1} \breve{F}_{j}^{N, i}(x)\right)}{\sum_{k \in S} \exp \left(\eta^{-1} \breve{F}_{k}^{N, i}(x)\right)}=\frac{\exp \left(\eta^{-1} F_{j}^{N}\left(x+\frac{1}{N}\left(e_{j}-e_{i}\right)\right)\right)}{\sum_{k \in S} \exp \left(\eta^{-1} F_{k}^{N}\left(x+\frac{1}{N}\left(e_{k}-e_{i}\right)\right)\right)}
$$

we can compute as follows:

$$
\begin{aligned}
\mu_{x}^{N} P_{x y} & =\mu_{x}^{N} \cdot x_{i} \rho_{i j}\left(\breve{F}^{N, i}(x), x\right) \\
& =\frac{1}{K^{N}} \frac{N!}{\prod_{k \in S}\left(N x_{k}\right)!} \exp \left(\eta^{-1} f^{N}(x)\right) \cdot x_{i} \frac{\exp \left(\eta^{-1} F_{j}^{N}(y)\right)}{\sum_{k \in S} \exp \left(\eta^{-1} F_{k}^{N}\left(x+\frac{1}{N}\left(e_{k}-e_{i}\right)\right)\right)} \\
& =\frac{1}{K^{N}} \frac{(N-1)!}{\prod_{k \in S}\left(N\left(x_{-}\right)_{k}\right)!} \exp \left(\eta^{-1} f^{N}(x)\right) \cdot \frac{\exp \left(\eta^{-1}\left(f^{N}(y)-f^{N}\left(x_{-}\right)\right)\right)}{\sum_{k \in S} \exp \left(\eta^{-1}\left(f^{N}\left(x_{-}+\frac{1}{N} e_{k}\right)-f^{N}\left(x_{-}\right)\right)\right)} \\
& =\frac{1}{K^{N}} \frac{(N-1)!}{\prod_{k \in S}\left(N\left(x_{-}\right)_{k}\right)!} \exp \left(\eta^{-1} f^{N}(y)\right) \cdot \frac{\exp \left(\eta^{-1}\left(f^{N}(x)-f^{N}\left(x_{-}\right)\right)\right)}{\sum_{k \in S} \exp \left(\eta^{-1}\left(f^{N}\left(x_{-}+\frac{1}{N} e_{k}\right)-f^{N}\left(x_{-}\right)\right)\right)} \\
& =\frac{1}{K^{N}} \frac{N!}{\prod_{k \in S}\left(N y_{k}\right)!} \exp \left(\eta^{-1} f^{N}(y)\right) \cdot y_{j} \frac{\exp \left(\eta^{-1} F_{i}^{N}(y)\right)}{\sum_{k \in S} \exp \left(\eta^{-1} F_{k}^{N}\left(y+\frac{1}{N}\left(e_{k}-e_{j}\right)\right)\right)} \\
& =\mu_{y}^{N} \cdot y_{j} \rho_{j i}\left(\breve{F}^{N, j}(y), y\right) \\
& =\mu_{y}^{N} P_{y x} . ■
\end{aligned}
$$

Exercise 11.4.2. This exercise provides an alternate proof of Theorem 11.4.1 by way of normal form potential games. Recall from Exercise 3.2.10 that the N player normal form game $U=\left(U^{1}, \ldots, U^{N}\right)$ with strategy sets S^{1}, \ldots, S^{N} is a potential game if it admits a potential function $V: \prod_{p} S^{p} \rightarrow \mathbf{R}$, which is a function satisfying

$$
U^{p}\left(\hat{s}^{p}, s^{-p}\right)-U^{p}(s)=V\left(\hat{s}^{p}, s^{-p}\right)-V(s) \text { for all } s \in \prod_{p} S^{p}, \hat{s}^{p} \in S^{p}, \text { and } p \in \mathscr{P}
$$

(i) Define a stochastic evolutionary process $\left\{Y_{t}^{N}\right\}$ on the set of pure strategy profiles $\prod_{p} S^{p}$ by assuming that each of the N players receives revision opportunities at rate 1 , and that each follows the $\operatorname{logit}(\eta)$ choice rule when such opportunities arise. Show that if U is a normal form potential game with potential function V, then
the process $\left\{Y_{t}^{N}\right\}$ is reversible, and that its stationary distribution v^{N} is defined by $v^{N}(s) \propto \exp \left(\eta^{-1} V(s)\right)$.
Now suppose that players in the game U are indistinguishable: all N players share the same strategy set $S^{p}=S \equiv\{1, \ldots, n\}$, and each player's payoffs are defined by the same function of the player's own strategy and the overall distribution of strategies $\xi(s) \in X^{N}$, defined by $\xi_{i}(s)=\#\left\{p \in\{1, \ldots, N\}: s^{p}=i\right\} / N$. This means that there is a finite-population game $F^{N}: X^{N} \rightarrow \mathbf{R}^{n}$ that represents U, in the sense that $U^{p}(s)=F_{s^{p}}^{N}(\xi(s))$ for all $s \in S$.
(ii) Suppose again that U is a normal form potential game with potential function V. Show that if players in U are indistinguishable, then V is measurable with respect to X^{N}, in the sense that $V(\hat{s})=V(s)$ whenever $\xi(\hat{s})=\xi(s)$. Furthermore, show that the finite-population game F^{N} introduced above is a potential game, and that its potential function $f^{N}: X^{N} \rightarrow \mathbf{R}$ is given by $f^{N}(x)=V(s)$, where s is any strategy profile in $\xi^{-1}(x)$.
(iii) Let $\left\{Y_{t}^{N}\right\}$ be the evolutionary process on X^{N} defined in part (i). Show that under the assumptions of part (ii), the process $\left\{\xi\left(Y_{t}^{N}\right)\right\}$ is a Markov process on X^{N} with the same jump rates and transition probabilities as the process $\left\{X_{t}^{N}\right\}$ from Theorem 11.4.1. Finally, using part (i), prove directly that the stationary distribution of $\left\{\xi\left(Y_{t}^{N}\right)\right\}$ is given by equation (11.19). \ddagger

In Chapter ??, we turn our attention to stochastic stability analysis, which studies the limiting stationary distribution of the stochastic evolutionary process as the noise level becomes small or the population size becomes large. In the case of logit choice in potential games, where formula (11.19) provides an explicit formula for the stationary distribution, the limiting stationary distribution can be computed directly as well. For instance, if we take the noise level η to zero, equation (11.19) shows that μ^{N} becomes concentrated on states that maximize the value of the potential function f^{N}.

But apart from the cases considered in this chapter, simple expressions for stationary distributions are not known. We will therefore require new techniques to determine stochastically stable states.

Appendix

11.A Long Run Behavior of Markov Chains and Processes

In Appendix 10.B, we defined (discrete-time) Markov chains and (continuous-time) Markov processes on a countable state space, and showed how to construct them on an appropriate probability space $(\Omega, \mathcal{F}, \mathbb{P})$. In the present appendix, we turn to the long run behavior of Markov chains and processes that take values in a finite state space. Apart from the issue of periodicity, which is particular to the discrete-time setting, the discrete-time and continuous-time theories are quite similar, although certain concepts have somewhat different formulations in the two cases.

In the remainder of this section, $\left\{X_{t}\right\}_{t=0}^{\infty}$ denotes a Markov chain with transition matrix $P \in \mathbf{R}^{X \times X}$ on the finite state space X, while $\left\{X_{t}\right\}_{t \geq 0}$ denotes a Markov process on \mathcal{X} with transition matrix $P \in \mathbf{R}^{X \times X}$ and jump rate vector $\lambda \in \mathbf{R}^{X}$. The shorthand $\left\{X_{t}\right\}$ is used to refer to both cases. When we need to refer to initial conditions, we use the notations $\mathbb{P}_{x}(\cdot) \equiv \mathbb{P}\left(\cdot \mid X_{0}=x\right)$ and $\mathbb{P}_{\pi}(\cdot) \equiv \sum_{x \in X} \pi_{x} \mathbb{P}\left(\cdot \mid X_{0}=x\right)$ to describe the behavior of $\left\{X_{t}\right\}$ when it is run from initial state $x \in \mathcal{X}$ or from initial distribution $\pi \in \mathbf{R}_{+}^{X}$.

11.A. 1 Communication, Recurrence, and Irreducibility

To begin our study of long run behavior of the Markov chains and processes, we introduce a partial order on the finite set X that describes feasible multi-step transitions under the transition matrix P. We say that state y is accessible from state x, and write $x \leadsto y$, if for some $n \geq 0$ there is a sequence of states $x=x_{0}, x_{1}, \ldots, x_{n}=y$ such that $P_{x_{i-1}, x_{i}}>0$ for all $i \in\{1, \ldots, n\}$. We allow $n=0$ to ensure that each state is accessible from itself. We write $x \leadsto y$ to indicate that x and y are mutually accessible, in the sense that $x \leadsto y$ and $y \leadsto x$.

Accessibility defines a partial order on the set X. The equivalence classes under this order, referred to as communication classes, are the maximal sets of (pairwise) mutually accessible states.

To identify the states which $\left\{X_{t}\right\}$ can visit in the long run, we first define a set of states $C \subseteq X$ to be closed if the process cannot leave it:

$$
[x \in C, x \leadsto y] \Rightarrow y \in C .
$$

If we assume that C is a communciation class, then C is closed if and only if it is minimal under the partial order $\leadsto>$ (where we view this order as "pointing downward"). Once $\left\{X_{t}\right\}$ enters a closed communication class, it remains in the class forever.

Figure 11.A.1: Feasible transitions between the states of a Markov chain. Members of the same communication class are the same color. Members of recurrent classes are shades of blue.

Example 11.A.1. Suppose that $\left\{X_{t}\right\}$ has state space $\mathcal{X}=\{1,2,3,4,5,6,7,8,9\}$ and transition matrix

$$
P=\left(\begin{array}{lllllllll}
.4 & .3 & .2 & .1 & 0 & 0 & 0 & 0 & 0 \\
.5 & .1 & 0 & 0 & .3 & .1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & .8 & .1 & .1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & .9 & 0 & .1
\end{array}\right) .
$$

The feasible transitions of $\left\{X_{t}\right\}$ are represented in Figure 11.A.1. $\left\{X_{t}\right\}$ has six communication classes: $\{1,2\},\{3\},\{4,5\},\{6\}$, and $\{7,8,9\}$. Of these, $\{3\},\{4,5\}$, and $\{7,8,9\}$ are closed. \S

If the process $\left\{X_{t}\right\}$ begins in a communication class that is not closed (for example, the class $\{1,2\}$ in Example 11.A.1), it is possible for it to remain in this class for an arbitrarily long finite amount of time. But with probability 1, the process will leave the class after some finite amount of time, and once it leaves it it can never return. Of course, once $\left\{X_{t}\right\}$ enters a closed communication class, it remains in the class forever.

To express these ideas more precisely, call state x transient if $\mathbb{P}_{x}\left(\left\{t: X_{t}=x\right.\right.$ is unbounded $\left.\}\right)$ $=0$, and call state x recurrent if $\mathbb{P}_{x}\left(\left\{t: X_{t}=x\right.\right.$ is unbounded $\left.\}\right)=1$. Then we have

Theorem 11.A.2. Let $\left\{X_{t}\right\}$ be a Markov chain or Markov process on a finite set \mathcal{X}. Then
(i) Every state in X is either transient or recurrent.
(ii) A state is recurrent if and only if it is a member of a closed communication class.

In light of this result, closed communication classes are often called recurrent classes.
By virtue of Theorem 11.A.2, we can understand the infinite horizon behavior of the process $\left\{X_{t}\right\}$ by focusing on cases in which the entire state space X forms a single recurrent class. (In effect, we are focusing on the behavior of our original process after it enters a recurrent class.) When all of \mathcal{X} forms a single recurrent class, $\left\{X_{t}\right\}$ is said to be irreducible.

In Section 11.1, we introduced the notion of a full support revision protocol in order to ensure that under the stochastic evolutionary process $\left\{X_{t}^{N}\right\}$, every population state in X is accessible from every other. Put differently, the full support condition ensures that the stochastic evolutionary process is irreducible.

11.A. 2 Periodicity

In the discrete-time case, the behavior of the Markov chain $\left\{X_{t}\right\}_{t=0}^{\infty}$ within a recurrent class depends on the period structure of that class. The period of the recurrent state x is defined as $\operatorname{gcd}\left(\left\{t \geq 1: \mathbb{P}_{x}\left(X_{t}=x\right)>0\right\}\right)$: that is, it is the greatest common divisor of the set times at which the chain can revisit x if it is run from x. It can be shown that states from the same recurrence class have the same period, and so it makes sense to speak of the period of the class itself.

Example 11.A.3. The Markov chain defined in Example 11.A. 1 has three recurrent classes: $\{3\},\{4,5\}$, and $\{7,8,9\}$. Clearly, the period of state 3 is 1 , and the period of states 4 and 5 is 2. Since $P_{99}>0$, a process run from initial state 9 can remain there for any finite number of periods; thus state 9 has period 1 , as do the other states in its class. §

This example illustrates a simple and useful fact: if any state x in a recurrent class has $P_{x x}>0$, then all states in this class are of period 1.

If the Markov chain $\left\{X_{t}\right\}$ is irreducible, then all of its states are of the same period. If this common period is greater than 1 , we say that $\left\{X_{t}\right\}$ is periodic; if instead the common period is $1,\left\{X_{t}\right\}$ is aperiodic.

Theorem 11.A. 4 describes how periodicity constrains the t step transition probabilities of an irreducible Markov chain. Part (i) of the theorem observes that the state space can be partitioned into sets that the chain must pass through sequentially. Part (ii) of the theorem implies that any t step transition not forbidden by part (i) will have positive probability if t is large enough.

Theorem 11.A.4. Let $\left\{X_{t}\right\}_{t=0}^{\infty}$ be an irreducible Markov chain with period d. Then there is a partition $C_{0}, C_{1}, \ldots, C_{d-1}$ of X such that (i) $\left[x \in C_{i}\right.$ and $\left.P_{x y}^{t}>0\right]$ implies that $y \in C_{(i+t) \bmod d}$; and (ii) $x, y \in C_{i}$ implies that $P_{x y}^{n \cdot d}>0$ for all n large enough.

Let us emphasize once more that periodicity is a discrete-time phenomenon: since the jump times of continuous-time Markov processes follow exponential distributions, periodic behavior is impossible.

11.A. 3 The Perron-Frobenius Theorem

To this point, our discussion of the behavior of Markov chains and processes has been "qualitative", focusing only on the possibility or impossibility of transitions between given pairs of states over various lengths of time. We now turn to the "quantitative" analysis of these processes, which addresses the probabilities of these transitions.

Many of the basic results in the theory of finite-state Markov chains can be viewed as consequences of the Perron-Frobenius Theorem, a basic result from matrix analysis. To present this theorem in its usual language, we refer to a transition matrix $P \in \mathbf{R}^{\chi \times X}$ (i.e., a nonnegative row matrix with row sums equal to 1) as a stochastic matrix, and call such a matrix irreducible or periodic according to whether the induced Markov chain has these properties. Nonnegative matrices that are both irreducible and aperiodic are sometimes referred to as primitive.

Theorem 11.A. 5 (Perron-Frobenius).
Suppose that the matrix $P \in \mathbf{R}^{X \times X}$ is stochastic and irreducible. Then:
(i) 1 is an eigenvalue of P of algebraic multiplicity 1 , and no eigenvalue of P has modulus greater than 1.
(ii) The vector $\mathbf{1}$ is a right eigenvector of P corresponding to eigenvalue 1 . That is, $P \mathbf{1}=\mathbf{1}$.
(iii) There is a probability vector μ with positive components that is a left eigenvector of P corresponding to eigenvalue 1 ; thus, $\mu^{\prime} P=\mu^{\prime}$.
Suppose in addition that P is aperiodic, and hence primitive. Then:
(iv) All eigenvalues of P other than 1 have modulus less than 1.
(v) The matrix powers P^{t} converge to the matrix $\mathbf{1} \mu^{\prime}$ as t approaches infinity.
(vi) Indeed, let λ_{2} be the eigenvalue of P with the second-largest modulus, and let $r \in\left(\left|\lambda_{2}\right|, 1\right)$. Then for some $c>0$, we have that

$$
\max _{i j}\left|\left(P^{t}-\mathbf{1} \mu^{\prime}\right)_{i j}\right| \leq c r^{t} \text { for all } t \geq 1
$$

If P is (real or complex) diagonalizable, this statement remains true when $r=\left|\lambda_{2}\right|$.
In Sections 11.A. 4 and 11.A.7, we will interpret of all of these statements in the context of Markov chains.

11.A.4 Stationary Distributions for Markov Chains

This section and the next consider stationary distributions for discrete-time Markov chains. We will see in Section 11.A. 6 that the basic formulas for the continuous-time case are identical to those for the discrete-time case when the jump rates λ_{x} are the same for each state, as is the case for the stochastic evolutionary process studied in the text.

Let $\left\{X_{t}\right\}_{t=0}^{\infty}$ be a Markov chain with finite state space \mathcal{X} and transition matrix P. We call a probability distribution $\mu \in \mathbf{R}^{X}$ a stationary distribution of $\left\{X_{t}\right\}_{t=0}^{\infty}$ if

$$
\begin{equation*}
\mu^{\prime} P=\mu^{\prime} \tag{11.20}
\end{equation*}
$$

More explicitly, μ is a stationary distribution if

$$
\begin{equation*}
\sum_{x \in X} \mu_{x} P_{x y}=\mu_{y} \text { for all } y \in X \tag{11.21}
\end{equation*}
$$

To interpret these conditions, decompose the probability of the chain being at state y at time 1 as follows:

$$
\sum_{x \in X} \mathbb{P}\left(X_{0}=x\right) \mathbb{P}\left(X_{1}=y \mid X_{0}=x\right)=\mathbb{P}\left(X_{1}=y\right)
$$

Comparing the previous two equations, we see that if X_{0} is distributed according to the stationary distribution μ, then X_{1} is also distributed according to μ, and so, by the Markov property, is every subsequent X_{t}.

In general, a finite Markov chain may admit many stationary distributions. For instance, if the transition matrix P is the identity matrix, so that each state defines its own recurrent class, then every probability distribution on X is a stationary distribution. But if a Markov chain is irreducible, definition (11.20) and Theorem 11.A.5(i) and (iii) imply that its stationary distribution is unique.

Theorem 11.A.6. If the Markov chain $\left\{X_{t}\right\}$ is irreducible, it admits a unique stationary distribution.

Example 11.A.7. Focusing on the three irreducible closed sets from Example 11.A.1, we can define three irreducible Markov chains with transition matrices

$$
P=(1), \quad P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \text { and } \quad P=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
.9 & 0 & .1
\end{array}\right) .
$$

In the first case the stationary distribution is trivial, in the second case it is $\mu=\left(\frac{1}{2}, \frac{1}{2}\right)$, and in the final case it is $\mu=\left(\frac{9}{28}, \frac{9}{28}, \frac{10}{28}\right)$. §

If the Markov chain $\left\{X_{t}\right\}$ is not irreducible, then we can find a unique stationary distribution μ^{C} corresponding to each of the chain's recurrent classes C, and the set of stationary distributions of $\left\{X_{t}\right\}$ is the convex hull of these μ^{C}. Intuitively, by specifying the weight placed on μ^{C} in the convex combination, we choose the probability that the process begins in recurrent class C; to maintain stationarity, the relative weights on states in C must be in the proportions given by μ^{C}.

One can interpret the stationary distribution weights of irreducible Markov chains in terms of expected return times. We define the hitting time of state x under the Markov chain $\left\{X_{t}\right\}$ to be the random variable $T_{x}=\inf \left\{t \geq 1: X_{t}=x\right\}$. When $\left\{X_{t}\right\}$ is run from initial condition x, T_{x} is called the return time of state x. (Note that if $X_{1}=x$, then the return time is 1 , even though the chain has not actually left state x.) If $\left\{X_{t}\right\}$ is irreducible, then it can be shown that the expected return time $\mathbb{E}_{x} T_{x}$ is equal to μ_{x}^{-1}. Thus, the higher is the weight on x in the stationary distribution, the less time we expect will pass before a chain starting at x returns to this state.

11.A. 5 Reversible Markov Chains

In general, computing the stationary distribution of an irreducible Markov chain means finding an eigenvector of its transition matrix, a task that is computationally demanding when the state space is large. Fortunately, there are many interesting examples in which the stationary distribution satisfies a property that is both stronger and easier to check. We say that the Markov chain $\left\{X_{t}\right\}$ is reversible if it admits a reversible distribution: that is, a probability distribution μ that satisfies the detailed balance conditions

$$
\begin{equation*}
\mu_{x} P_{x y}=\mu_{y} P_{y x} \text { for all } x, y \in \mathcal{X} . \tag{11.22}
\end{equation*}
$$

If we sum this equation over $x \in \mathcal{X}$, we obtain equation (11.21), so a reversible distribution is also a stationary distribution.

To understand why reversibility is so named, imagine running the Markov chain $\left\{X_{t}\right\}$ from initial distribution μ, and observing two consecutive frames from a film of the chain. Suppose that these frames display the realizations x and y. According to equation (11.22), the probability that the chain is first at state x and next at state $y, \mu_{x} P_{x y}$, is equal to the probability that the chain is first at state y and next at state $x, \mu_{y} P_{y x}$. Put differently, the probability of observing (x, y) is the same whether the film is running forward or backward. It is easy to verify that this property extends to any finite sequence of realizations.

Example 11.A.8. In Example 11.A.7, the first two Markov chains are reversible, but the third is not: if the states are labeled 7,8 , and 9 and our film shows state 7 and then state 8 , then we can conclude that it is running forward: compare Figure 11.A.1. §

Example 11.A.9. Random walks on graphs. Let $\mathcal{G}=(X, \mathcal{E})$ be a connected undirected graph with node set X and edge set $\mathcal{E} \subseteq\{\{x, y\}: x, y \in X, x \neq y\}$. Let $d_{x}=\#\{E \in \mathcal{E}: x \in E\}$ be the degree of node x (i.e., the number of edges containing x), and let $D=\sum_{x \in X} d_{x}$. Let $\left\{X_{t}\right\}$ be a Markov process on X with constant jump rate $\lambda_{x} \equiv 1$ and transition probabilities

$$
P_{x y}= \begin{cases}1 / d_{x} & \text { if }\{x, y\} \in \mathcal{E} \\ 0 & \text { otherwise }\end{cases}
$$

Evidently, $\left\{X_{t}\right\}$ is irreducible and reversible with stationary distribution $\mu_{x}=d_{x} / D . \S$
The next example is fundamental to the study of evolution in two-strategy games.
Example 11.A.10. Birth and death chains. A birth and death chain is a Markov chain on the state space $\mathcal{X}=\{0,1, \ldots, N\}$ (or some other finite set endowed with a linear order) under which all transitions move the state one step to the right, move the state one step to the left, or leave the state unchanged. It follows that there are vectors $p, q \in \mathbf{R}^{X}$ with $p_{N}=q_{0}=0$ such that

$$
P_{i j}=\left\{\begin{array}{lll}
p_{i} & \text { if } j=i+1, \\
q_{i} & \text { if } j=i-1, \\
1-p_{i}-q_{i} & \text { if } j=i
\end{array}\right.
$$

so a birth and death chain is a Markov chain with a tridiagonal transition matrix. Irreducibility requires that $p_{k}>0$ for $k<N$ and that $q_{k}>0$ for $k>0$.

Because of their simple transition structure, birth and death chains are reversible. Since only adjacent transitions are possible, the detailed balance conditions (11.22) reduce to $\mu_{k} q_{k}=\mu_{k-1} p_{k-1}$ for $k \in\{1, \ldots, N\}$. Applying this formula inductively and noting that stationary distribution weights sum to 1, we obtain an explicit formula for this distribution:

$$
\begin{aligned}
& \mu_{k}=\frac{p_{0} \cdots p_{k-1}}{q_{1} \cdots q_{k}} \mu_{0} \text { for } k \in\{1, \ldots, N\} \\
& \mu_{0}=\left(1+\sum_{k=1}^{N} \frac{p_{0} \cdots p_{k-1}}{q_{1} \cdots q_{k}}\right)^{-1} \cdot \S
\end{aligned}
$$

11.A. 6 Stationary Distributions and Reversibility for Markov Processes

The notions of stationarity and reversibility are equally important in the continuoustime setting, where they are most easily studied using the generator of the Markov process. In Section 10.B.6, we described the transition probabilities of the Markov process $\left\{X_{t}\right\}_{t \geq 0}$ using the matrix semigroup $\{P(t)\}_{t \geq 0}$, where $P_{x y}(t)=\mathbb{P}\left(X_{t}=y \mid X_{0}=x\right)$. The generator of $\left\{X_{t}\right\}_{t \geq 0}$ is the matrix $Q=\operatorname{diag}(\lambda)(P-I)$, where $\lambda \in \mathbf{R}_{+}^{X}$ and $P \in \mathbf{R}_{+}^{X \times X}$ are the vector of jump rates and the transition matrix of the Markov process, respectively. Equation (10.12) showed that the generator and the transition probabilities are related by

$$
\begin{equation*}
P(t)=\mathrm{e}^{Q t} \equiv \sum_{k=0}^{\infty} \frac{(Q t)^{k}}{k!} \tag{11.23}
\end{equation*}
$$

With these preliminaries in hand, we call the probability distribution μ a stationary distribution of $\left\{X_{t}\right\}_{t \geq 0}$ if

Equation (11.23) implies that μ is a stationary distribution if and only if $\mu^{\prime} P(t)=\mu^{\prime}$ for all $t \geq 0$. The latter statement can be expressed more explicitly as

$$
\begin{equation*}
\mathbb{P}_{\mu}\left(X_{t}=x\right)=\mu_{x} \text { for all } x \in X \text { and } t \geq 0 \tag{11.25}
\end{equation*}
$$

Equation (11.25) says that if $\left\{X_{t}\right\}$ is run from initial distribution μ, then it continues to follow distribution μ at all times $t \geq 0$.

To obtain a condition that more closely resembles the discrete-time stationarity condition (11.20), one can substitute the definition of Q into equation (11.24) to obtain

$$
\begin{equation*}
(\mu \bullet \lambda)^{\prime} P=(\mu \bullet \lambda) \tag{11.26}
\end{equation*}
$$

where • denotes componentwise products: $(\mu \bullet \lambda)_{i}=\mu_{i} \lambda_{i}$. Notice that if the jump rate vector λ is constant, then equation (11.26) reduces to the discrete-time condition $\mu^{\prime} P=\mu^{\prime}$ from equation (11.20).

Equation (11.26) suggests that the basic properties of the stationary distribution in the continuous-time setting should parallel those in the discrete-time setting so long as the jump rates are accounted for correctly. Suppose, for instance, that the Markov process $\left\{X_{t}\right\}$ is irreducible. If we fix $\alpha \in\left(0,\left(\max _{x} \lambda_{x}\right)^{-1}\right]$, it is easy to see that $\alpha Q+I$ is an irreducible stochastic matrix. Theorem 11.A.5(iii) then tells us that there is a unique probability vector
μ satisfying $\mu^{\prime}(\alpha Q+I)=\mu^{\prime}$, or, equivalently, $\mu^{\prime} Q=\mathbf{0}$. We therefore have
Theorem 11.A.11. If the Markov process $\left\{X_{t}\right\}$ is irreducible, it admits a unique stationary distribution.

To link stationary distribution weights and expected return times, define the hitting time of state x as $T_{x}=\inf \left\{t \geq \tau_{1}: X_{t}=x\right\}$, where τ_{1} is the first jump time of the process $\left\{X_{t}\right\}_{t \geq 0}$. (Notice again that the state need not actually change at time τ_{1}). If the Markov process $\left\{X_{t}\right\}_{t \geq 0}$ is irreducible, then it can be shown that $\mathbb{E}_{x} T_{x}=\left(\mu_{x} \lambda_{x}\right)^{-1}$.

Finally, we say that a Markov process is reversible if it admits a reversible distribution μ, which here means that

$$
\begin{equation*}
\mu_{x} \lambda_{x} P_{x y}=\mu_{y} \lambda_{y} P_{y x} \text { for all } x, y \in X . \tag{11.27}
\end{equation*}
$$

Summing this equation over x yields the stationarity condition (11.26). Again, equation (11.27) reduces to the discrete-time condition $\mu_{x} P_{x y}=\mu_{y} P_{y x}$ from equation (11.22) if jump rates are constant.

11.A. 7 Convergence in Distribution

The fundamental results of the theory of finite state Markov chains and processes establish various senses in which the infinite-horizon behavior of irreducible processes is independent of initial conditions, and characterizable in terms of the process's stationary distribution. As with the basic theorems about i.i.d. random variables (see Appendix 10.B.3), there are two types of results, those that concern distributional properties and so consider the process from the ex ante point of view, and those on sample path properties, which consider the process from the ex post point of view. We consider the former results here, and the latter in Appendix 11.A.8.

The basic distributional result, Theorem 11.A.12, provides conditions under which the time t distributions of a Markov chain or process converge to its stationary distribution. In the continuous-time setting, irreducibility is sufficient for convergence in distribution; in the discrete-time setting, aperiodicity is also required.

Theorem 11.A. 12 (Convergence in Distribution). Suppose that $\left\{X_{t}\right\}$ is either an irreducible aperiodic Markov chain or an irreducible Markov process, and that its stationary distribution is μ. Then for any initial distribution π, we have that

$$
\mathbb{P}_{\pi}\left(X_{t}=x\right)=\mu_{x} \text { for all } x \in \mathcal{X}
$$

In the discrete-time case, Theorem 11.A. 12 is an immediate consequence of Theorem 11.A.5(v):

$$
\lim _{t \rightarrow \infty} \mathbb{P}_{\pi}\left(X_{t}=x\right)=\lim _{t \rightarrow \infty}\left(\pi^{\prime} P^{t}\right)_{x}=\left(\pi^{\prime} \mathbf{1} \mu^{\prime}\right)_{x}=\mu_{x}
$$

Theorem 11.A. 12 shows that the after a long enough time has passed, the time t distribution of $\left\{X_{t}\right\}$ will be close to its stationary distribution. But it does not tell us how long we must wait before this limit result becomes relevant. The answer to this question can be found in Theorem 11.A.5(vi), which shows that the rate of convergence to the stationary distribution is determined by the second-largest eigenvalue modulus of the transition matrix P. Rather than restate this point formally, we illustrate this conclusion and build intuition by way of two examples.

Example 11.A.13. Consider the two-state Markov chain $\left\{X_{t}\right\}$ with transition matrix

$$
P=\left(\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right)
$$

To ensure that this chain is irreducible and aperiodic, we suppose that $a, b>0$ and that $a+b<2$. The eigenvalues of P are $\lambda_{1}=1$ and $\lambda_{2}=1-a-b$, and the associated left eigenvectors are

$$
\mu \equiv\binom{\frac{b}{a+b}}{\frac{a}{a+b}} \text { and }\binom{-1}{1}
$$

respectively. Of course, since $\mu^{\prime} P=\mu^{\prime}, \mu$ is the stationary distribution of $\left\{X_{t}\right\}$.
Now let

$$
L=\left(\begin{array}{cc}
\frac{b}{a+b} & \frac{a}{a+b} \\
-1 & 1
\end{array}\right)
$$

be the matrix whose rows are the left eigenvectors of P, and let $\Lambda=\operatorname{diag}(\lambda)$. Then the matrix form of the left eigenvector equation for P is $L P=\Lambda L$. Since L is invertible, $P=L^{-1} \Lambda L$ is diagonalizable. In fact, since $P L^{-1}=L^{-1} \Lambda$, the columns of

$$
R \equiv L^{-1}=\left(\begin{array}{cc}
1 & \frac{-a}{a+b} \\
1 & \frac{b}{a+b}
\end{array}\right)
$$

are the right eigenvectors of P.
The t step transitions of the Markov chain are described by the t th power of P, which
we can evaluate as follows:

$$
\begin{align*}
P^{t} & =(R \Lambda L)^{t} \tag{11.28}\\
& =R \Lambda^{t} L \\
& =\left(\begin{array}{cc}
1 & -\frac{a}{a+b} \\
1 & \frac{b}{a+b}
\end{array}\right)\left(\begin{array}{cc}
\left(\lambda_{1}\right)^{t} & 0 \\
0 & \left(\lambda_{2}\right)^{t}
\end{array}\right)\left(\begin{array}{cc}
\frac{b}{a+b} & \frac{a}{a+b} \\
-1 & 1
\end{array}\right) \\
& =\left(\lambda_{1}\right)^{t} \mathbf{1} \mu^{\prime}+\left(\lambda_{2}\right)^{t}\binom{\frac{-a}{a b+}}{\frac{b}{a+b}}\left(\begin{array}{ll}
-1 & 1
\end{array}\right) \\
& =\mathbf{1} \mu^{\prime}+\left(\lambda_{2}\right)^{t}\left(\begin{array}{cc}
\frac{a}{a+b} & \frac{-a}{a+b} \\
-\frac{b}{a+b} & \frac{b}{a+b}
\end{array}\right) .
\end{align*}
$$

Thus, if the chain begins at initial distribution π, its time t distribution is

$$
\pi^{\prime} P^{t}=\mu^{\prime}+\left(\lambda_{2}\right)^{t}\left(\frac{\pi_{1} a-\pi_{2} b}{a+b} \quad \frac{-\pi_{1} a+\pi_{2} b}{a+b}\right) .
$$

We conclude that the distribution of the Markov chain converges to the stationary distribution μ at geometric rate $\left|\lambda_{2}\right|=|1-a-b|$. \S

Some simple observations about matrix multiplication will be useful in the next example. For any matrices $A, B \in \mathbf{R}^{n \times n}$, we can write

$$
\begin{equation*}
A B=A I B=\sum_{k=1}^{n} A\left(e_{k} e_{k}^{\prime}\right) B=\sum_{k=1}^{n}\left(A e_{k}\right)\left(e_{k}^{\prime} B\right) . \tag{11.29}
\end{equation*}
$$

In words, to compute the product $A B$, we take the "outer product" of the k th column of A and the k th row of B, and then sum over k. (For a different derivation of (11.29), recall that the $i j$ th term of $A B$ is $\sum_{k} A_{i k} B_{k j}$; (11.29) expresses this fact in matrix form.) If we interpose a diagonal matrix $D=\operatorname{diag}(d)$ between A and B, we can obtain a similar expression, used implicitly in (11.28):

$$
\begin{equation*}
A D B=\sum_{k=1}^{n} d_{k}\left(A e_{k}\right)\left(e_{k}^{\prime} B\right) \tag{11.30}
\end{equation*}
$$

Example 11.A.14. Let P be the transition matrix of an irreducible aperiodic Markov chain, and suppose that P is (real or complex) diagonalizable. Then, as in the previous example, we can write $P=R \Lambda L=R \operatorname{diag}(\lambda) L$, where λ is the vector of eigenvalues of P, the rows of L are left eigenvectors, and the columns of $R=L^{-1}$ are right eigenvectors. As before, we can write the t step transition probabilities as $P^{t}=R \Lambda^{t} L$, which we can rewrite using
equation (11.30) as

$$
\begin{equation*}
P^{t}=R \Lambda^{t} L=\sum_{k=1}^{n}\left(\lambda_{k}\right)^{t}\left(R e_{k}\right)\left(e_{k}^{\prime} L\right) \tag{11.31}
\end{equation*}
$$

The Perron-Frobenius Theorem tells us that 1 is an eigenvalue of P with algebraic multiplicity 1, and that all other eigenvalues of P have modulus less than 1 . Moreover, the left and right eigenvectors corresponding to eigenvalue 1 are the stationary distribution μ and the constant vector 1 . Thus, if we order the eigenvectors so that $1=\lambda_{1}>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq$ $\ldots \geq\left|\lambda_{n}\right|>-1$, then $e_{1}^{\prime} L=\mu^{\prime}$ and $R e_{1}=\mathbf{1}$. (To see that $R e_{1}$ is $\mathbf{1}$ rather than some multiple of $\mathbf{1}$, note that $L R=I$, implying that $\mu^{\prime} R e_{1}=e_{1}^{\prime} L R e_{1}=I_{11}=1$.)

Using these observations, we can rewrite equation (11.31) as

$$
P^{t}=\mathbf{1} \mu^{\prime}+\sum_{k=2}^{n}\left(\lambda_{k}\right)^{t}\left(R e_{k}\right)\left(e_{k}^{\prime} L\right)
$$

Evidently, the rate of convergence of $\left\{X_{t}\right\}$ to its stationary distribution is determined by the second largest eigenvalue modulus of P. §

11.A. 8 Ergodicity

Having considered the distributional properties, we turn to sample path properties, which describe behavior from the ex post point of view. Theorem 11.A. 15 shows that if $\left\{X_{t}\right\}$ is an irreducible Markov chain or process, then for almost all realizations of $\omega \in \Omega$, the proportion of time spent in each state x converges to the weight μ_{x} placed on this state in the stationary distribution μ. If $\left\{X_{t}\right\}$ is an i.i.d. process, with each X_{t} having distribution μ, this conclusion follows from the Strong Law of Large Numbers. Theorem 11.A. 15 reveals that Markov dependence is enough for this implication to hold.

Theorem 11.A. 15 (Ergodicity).
(i) Suppose that $\left\{X_{t}\right\}$ is an irreducible Markov chain with stationary distribution μ. Then for any initial distribution π, we have that

$$
\mathbb{P}_{\pi}\left(\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=0}^{T-1} 1_{\left\{X_{t}=x\right\}}=\mu_{x}\right)=1 \text { for all } x \in \mathcal{X}
$$

(ii) Suppose that $\left\{X_{t}\right\}$ is an irreducible Markov process with stationary distribution μ. Then
for any initial distribution π, we have that

$$
\mathbb{P}_{\pi}\left(\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} 1_{\left\{X_{t}=x\right\}} \mathrm{d} t=\mu_{x}\right)=1 \text { for all } x \in X
$$

11.N Notes

Section 11.1. The best response with mutations model is introduced in Kandori et al. (1993). Models of imitation with mutations are considered by Binmore and Samuelson (1997) and Fudenberg and Imhof (2006). See the Notes to Chapter ?? for further references.

For formal analyses of waiting times in stochastic evolutionary models, see, for example, Ellison (1993, 2000), Binmore et al. (1995), Benaïm and Weibull (2003), and Benaïm and Sandholm (2007). Ellison $(1993,2000)$ shows that waiting times can be significantly reduced in models of local interaction, in which agents live in fixed locations and only interact with neighbors. For further work on local interaction models, see Nowak and May (1992, 1993), Blume (1993, 1995), Morris (2000), Nowak (2006), Szabó and Fáth (2007), Alós-Ferrer and Weidenholzer (2008), and the references therein.

Section 11.2. Stationary distributions for models of stochastic evolution in two-strategy games are studied by Binmore et al. (1995), Binmore and Samuelson (1997), Blume (2003), Benaïm and Weibull (2003), and Sandholm (2007c). The "swimming upstream" analogy following Example 11.2.5 appears in related contexts in Fudenberg and Harris (1992), Kandori (1997), and Binmore and Samuelson (1997).

Section 11.3. The definition of finite-population full potential games and Exercise 11.3.7 are due to Sandholm (2001). The distinction between simple and clever payoff evaluation is noted in Sandholm (1998). Exercise 11.3.10(ii) is due to Rhode and Stegeman (1996).

Section 11.4. Exercise 11.4.2(i) is due to Blume (1997), which builds on the definition of normal form potential games from Monderer and Shapley (1996). Theorem 11.4.1 is presented in Benaïm and Sandholm (2007).

Appendix 11.A. The material presented here can all be found in standard references on Markov chains and processes; see Norris (1997), Brémaud (1999), and Stroock (2005). Durrett (2005, Chapter 5) also offers a clear presentation of Markov chains. For more on the Perron-Frobenius Theorem, see Seneta (1981) or Horn and Johnson (1985).

BIBLIOGRAPHY

Abraham, R. and Robbin, J. (1967). Transversal Mappings and Flows. W. A. Benjamin, New York.

Akin, E. (1979). The Geometry of Population Genetics. Springer, Berlin.
Akin, E. (1980). Domination or equilibrium. Mathematical Biosciences, 50:239-250.
Akin, E. (1990). The differential geometry of population genetics and evolutionary games. In Lessard, S., editor, Mathematical and Statistical Developments of Evolutionary Theory, pages 1-93. Kluwer, Dordrecht.

Akin, E. (1993). The General Topology of Dynamical Systems. American Mathematical Society, Providence, RI.

Akin, E. and Losert, V. (1984). Evolutionary dynamics of zero-sum games. Journal of Mathematical Biology, 20:231-258.

Aldous, D. and Fill, J. A. (2001). Reversible Markov chains and random walks on graphs. Unpublished manuscript, UC Berkeley and Johns Hopkins University.

Alós-Ferrer, C. and Weidenholzer, S. (2008). Contagion and efficiency. Journal of Economic Theory, 143:251-274.

Anderson, S. P., de Palma, A., and Thisse, J.-F. (1992). Discrete Choice Theory of Product Differentiation. MIT Press, Cambridge.

Arneodo, A., Coullet, P., and Tresser, C. (1980). Occurrence of strange attractors in threedimensional Volterra equations. Physics Letters, 79A:259-263.

Aubin, J.-P. (1991). Viability Theory. Birkhäuser, Boston.
Aubin, J.-P. and Cellina, A. (1984). Differential Inclusions. Springer, Berlin.
Avriel, M. (1976). Nonlinear Programming: Analysis and Methods. Prentice-Hall, Englewood Cliffs, NJ.

Balkenborg, D. and Schlag, K. H. (2001). Evolutionarily stable sets. International Journal of Game Theory, 29:571-595.

Beckmann, M., McGuire, C. B., and Winsten, C. B. (1956). Studies in the Economics of Transportation. Yale University Press, New Haven.

Benaïm, M. (1998). Recursive algorithms, urn processes, and the chaining number of chain recurrent sets. Ergodic Theory and Dynamical Systems, 18:53-87.

Benaïm, M. (1999). Dynamics of stochastic approximation algorithms. In Azéma, J. et al., editors, Séminaire de Probabilités XXXIII, pages 1-68. Springer, Berlin.

Benaïm, M. and Hirsch, M. W. (1999a). Mixed equilibria and dynamical systems arising from fictitious play in perturbed games. Games and Economic Behavior, 29:36-72.

Benaïm, M. and Hirsch, M. W. (1999b). On stochastic approximation algorithms with constant step size whose average is cooperative. Annals of Applied Probability, 30:850869.

Benaïm, M., Hofbauer, J., and Hopkins, E. (2006a). Learning in games with unstable equilibria. Unpublished manuscript, Université de Neuchâtel, University of Vienna, and University of Edinburgh.

Benaïm, M., Hofbauer, J., and Sorin, S. (2005). Stochastic approximation and differential inclusions. SIAM Journal on Control and Optimization, 44:328-348.

Benaïm, M., Hofbauer, J., and Sorin, S. (2006b). Stochastic approximation and differential inclusions II: Applications. Mathematics of Operations Research, 31:673-695.

Benaïm, M. and Sandholm, W. H. (2007). Logit evolution in potential games: Reversibility, rates of convergence, large deviations, and equilibrium selection. Unpublished manuscript, Université de Neuchâtel and University of Wisconsin.

Benaïm, M. and Weibull, J. W. (2003). Deterministic approximation of stochastic evolution in games. Econometrica, 71:873-903.

Benaïm, M. and Weibull, J. W. (2008). Deterministic approximation of stochastic evolution in games: A generalization. Unpublished manuscript, Université de Neuchâtel and Stockholm School of Economics.

Berger, U. (2007). Two more classes of games with the continuous-time fictitious play property. Games and Economic Behavior, 60:247-261.

Berger, U. and Hofbauer, J. (2006). Irrational behavior in the Brown-von Neumann-Nash dynamics. Games and Economic Behavior, 56:1-6.

Bhatia, N. P. and Szegő, G. P. (1970). Stability Theory of Dynamical Systems. Springer, Berlin.
Billingsley, P. (1995). Probability and Measure. Wiley, New York, third edition.

Binmore, K. and Samuelson, L. (1997). Muddling through: Noisy equilibrium selection. Journal of Economic Theory, 74:235-265.

Binmore, K. and Samuelson, L. (1999). Evolutionary drift and equilibrium selection. Review of Economic Studies, 66:363-393.

Binmore, K., Samuelson, L., and Vaughan, R. (1995). Musical chairs: Modeling noisy evolution. Games and Economic Behavior, 11:1-35.

Bishop, D. T. and Cannings, C. (1978). A generalised war of attrition. Journal of Theoretical Biology, 70:85-124.

Björnerstedt, J. and Weibull, J. W. (1996). Nash equilibrium and evolution by imitation. In Arrow, K. J. et al., editors, The Rational Foundations of Economic Behavior, pages 155-181. St. Martin's Press, New York.

Blume, L. E. (1993). The statistical mechanics of strategic interaction. Games and Economic Behavior, 5:387-424.

Blume, L. E. (1995). The statistical mechanics of best reponse strategy revision. Games and Economic Behavior, 11:111-145.

Blume, L. E. (1997). Population games. In Arthur, W. B., Durlauf, S. N., and Lane, D. A., editors, The Economy as an Evolving Complex System II, pages 425-460. Addison-Wesley, Reading, MA.

Blume, L. E. (2003). How noise matters. Games and Economic Behavior, 44:251-271.
Bomze, I. M. (1986). Non-cooperative two-person games in biology: A classification. International Journal of Game Theory, 15:31-57.

Bomze, I. M. (1991). Cross entropy minimization in uninvadable states of complex populations. Journal of Mathematical Biology, 30:73-87.

Bomze, I. M. (2002). Regularity versus degeneracy in dynamics, games, and optimization: A unified approach to different aspects. SIAM Review, 44:394-414.

Bomze, I. M. and Pötscher, B. M. (1989). Game Theoretical Foundations of Evolutionary Stability. Springer, Berlin.

Bomze, I. M. and Weibull, J. W. (1995). Does neutral stability imply Lyapunov stability? Games and Economic Behavior, 11:173-192.

Börgers, T. and Sarin, R. (1997). Learning through reinforcement and the replicator dynamics. Journal of Economic Theory, 77:1-14.

Boylan, R. T. (1995). Continuous approximation of dynamical systems with randomly matched individuals. Journal of Economic Theory, 66:615-625.

Braess, D. (1968). Über ein Paradoxen der Verkehrsplanung. Unternehmensforschung, 12:258-268.

Brémaud, P. (1999). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York.

Brown, G. W. and von Neumann, J. (1950). Solutions of games by differential equations. In Kuhn, H. W. and Tucker, A. W., editors, Contributions to the Theory of Games I, volume 24 of Annals of Mathematics Studies, pages 73-79. Princeton University Press, Princeton.

Bulow, J. and Klemperer, P. (1999). The generalized war of attrition. American Economic Review, 89:175-189.

Burdett, K. and Judd, K. L. (1983). Equilibrium price dispersion. Econometrica, 51:955-969.
Camerer, C. (2003). Behavioral Game Theory. Princeton University Press, Princeton.
Conley, C. (1978). Isolated Invariant Sets and the Morse Index. American Mathematical Society, Providence, RI.

Cooper, R. W. (1999). Coordination Games: Complementarities and Macroeconomics. Cambridge University Press, Cambridge.

Correa, J. R., Schulz, A. S., and Stier-Moses, N. E. (2004). Selfish routing in capacitated networks. Mathematics of Operations Research, 29:961-976.

Correa, J. R., Schulz, A. S., and Stier-Moses, N. E. (2008). A geometric approach to the price of anarchy in nonatomic congestion games. Games and Economic Behavior, 64:457-469.

Cressman, R. (1992). The Stability Concept of Evolutionary Game Theory: A Dynamic Approach. Springer, Berlin.

Cressman, R. (1995). Evolutionary game theory with two groups of individuals. Games and Economic Behavior, 11:237-253.

Cressman, R. (1996). Frequency-dependent stability for two-species interactions. Theoretical Population Biology, 49:189-210.

Cressman, R. (1997). Local stability of smooth selection dynamics for normal form games. Mathematical Social Sciences, 34:1-19.

Cressman, R. (2003). Evolutionary Dynamics and Extensive Form Games. MIT Press, Cambridge.

Cressman, R. (2006). Uninvadability in N-species frequency models for resident-mutant systems with discrete or continuous time. Theoretical Population Biology, 69:253-262.

Cressman, R., Garay, J., and Hofbauer, J. (2001). Evolutionary stability concepts for $\mathrm{N}-$ species frequency-dependent interactions. Journal of Theoretical Biology, 211:1-10.

Crouzeix, J.-P. (1998). Characterizations of generalized convexity and generalized monotonicity: A survey. In Crouzeix, J.-P. et al., editors, Generalized Convexity, Generalized Monotonicity: Recent Results, pages 237-256. Kluwer, Dordrecht.

Crow, J. F. and Kimura, M. (1970). An Introduction to Population Genetics Theory. Harper and Row, New York.

Dafermos, S. and Sparrow, F. T. (1969). The traffic assignment problem for a general network. Journal of Research of the National Bureau of Standards B, 73:91-118.

Dawkins, R. (1976). The Selfish Gene. Oxford University Press, Oxford.
Dawkins, R. (1982). The Extended Phenotye. Oxford University Press, Oxford.
Demichelis, S. and Germano, F. (2000). On the indices of zeros of Nash fields. Journal of Economic Theory, 94:192-217.

Demichelis, S. and Germano, F. (2002). On (un)knots and dynamics in games. Games and Economic Behavior, 41:46-60.

Demichelis, S. and Ritzberger, K. (2003). From evolutionary to strategic stability. Journal of Economic Theory, 113:51-75.

Dupuis, P. and Nagurney, A. (1993). Dynamical systems and variational inequalities. Annals of Operations Research, 44:9-42.

Durrett, R. (2005). Probability: Theory and Examples. Brooks-Cole, Belmont, CA, third edition.

Eigen, M. and Schuster, P. (1979). The Hypercycle: A Principle of Natural Self-Organization. Springer, Berlin.

Ellison, G. (1993). Learning, local interaction, and coordination. Econometrica, 61:10471071.

Ellison, G. (2000). Basins of attraction, long run equilibria, and the speed of step-by-step evolution. Review of Economic Studies, 67:17-45.

Ellison, G. and Fudenberg, D. (2000). Learning purified mixed equilibria. Journal of Economic Theory, 90:84-115.

Ely, J. C. and Sandholm, W. H. (2005). Evolution in Bayesian games I: Theory. Games and Economic Behavior, 53:83-109.

Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.

Freidlin, M. I. and Wentzell, A. D. (1998). Random Perturbations of Dynamical Systems. Springer, New York, second edition.

Friedberg, S. H., Insel, A. J., and Spence, L. E. (1989). Linear Algebra. Prentice-Hall, Englewood Cliffs, NJ, second edition.

Friedman, D. (1991). Evolutionary games in economics. Econometrica, 59:637-666.
Fudenberg, D. and Harris, C. (1992). Evolutionary dynamics with aggregate shocks. Journal of Economic Theory, 57:420-441.

Fudenberg, D. and Imhof, L. A. (2006). Imitation processes with small mutations. Journal of Economic Theory, 131:251-262.

Fudenberg, D. and Imhof, L. A. (2008). Monotone imitation dynamics in large populations. Journal of Economic Theory, 140:229-245.

Fudenberg, D. and Kreps, D. M. (1993). Learning mixed equilibria. Games and Economic Behavior, 5:320-367.

Fudenberg, D. and Levine, D. K. (1998). Theory of Learning in Games. MIT Press, Cambridge.
Fudenberg, D., Nowak, M. A., Taylor, C., and Imhof, L. A. (2006). Evolutionary game dynamics in finite populations with strong selection and weak mutation. Theoretical Population Biology, 70:352-363.

Fudenberg, D. and Tirole, J. (1991). Game Theory. MIT Press, Cambridge.
Gaunersdorfer, A. and Hofbauer, J. (1995). Fictitious play, Shapley polygons, and the replicator equation. Games and Economic Behavior, 11:279-303.

Gilboa, I. and Matsui, A. (1991). Social stability and equilibrium. Econometrica, 59:859-867.
Gordon, W. B. (1972). On the diffeomorphisms of euclidean space. American Mathematical Monthly, 79:755-759.

Guckenheimer, J. and Holmes, P. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin.

Haigh, J. (1975). Game theory and evolution. Advances in Applied Probability, 7:8-11.
Hamilton, W. D. (1967). Extraordinary sex ratios. Science, 156:477-488.
Hamilton, W. D. (1996). Narrow Roads of Gene Land, volume 1. W. H. Freeman/Spektrum, Oxford.

Harker, P. T. and Pang, J.-S. (1990). Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms, and applications. Mathematical Programming, 48:161-220.

Harsanyi, J. C. (1973). Games with randomly disturbed payoffs: A new rationale for mixed-strategy equilibrium points. International Journal of Game Theory, 2:1-23.

Hart, S. and Mas-Colell, A. (2001). A general class of adaptive strategies. Journal of Economic Theory, 98:26-54.

Hart, S. and Mas-Colell, A. (2003). Uncoupled dynamics do not lead to Nash equilibrium. American Economic Review, 93:1830-1836.

Hartman, P. (1964). Ordinary Differential Equations. Wiley, New York.
Henry, C. (1973). An existence theorem for a class of differential equations with multivalued right-hand side. Journal of Mathematical Analysis and Applications, 41:179-186.

Hewitt, E. and Stromberg, K. (1965). Real and Abstract Analysis. Springer, Berlin.
Hines, W. G. S. (1980). Three characterizations of population strategy stability. Journal of Applied Probability, 17:333-340.

Hines, W. G. S. (1987). Evolutionary stable strategies: A review of basic theory. Theoretical Population Biology, 31:195-272.

Hiriart-Urruty, J.-B. and Lemaréchal, C. (2001). Fundamentals of Convex Analysis. Springer, Berlin.

Hirsch, M. W. (1988). Systems of differential equations that are competitive or cooperative III: Competing species. Nonlinearity, 1:51-71.

Hirsch, M. W. and Smale, S. (1974). Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, San Diego.

Hirsch, M. W., Smale, S., and Devaney, R. L. (2004). Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier, Amsterdam.

Hofbauer, J. (1981). On the occurrence of limit cycles in the Volterra-Lotka equation. Nonlinear Analysis, 5:1003-1007.

Hofbauer, J. (1985). The selection mutation equation. Journal of Mathematical Biology, 23:41-53.

Hofbauer, J. (1995a). Imitation dynamics for games. Unpublished manuscript, University of Vienna.

Hofbauer, J. (1995b). Stability for the best response dynamics. Unpublished manuscript, University of Vienna.

Hofbauer, J. (1996). Evolutionary dynamics for bimatrix games: A Hamiltonian system? Journal of Mathematical Biology, 34:675-688.

Hofbauer, J. (2000). From Nash and Brown to Maynard Smith: Equilibria, dynamics, and ESS. Selection, 1:81-88.

Hofbauer, J. and Hopkins, E. (2005). Learning in perturbed asymmetric games. Games and Economic Behavior, 52:133-152.

Hofbauer, J., Mallet-Paret, J., and Smith, H. L. (1991). Stable periodic solutions for the hypercycle system. Journal of Dynamics and Differential Equations, 3:423-436.

Hofbauer, J. and Sandholm, W. H. (2002). On the global convergence of stochastic fictitious play. Econometrica, 70:2265-2294.

Hofbauer, J. and Sandholm, W. H. (2006). Survival of dominated strategies under evolutionary dynamics. Unpublished manuscript, University of Vienna and University of Wisconsin.

Hofbauer, J. and Sandholm, W. H. (2007). Evolution in games with randomly disturbed payoffs. Journal of Economic Theory, 132:47-69.

Hofbauer, J. and Sandholm, W. H. (2008). Stable games and their dynamics. Unpublished manuscript, University of Vienna and University of Wisconsin.

Hofbauer, J., Schuster, P., and Sigmund, K. (1979). A note on evolutionarily stable strategies and game dynamics. Journal of Theoretical Biology, 81:609-612.

Hofbauer, J., Schuster, P., and Sigmund, K. (1981). Competition and cooperation in catalytic self-replication. Journal of Mathematical Biology, 11:155-168.

Hofbauer, J. and Sigmund, K. (1988). Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge.

Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge.

Hofbauer, J. and Sigmund, K. (2003). Evolutionary game dynamics. Bulletin of the American Mathematical Society (New Series), 40:479-519.

Hofbauer, J., Sorin, S., and Viossat, Y. (2007). Time average replicator and best reply dynamics. Unpublished manuscript, University of Vienna and University of Paris VI and IX.

Hofbauer, J. and Swinkels, J. M. (1996). A universal Shapley example. Unpublished manuscript, University of Vienna and Northwestern University.

Hofbauer, J. and Weibull, J. W. (1996). Evolutionary selection against dominated strategies. Journal of Economic Theory, 71:558-573.

Hopkins, E. (1999). A note on best response dynamics. Games and Economic Behavior, 29:138-150.

Hopkins, E. (2002). Two competing models of how people learn in games. Econometrica, 70:2141-2166.

Hopkins, E. and Seymour, R. M. (2002). The stability of price dispersion under seller and consumer learning. International Economic Review, 43:1157-1190.

Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge University Press, Cambridge.

Imhof, L. A. (2005). The long-run behavior of the stochastic replicator dynamics. Annals of Applied Probability, 15:1019-1045.

Jordan, J. S. (1993). Three problems in learning mixed-strategy Nash equilibria. Games and Economic Behavior, 5:368-386.

Kandori, M. (1997). Evolutionary game theory in economics. In Kreps, D. M. and Wallis, K. F., editors, Advances in Economics and Econometrics: Theory and Applications, volume I, pages 243-277. Cambridge University Press, Cambridge.

Kandori, M., Mailath, G. J., and Rob, R. (1993). Learning, mutation, and long run equilibria in games. Econometrica, 61:29-56.

Kandori, M. and Rob, R. (1995). Evolution of equilibria in the long run: A general theory and applications. Journal of Economic Theory, 65:383-414.

Kimura, M. (1958). On the change of population fitness by natural selection. Heredity, 12:145-167.

Kojima, F. and Takahashi, S. (2007). Anti-coordination games and dynamic stability. International Game Theory Review, 9:667-688.

Koutsoupias, E. and Papadimitriou, C. H. (1999). Worst-case equilibria. In Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science (STACS '99), Trier, Germany, volume 1563 of Lecture Notes in Computer Science, pages 404-413. Springer.

Krantz, S. G. and Parks, H. R. (1999). The Geometry of Domains in Space. Birkhäuser, Boston.
Kuhn, H. W. (2003). Lectures on the Theory of Games. Princeton University Press, Princeton.
Kurtz, T. G. (1970). Solutions of ordinary differential equations as limits of pure jump Markov processes. Journal of Applied Probability, 7:49-58.

Lahkar, R. (2007). The dynamic instability of dispersed price equilibria. Unpublished manuscript, University College London.

Lahkar, R. and Sandholm, W. H. (2008). The projection dynamic and the geometry of population games. Games and Economic Behavior, 64:565-590.

Lang, S. (1997). Undergraduate Analysis. Springer, New York, second edition.
Lax, P. D. (2007). Linear Algebra and Its Applications. Wiley, Hoboken, NJ, second edition.

Lotka, A. J. (1920). Undamped oscillation derived from the law of mass action. Journal of the American Chemical Society, 42:1595-1598.

Luce, R. D. and Raiffa, H. (1957). Games and Decisions: Introduction and Critical Survey. Wiley, New York.

Marsden, J. E. and Ratiu, T. S. (2002). Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Springer, Berlin, second edition.

Matsui, A. (1992). Best response dynamics and socially stable strategies. Journal of Economic Theory, 57:343-362.

Maynard Smith, J. (1974). The theory of games and the evolution of animal conflicts. Journal of Theoretical Biology, 47:209-221.

Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge University Press, Cambridge.

Maynard Smith, J. and Price, G. R. (1973). The logic of animal conflict. Nature, 246:15-18.
McFadden, D. (1981). Econometric models of probabilistic choice. In Manski, C. F. and McFadden, D., editors, Structural Analysis of Discrete Data with Econometric Applications, pages 198-272. MIT Press, Cambridge.

McKelvey, R. D. and Palfrey, T. R. (1995). Quantal response equilibria for normal form games. Games and Economic Behavior, 10:6-38.

Milgrom, P. and Roberts, J. (1990). Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica, 58:1255-1278.

Milgrom, P. and Shannon, C. (1994). Monotone comparative statics. Econometrica, 62:157180.

Milnor, J. W. (1965). Topology from the Differentiable Viewpoint. Princeton University Press, Princeton.

Minty, G. J. (1967). On the generalization of a direct method of the calculus of variations. Bulletin of the American Mathematical Society, 73:315-321.

Monderer, D. and Sela, A. (1997). Fictitious play and no-cycling conditions. Unpublished manuscript, The Technion.

Monderer, D. and Shapley, L. S. (1996). Potential games. Games and Economic Behavior, 14:124-143.

Moran, P. A. P. (1962). The Statistical Processes of Evolutionary Theory. Clarendon Press, Oxford.

Morris, S. (2000). Contagion. Review of Economic Studies, 67:57-78.

Nachbar, J. H. (1990). 'Evolutionary' selection dynamics in games: Convergence and limit properties. International Journal of Game Theory, 19:59-89.

Nagurney, A. (1999). Network Economics: A Variational Inequality Approach. Kluwer, Dordrecht, second edition.

Nagurney, A. and Zhang, D. (1996). Projected Dynamical Systems and Variational Inequalities with Applications. Kluwer, Dordrecht.

Nagurney, A. and Zhang, D. (1997). Projected dynamical systems in the formulation, stability analysis, and computation of fixed demand traffic network equilibria. Transportation Science, 31:147-158.

Nash, J. F. (1951). Non-cooperative games. Annals of Mathematics, 54:287-295.
Nemytskii, V. V. and Stepanov, V. V. (1960). Qualitative Theory of Differential Equations. Princeton University Press, Princeton.

Norris, J. R. (1997). Markov Chains. Cambridge University Press, Cambridge.
Nowak, M. A. (2006). Evolutionary Dynamics: Exploring the Equations of Life. Belknap/Harvard, Cambridge.

Nowak, M. A. and May, R. M. (1992). Evolutionary games and spatial chaos. Nature, 359:826-829.

Nowak, M. A. and May, R. M. (1993). The spatial dilemmas of evolution. International Journal of Bifurcation and Chaos, 3:35-78.

Nowak, M. A., Sasaki, A., Taylor, C., and Fudenberg, D. (2004). Emergence of cooperation and evolutionary stability in finite populations. Nature, 428:646-650.

Ok, E. A. (2007). Real Analysis with Economic Applications. Princeton University Press, Princeton.

Papadimitriou, C. H. (2001). Algorithms, games, and the Internet. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC '01), Hersonissos, Greece, pages 749-753.

Patriksson, M. (1994). The Traffic Assignment Problem: Models and Methods. VSP, Utrecht.
Pohley, H.-J. and Thomas, B. (1983). Non-linear ESS models and frequency dependent selection. BioSystems, 16:87-100.

Rhode, P. and Stegeman, M. (1996). A comment on "Learning, mutation, and long run equilibria in games". Econometrica, 64:443-449.

Ritzberger, K. (1994). The theory of normal form games from the differentiable viewpoint. International Journal of Game Theory, 23:207-236.

Ritzberger, K. and Weibull, J. W. (1995). Evolutionary selection in normal form games. Econometrica, 63:1371-1399.

Roberts, A. W. and Varberg, D. E. (1973). Convex Functions. Academic Press, New York.
Robinson, C. (1995). Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, Boca Raton, FL.

Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press, Princeton.
Rosenthal, R. W. (1973). A class of games possessing pure strategy Nash equilibria. International Journal of Game Theory, 2:65-67.

Roughgarden, T. (2005). Selfish Routing and the Price of Anarchy. MIT Press, Cambridge.
Roughgarden, T. and Tardos, É. (2002). How bad is selfish routing? Journal of the ACM, 49:236-259.

Roughgarden, T. and Tardos, É. (2004). Bounding the inefficiency of equilibria in nonatomic congestion games. Games and Economic Behavior, 49:389-403.

Samuelson, L. and Zhang, J. (1992). Evolutionary stability in asymmetric games. Journal of Economic Theory, 57:363-391.

Sandholm, W. H. (1998). Simple and clever decision rules in a model of evolution. Economics Letters, 61:165-170.

Sandholm, W. H. (2001). Potential games with continuous player sets. Journal of Economic Theory, 97:81-108.

Sandholm, W. H. (2002). Evolutionary implementation and congestion pricing. Review of Economic Studies, 69:81-108.

Sandholm, W. H. (2003). Evolution and equilibrium under inexact information. Games and Economic Behavior, 44:343-378.

Sandholm, W. H. (2005a). Excess payoff dynamics and other well-behaved evolutionary dynamics. Journal of Economic Theory, 124:149-170.

Sandholm, W.H. (2005b). Negative externalities and evolutionary implementation. Review of Economic Studies, 72:885-915.

Sandholm, W. H. (2006). A probabilistic characterization of integrability for game dynamics. Unpublished manuscript, University of Wisconsin.

Sandholm, W. H. (2007a). Evolution in Bayesian games II: Stability of purified equilibria. Journal of Economic Theory, 136:641-667.

Sandholm, W. H. (2007b). Pigouvian pricing and stochastic evolutionary implementation. Journal of Economic Theory, 132:367-382.

Sandholm, W. H. (2007c). Simple formulas for stationary distributions and stochastically stable states. Games and Economic Behavior, 59:154-162.

Sandholm, W. H. (2008a). Decompositions and potentials for normal form games. Unpublished manuscript, University of Wisconsin.

Sandholm, W. H. (2008b). Large population potential games. Journal of Economic Theory, forthcoming.

Sandholm, W.H. (2008c). Local stability under evolutionary game dynamics. Unpublished manuscript, University of Wisconsin.

Sandholm, W. H. (2008d). Pairwise comparison dynamics and evolutionary foundations for Nash equilibrium. Unpublished manuscript, University of Wisconsin.

Sandholm, W. H., Dokumacı, E., and Lahkar, R. (2008). The projection dynamic and the replicator dynamic. Games and Economic Behavior, 64:666-683.

Sato, Y., Akiyama, E., and Farmer, J. D. (2002). Chaos in learning a simple two-person game. Procedings of the National Academy of Sciences, 99:4748-4751.

Schlag, K. H. (1998). Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits. Journal of Economic Theory, 78:130-156.

Schuster, P. and Sigmund, K. (1983). Replicator dynamics. Journal of Theoretical Biology, 100:533-538.

Schuster, P., Sigmund, K., Hofbauer, J., Gottlieb, R., and Merz, P. (1981a). Selfregulation of behaviour in animal societies III: Games between two populations with selfinteraction. Biological Cybernetics, 90:16-25.

Schuster, P., Sigmund, K., Hofbauer, J., and Wolff, R. (1981b). Selfregulation of behaviour in animal societies I: Symmetric contests. Biological Cybernetics, 40:1-8.

Schuster, P., Sigmund, K., Hofbauer, J., and Wolff, R. (1981c). Selfregulation of behaviour in animal societies II: Games between two populations without selfinteraction. Biological Cybernetics, 90:9-15.

Selten, R. (1980). A note on evolutionarily stable strategies in asymmetric animal conflicts. Journal of Theoretical Biology, 84:93-101.

Seneta, E. (1981). Non-negative Matrices and Markov Chains. Springer, New York, second edition.

Shahshahani, S. (1979). A new mathematical framework for the study of linkage and selection. Memoirs of the American Mathematical Society, 211.

Shapley, L. S. (1964). Some topics in two person games. In Dresher, M., Shapley, L. S., and Tucker, A. W., editors, Advances in Game Theory, volume 52 of Annals of Mathematics Studies, pages 1-28. Princeton University Press, Princeton.

Sheffi, Y. (1985). Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods. Prentice-Hall, Englewood Cliffs, NJ.

Shiga, T. and Tanaka, H. (1985). Central Limit Theorem for a system of Markovian particles with mean field interactions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 69:439-459.

Skyrms, B. (1990). The Dynamics of Rational Deliberation. Harvard University Press, Cambridge.

Skyrms, B. (1992). Chaos in game dynamics. Journal of Logic, Language, and Information, 1:111-130.

Slade, M. E. (1994). What does an oligopoly maximize? Journal of Industrial Economics, 42:45-51.

Smale, S. (1967). Differentiable dynamical systems. Bulletin of the American Mathematical Society, 73:747-817.

Smirnov, G. V. (2002). Introduction to the Theory of Differential Inclusions. American Mathematical Society, Providence, RI.

Smith, H. L. (1995). Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society, Providence, RI.

Smith, M. J. (1984). The stability of a dynamic model of traffic assignment—an application of a method of Lyapunov. Transportation Science, 18:245-252.

Sparrow, C., van Strien, S., and Harris, C. (2008). Fictitious play in 3×3 games: The transition between periodic and chaotic behaviour. Games and Economic Behavior, 63:259291.

Stroock, D. W. (2005). An Introduction to Markov Processes. Springer, Berlin.
Swinkels, J. M. (1992). Evolutionary stability with equilibrium entrants. Journal of Economic Theory, 57:306-332.

Swinkels, J. M. (1993). Adjustment dynamics and rational play in games. Games and Economic Behavior, 5:455-484.

Szabó, G. and Fáth, G. (2007). Evolutionary games on graphs. Physics Reports, 446:97-216.
Sznitman, A. (1991). Topics in propagation of chaos. In Hennequin, P. L., editor, Ecole d'Eté de Probabilités de Saint-Flour XIX, 1989, pages 167-251. Springer, Berlin.

Tanabe, Y. (2006). The propagation of chaos for interacting individuals in a large population. Mathematical Social Sciences, 51:125-152.

Tanaka, H. (1983). Some probabilistic problems in the spatially homogeneous Boltzmann equation. In Kallianpur, G., editor, Theory and Application of Random Fields (Bangalore, 1982), pages 258-267. Springer, Berlin.

Taylor, C., Fudenberg, D., Sasaki, A., and Nowak, M. A. (2004). Evolutionary game dynamics in finite populations. Bulletin of Mathematical Biology, 66:1621-1644.

Taylor, P. D. (1979). Evolutionarily stable strategies with two types of players. Journal of Applied Probability, 16:76-83.

Taylor, P. D. and Jonker, L. (1978). Evolutionarily stable strategies and game dynamics. Mathematical Biosciences, 40:145-156.

Thomas, B. (1984). Evolutionary stability: States and strategies. Theoretical Population Biology, 26:49-67.

Thomas, B. (1985). On evolutionarily stable sets. Journal of Mathematical Biology, 22:105115.

Topkis, D. (1979). Equilibrium points in nonzero-sum n-person submodular games. SIAM Journal on Control and Optimization, 17:773-787.

Topkis, D. (1998). Supermodularity and Complementarity. Princeton University Press, Princeton.

Ui, T. (2000). A Shapley value representation of potential games. Games and Economic Behavior, 31:121-135.
van Damme, E. (1991). Stability and Perfection of Nash Equilibria. Springer, Berlin, second edition.

Vickers, G. T. and Cannings, C. (1987). On the definition of an evolutionarily stable strategy. Journal of Theoretical Biology, 129:349-353.

Vives, X. (1990). Nash equilibrium with strategic complementarities. Journal of Mathematical Economics, 19:305-321.

Vives, X. (2000). Oligopoly Pricing: Old Ideas and New Tools. MIT Press, Cambridge.
Vives, X. (2005). Complementarities and games: New developments. Journal of Economic Literature, 43:437-479.

Volterra, V. (1931). Lecons sur la Theorie Mathematique de la Lutte pour la Vie. Gauthier-Villars, Paris.

Weibull, J. W. (1995). Evolutionary Game Theory. MIT Press, Cambridge.

Weibull, J. W. (1996). The mass action interpretation. Excerpt from 'The work of John Nash in game theory: Nobel Seminar, December 8, 1994'. Journal of Economic Theory, 69:165-171.

Young, H. P. (1993). The evolution of conventions. Econometrica, 61:57-84.
Young, H. P. (1998). Individual Strategy and Social Structure. Princeton University Press, Princeton.

Zeeman, E. C. (1980). Population dynamics from game theory. In Nitecki, Z. and Robinson, C., editors, Global Theory of Dynamical Systems (Evanston, 1979), number 819 in Lecture Notes in Mathematics, pages 472-497, Berlin. Springer.

